1
|
Karavasili C, Young T, Francis J, Blanco J, Mancini N, Chang C, Bernstock JD, Connolly ID, Shankar GM, Traverso G. Local drug delivery challenges and innovations in spinal neurosurgery. J Control Release 2024; 376:1225-1250. [PMID: 39505215 DOI: 10.1016/j.jconrel.2024.10.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 10/11/2024] [Accepted: 10/28/2024] [Indexed: 11/08/2024]
Abstract
The development of novel therapeutics in the field of spinal neurosurgery faces a litany of translational challenges. Achieving precise drug targeting within the confined spaces associated with the spinal cord, canal and vertebra requires the development of next generation delivery systems and devices. These must be capable of overcoming inherent barriers related to drug diffusion, whilst concurrently ensuring optimal drug distribution and retention. In this review, we provide an overview of the most recent advances in the therapeutic management of diseases and disorders affecting the spine, including systems and devices capable of releasing small molecules and biopharmaceuticals that help eliminate pain and restore the mechanical function and stability of the spine. We highlight material-based approaches and minimally invasive techniques that can be employed to provide control over drug release kinetics and improve retention. We also seek to explore how the newest advancements in nanotechnology, biomaterials, additive manufacturing technologies and imaging modalities can be employed in this translational pursuit. Finally, we discuss the landscape of clinical trials and recently approved products aimed at overcoming the complexities associated with drug delivery to the spine.
Collapse
Affiliation(s)
- Christina Karavasili
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States; Division of Gastroenterology, Hepatology, and Endoscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Thomas Young
- Division of Gastroenterology, Hepatology, and Endoscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Joshua Francis
- Division of Gastroenterology, Hepatology, and Endoscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Julianna Blanco
- Division of Gastroenterology, Hepatology, and Endoscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Nicholas Mancini
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Charmaine Chang
- Division of Gastroenterology, Hepatology, and Endoscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Joshua D Bernstock
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States; Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Ian D Connolly
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Ganesh M Shankar
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Giovanni Traverso
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States; Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States; Division of Gastroenterology, Hepatology, and Endoscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
2
|
Ranjbar FE, Farzad-Mohajeri S, Samani S, Saremi J, Khademi R, Dehghan MM, Azami M. Kaempferol-loaded bioactive glass-based scaffold for bone tissue engineering: in vitro and in vivo evaluation. Sci Rep 2023; 13:12375. [PMID: 37524784 PMCID: PMC10390521 DOI: 10.1038/s41598-023-39505-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 07/26/2023] [Indexed: 08/02/2023] Open
Abstract
Due to the increasing prevalence of bone disorders among people especially in average age, the future of treatments for osseous abnormalities has been illuminated by scaffold-based bone tissue engineering. In this study, in vitro and in vivo properties of 58S bioactive glass-based scaffolds for bone tissue engineering (bare (B.SC), Zein-coated (C.SC), and Zein-coated containing Kaempferol (KC.SC)) were evaluated. This is a follow-up study on our previously published paper, where we synthesized 58S bioactive glass-based scaffolds coated with Kaempferol-loaded Zein biopolymer, and characterized from mostly engineering points of view to find the optimum composition. For this aim, in vitro assessments were done to evaluate the osteogenic capacity and biological features of the scaffolds. In the in vivo section, all types of scaffolds with/without bone marrow-derived stem cells (BMSC) were implanted into rat calvaria bone defects, and potential of bone healing was assessed using imaging, staining, and histomorphometric analyses. It was shown that, Zein-coating covered surface cracks leading to better mechanical properties without negative effect on bioactivity and cell attachment. Also, BMSC differentiation proved that the presence of Kaempferol caused higher calcium deposition, increased alkaline phosphatase activity, bone-specific gene upregulation in vitro. Further, in vivo study confirmed positive effect of BMSC-loaded KC.SC on significant new bone formation resulting in complete bone regeneration. Combining physical properties of coated scaffolds with the osteogenic effect of Kaempferol and BMSCs could represent a new strategy for bone regeneration and provide a more effective approach to repairing critical-sized bone defects.
Collapse
Affiliation(s)
- Faezeh Esmaeili Ranjbar
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Saeed Farzad-Mohajeri
- Department of Surgery and Radiology, Faculty of Veterinary Medicine, University of Tehran, Dr. Qarib Street, Azadi Street, Tehran, 1419963111, Iran
| | - Saeed Samani
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, No. 88, Italia St., Keshavarz Blv, Tehran, Iran
| | - Jamileh Saremi
- Research Center for Noncommunicable Diseases, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Rahele Khademi
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, No. 88, Italia St., Keshavarz Blv, Tehran, Iran
| | - Mohammad Mehdi Dehghan
- Department of Surgery and Radiology, Faculty of Veterinary Medicine, University of Tehran, Dr. Qarib Street, Azadi Street, Tehran, 1419963111, Iran.
| | - Mahmoud Azami
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, No. 88, Italia St., Keshavarz Blv, Tehran, Iran.
| |
Collapse
|
3
|
Banimohamad-Shotorbani B, Karkan SF, Rahbarghazi R, Mehdipour A, Jarolmasjed S, Saghati S, Shafaei H. Application of mesenchymal stem cell sheet for regeneration of craniomaxillofacial bone defects. Stem Cell Res Ther 2023; 14:68. [PMID: 37024981 PMCID: PMC10080954 DOI: 10.1186/s13287-023-03309-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 03/28/2023] [Indexed: 04/08/2023] Open
Abstract
Bone defects are among the most common damages in human medicine. Due to limitations and challenges in the area of bone healing, the research field has turned into a hot topic discipline with direct clinical outcomes. Among several available modalities, scaffold-free cell sheet technology has opened novel avenues to yield efficient osteogenesis. It is suggested that the intact matrix secreted from cells can provide a unique microenvironment for the acceleration of osteoangiogenesis. To the best of our knowledge, cell sheet technology (CST) has been investigated in terms of several skeletal defects with promising outcomes. Here, we highlighted some recent advances associated with the application of CST for the recovery of craniomaxillofacial (CMF) in various preclinical settings. The regenerative properties of both single-layer and multilayer CST were assessed regarding fabrication methods and applications. It has been indicated that different forms of cell sheets are available for CMF engineering like those used for other hard tissues. By tackling current challenges, CST is touted as an effective and alternative therapeutic option for CMF bone regeneration.
Collapse
Affiliation(s)
- Behnaz Banimohamad-Shotorbani
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sonia Fathi Karkan
- Department of Advanced Sciences and Technologies in Medicine, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Ahmad Mehdipour
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyedhosein Jarolmasjed
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Sepideh Saghati
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hajar Shafaei
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
4
|
Jiang X, Ren Y, Zhang X, You T, Ren S, Xie X, Zhou R, Li C, Zhang W. Effect of Type 1 Collagen Bioactive Material Scaffold on the Recovery of Sports-Caused Cartilage Injury. J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.2863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This study was aim to investigate the effect of type 1 collagen (Col I) bioactive scaffold on regeneration and repair of motor cartilage injury. Fifteen New Zealand rabbits were randomly divided into sham operation group (Sham group, only cartilage was exposed, no defect was made),
model group Focal cortical dysplasias (FCD) group, cartilage defect model], and treatment group (Col I group, cartilage defect + Col I bioactive scaffold treatment). The cartilage tissue of each group was detected 16 weeks after the operation. Immunohistochemistry and Western Blot were adopted
to detect the expression of cartilage related proteins in each group. The results showed that Col I bioactive scaffold could repair the gross morphology of cartilage defect, promote the regeneration and repair of chondrocytes in defect area, and reduce the mast cells in defect area. Western
Blot detection of the expression of signal pathway marker proteins showed that expression of Wnt protein, β-catenin protein, and phosphofructokinase-1 (PFK-1) protein in the FCD group were significantly reduced than Sham group (P < 0.05), while the expression of phosphoenolpyruvate
carboxykinase 1 (PEPCK1) protein was significantly increased (P < 0.05). Expression of Wnt protein, β-catenin protein, and PFK-1 protein in Col I group increased significantly versus FCD group (P < 0.05), while the expression of PEPCK1 protein significantly
decreased (P < 0.05). In conclusion, Col I bioactive scaffolds could regenerate and repair cartilage defects, and the mechanism may be related to Wnt signaling pathway and glycolysis/gluconeogenesis pathway.
Collapse
Affiliation(s)
- Xiaocheng Jiang
- Department of Sports Medicine and Rehabilitation, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Yuxiang Ren
- Department of Sports Medicine and Rehabilitation, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Xintao Zhang
- Department of Sports Medicine and Rehabilitation, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Tian You
- Department of Sports Medicine and Rehabilitation, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Shiyou Ren
- Department of Sports Medicine and Rehabilitation, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Xiaoxiao Xie
- Department of Sports Medicine and Rehabilitation, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Ri Zhou
- Department of Sports Medicine and Rehabilitation, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Canfeng Li
- Department of Sports Medicine and Rehabilitation, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Wentao Zhang
- Department of Sports Medicine and Rehabilitation, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| |
Collapse
|
5
|
Wang Y, Song X, Lei R, Zhang N, Zhang L, Xiao W, Xu J, Lin J. Adipose-derived stem cell sheets combined with β-tricalcium phosphate/collagen-I fiber scaffold improve cell osteogenesis. Exp Ther Med 2021; 21:452. [PMID: 33747187 PMCID: PMC7967868 DOI: 10.3892/etm.2021.9882] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 01/22/2021] [Indexed: 12/16/2022] Open
Abstract
Transplantation of cell-based material is a promising approach for the treatment of critical bone defects. However, it is still limited by the lack of suitable scaffold material or abundant seeding cell sources. The present study aimed to establish a novel composite of an adipose-derived stem cell (ADSC) sheet and a synthetic porous β-tricalcium phosphate/collagen-I fiber (β-TCP/COL-I) scaffold to enhance osteogenic activity. ADSCs were isolated from 3-week-old female Sprague Dawley rats and the ADSC sheets were prepared in an osteoinductive medium. The study groups included the ADSC sheets/scaffold, scattered ADSCs/scaffold, ADSC sheet alone and scaffold alone. Scanning electron microscopy and energy-dispersive spectrometry were used to observe cell-scaffold interactions and analyze the relative calcium content on the composites' surface. Alizarin red S staining was used to examine the calcium deposition. ELISA and reverse transcription-quantitative PCR were used to detect the expression levels of alkaline phosphatase (ALP), osteocalcin (OCN) and osteopontin (OPN). The results revealed that ADSCs were able to tightly adhere to the β-TCP/COL-I scaffold with no cytotoxicity. The calcifying nodules reaction was positive on ADSC sheets and gradually increased after osteogenic induction. In addition, the β-TCP/COL-I scaffold combined with ADSC sheets was able to significantly enhance the expression levels of ALP, OCN and OPN and increase the superficial relative calcium content compared to scattered ADSCs/scaffold or the ADSC sheet alone (P<0.05). The results indicated that ADSCs possess a strong osteogenic potential, particularly in the cell-sheet form and when compounded with the β-TCP/COL-I scaffold, compared to scattered ADSCs with a β-TCP/COL-I scaffold or an ADSC sheet alone. This novel composite may be a promising candidate for bone engineering.
Collapse
Affiliation(s)
- Yang Wang
- Department of Plastic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, P.R. China
| | - Xiaojia Song
- Department of Orthodontics, Hangzhou Stomatology Hospital, Hangzhou, Zhejiang 310012, P.R. China
| | - Rui Lei
- Department of Plastic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, P.R. China
| | - Ning Zhang
- Dental Department, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Liangping Zhang
- Department of Plastic Surgery, The First Hospital of Jiaxing, Jiaxing, Zhejiang 314000, P.R. China
| | - Wei Xiao
- Department of Plastic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, P.R. China
| | - Jinghong Xu
- Department of Plastic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, P.R. China
| | - Jun Lin
- Department of Stomatology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, P.R. China
| |
Collapse
|
6
|
Zheng M, Weng M, Zhang X, Li R, Tong Q, Chen Z. Beta-tricalcium phosphate promotes osteogenic differentiation of bone marrow-derived mesenchymal stem cells through macrophages. Biomed Mater 2021; 16:025005. [PMID: 33445164 DOI: 10.1088/1748-605x/abdbdc] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Macrophages are vital regulators of skeletal remodeling and osseous repair. Beta-tricalcium phosphate (β-TCP) is a synthetic ceramic biomaterial that has shown promise as bone substitute. However, whether and how β-TCP affects osteogenesis-related responses of macrophages has rarely been studied. The aims of this study were to explore (a) the effects of β-TCP on osteogenic differentiation of bone marrow-derived mesenchymal stem cells (BMSCs) co-cultured with macrophages and (b) on macrophage polarization as well as macrophage gene and protein expression profiles. BMSC osteogenic differentiation capacity in vitro was enhanced in β-TCP-induced co-cultured BMSCs compared to that in BMSC monocultures. We also found that macrophages induced with 25 mg ml-1 β-TCP extract had more significant immune responses and switched to the M2 phenotype. Expression levels of the Wnt signaling pathway modulators wingless-type MMTV integration site family, member 6 (WNT6) and Wnt inhibitory factor 1 (WIF1) were upregulated and downregulated, respectively, in macrophages treated with β-TCP extract. Our findings suggest that β-TCP enhances osteogenic differentiation of BMSCs by inducing macrophage polarization and by regulating the Wnt signaling pathway, thereby highlighting its therapeutic potential for bone healing through osteoimmunomodulatory properties.
Collapse
Affiliation(s)
- Mengting Zheng
- Department of Orthodontics, Shanghai 9th Peoples Hospital Affiliated to Shanghai Jiaotong University School of Medicine, 639 Zhizaoju Road, Shanghai, People's Republic of China
| | | | | | | | | | | |
Collapse
|
7
|
Zhang Y, Wang P, Wang Y, Li J, Qiao D, Chen R, Yang W, Yan F. Gold Nanoparticles Promote the Bone Regeneration of Periodontal Ligament Stem Cell Sheets Through Activation of Autophagy. Int J Nanomedicine 2021; 16:61-73. [PMID: 33442250 PMCID: PMC7797360 DOI: 10.2147/ijn.s282246] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 12/19/2020] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE Cell sheet technology (CST) is advantageous for repairing alveolar bone defects in clinical situations, and osteogenic induction before implantation may result in enhanced bone regeneration. Herein, we observed the effect of gold nanoparticles (AuNPs) on osteogenic differentiation of periodontal ligament stem cell (PDLSC) sheets and explored their potential mechanism of action. METHODS PDLSCs were cultured in cell sheet induction medium to obtain cell sheets. PDLSC sheets were treated with or without AuNPs. Alkaline phosphatase, alizarin red S, von Kossa, and immunofluorescence staining were used to observe the effects of AuNPs on the osteogenic differentiation of PDLSC sheets. Western blotting was performed to evaluate the osteogenic effects and autophagy activity. The cell sheets were transplanted into the dorsa of nude mice, and bone regeneration was analyzed by micro-CT and histological staining. RESULTS AuNPs could promote the osteogenic differentiation of PDLSC sheets by upregulating bone-related protein expression and mineralization. The 45-nm AuNPs were more effective than 13-nm AuNPs. Additional analysis demonstrated that their ability to promote differentiation could depend on activation of the autophagy pathway through upregulation of microtubule-associated protein light chain 3 and downregulation of sequestosome 1/p62. Furthermore, AuNPs significantly promoted the bone regeneration of PDLSC sheets in ectopic models. CONCLUSION AuNPs enhance the osteogenesis of PDLSC sheets by activating autophagy, and 45-nm AuNPs were more effective than 13-nm AuNPs. This study may provide an AuNP-based pretreatment strategy for improving the application of CST in bone repair and regeneration.
Collapse
Affiliation(s)
- Yangheng Zhang
- Department of Periodontology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, People’s Republic of China
| | - Peng Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, People’s Republic of China
| | - Yuxian Wang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu, People’s Republic of China
| | - Jiao Li
- Department of Orthodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, People’s Republic of China
| | - Dan Qiao
- Department of Periodontology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, People’s Republic of China
| | - Rixin Chen
- Department of Periodontology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, People’s Republic of China
| | - Wenrong Yang
- School of Life and Environmental Science, Centre for Chemistry and Biotechnology, Deakin University, Geelong, VIC, Australia
| | - Fuhua Yan
- Department of Periodontology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, People’s Republic of China
| |
Collapse
|
8
|
Shen W, Sun B, Zhou C, Ming W, Zhang S, Wu X. CircFOXP1/FOXP1 promotes osteogenic differentiation in adipose-derived mesenchymal stem cells and bone regeneration in osteoporosis via miR-33a-5p. J Cell Mol Med 2020; 24:12513-12524. [PMID: 32996692 PMCID: PMC7687013 DOI: 10.1111/jcmm.15792] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 07/30/2020] [Indexed: 01/17/2023] Open
Abstract
Osteoporosis (OP) is defined by bone mass loss and structural bone deterioration. Currently, there are no effective therapies for OP treatment. Circular RNAs (circRNAs) have been reported to have an important function in stem cell osteogenesis and to be associated with OP. Most circRNA roles in OP remain unclear. In the present study, we employed circRNA microarray to investigate circRNA expression patterns in OP and non‐OP patient bone tissues. The circRNA‐miRNA‐mRNA interaction was predicted using bioinformatic analysis and confirmed by RNA FISH, RIP and dual‐luciferase reporter assays. ARS and ALP staining was used to detect the degree of osteogenic differentiation in human adipose‐derived mesenchymal stem cells (hASCs) in vitro. In vivo osteogenesis in hASCs encapsulated in collagen‐based hydrogels was tested with heterotopic bone formation assay in nude mice. Our research found that circFOXP1 was significantly down‐regulated in OP patient bone tissues and functioned like a miRNA sponge targeting miR‐33a‐5p to increase FOXP1 expression. In vivo and in vitro analyses showed that circFOXP1 enhances hASC osteogenesis by sponging miR‐33a‐5p. Conversely, miR‐33a‐5p inhibits osteogenesis by targeting FOXP1 3′‐UTR and down‐regulating FOXP1 expression. These results determined that circFOXP1 binding to miR‐33a‐5p promotes hASC osteogenic differentiation by targeting FOXP1. Therefore, circFOXP7ay prevent OP and can be used as a candidate OP therapeutic target.
Collapse
Affiliation(s)
- Wanxiang Shen
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhejiang, China
| | - Bin Sun
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhejiang, China
| | - Chenghong Zhou
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhejiang, China
| | - Wenyi Ming
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhejiang, China
| | - Shaohua Zhang
- Inspection Division, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang, Chinese Medical University, Zhejiang, China
| | - Xudong Wu
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhejiang, China
| |
Collapse
|
9
|
Zurina IM, Presniakova VS, Butnaru DV, Svistunov AA, Timashev PS, Rochev YA. Tissue engineering using a combined cell sheet technology and scaffolding approach. Acta Biomater 2020; 113:63-83. [PMID: 32561471 DOI: 10.1016/j.actbio.2020.06.016] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 06/08/2020] [Accepted: 06/10/2020] [Indexed: 12/13/2022]
Abstract
Cell sheet technology has remained quite popular among tissue engineering techniques over the last several years. Meanwhile, there is an apparent trend in modern scientific research towards combining different approaches and strategies. Accordingly, a large body of work has arisen where cell sheets are used not as separate structures, but in combination with scaffolds as supporting constructions. The aim of this review is to analyze the intersection of these two vast areas of tissue engineering described in the literature mainly within the last five years. Some practical and technical details are emphasized to provide information that can be useful in research design and planning. The first part of the paper describes the general issues concerning the use of combined technology, its advantages and limitations in comparison with those of other tissue engineering approaches. Next, the detailed literature analysis of in vivo studies aimed at the regeneration of different tissues is performed. A significant part of this section concerns bone regeneration. In addition to that, other connective tissue structures, including articular cartilage and fibrocartilage, ligaments and tendons, and some soft tissues are discussed. STATEMENT OF SIGNIFICANCE: This paper describes the intersection of two technologies used in designing of tissue-engineered constructions for regenerative medicine: cell sheets as extracellular matrix-rich structures and supporting scaffolds as essentials in tissue engineering. A large number of reviews are devoted to each of these scientific problems. However, the solution of complex problems of tissue engineering requires an integrated approach that includes both three-dimensional scaffolds and cell sheets. This manuscript serves as a description of advantages and limitations of this method, its use in regeneration of bones, connective tissues and soft tissues and some other details.
Collapse
Affiliation(s)
- Irina M Zurina
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 119991 8-2 Trubetskaya St., Moscow, Russia; FSBSI Institute of General Pathology and Pathophysiology, 125315, 8 Baltiyskaya St., Moscow, Russia; FSBEI FPE "Russian Medical Academy of Continuous Professional Education" of the Ministry of Healthcare of Russia, 125993, 2/1-1 Barrikadnaya St., Moscow, Russia
| | - Viktoria S Presniakova
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 119991 8-2 Trubetskaya St., Moscow, Russia
| | - Denis V Butnaru
- Sechenov First Moscow State Medical University (Sechenov University), 119991, 8-2 Trubetskaya St., Moscow, Russia
| | - Andrey A Svistunov
- Sechenov First Moscow State Medical University (Sechenov University), 119991, 8-2 Trubetskaya St., Moscow, Russia
| | - Peter S Timashev
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 119991 8-2 Trubetskaya St., Moscow, Russia; Institute of Photonic Technologies, Research Center "Crystallography and Photonics", Russian Academy of Sciences, 108840, 2 Pionerskaya st., Troitsk, Moscow, Russia; Department of Polymers and Composites, N.N. Semenov Institute of Chemical Physics, 119991 4 Kosygin st., Moscow, Russia; Chemistry Department, Lomonosov Moscow State University, Leninskiye Gory 1‑3, Moscow 119991, Russia.
| | - Yury A Rochev
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 119991 8-2 Trubetskaya St., Moscow, Russia; Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway, Galway H91 W2TY, Ireland
| |
Collapse
|
10
|
Liu Y, Wang H, Dou H, Tian B, Li L, Jin L, Zhang Z, Hu L. Bone regeneration capacities of alveolar bone mesenchymal stem cells sheet in rabbit calvarial bone defect. J Tissue Eng 2020; 11:2041731420930379. [PMID: 32566118 PMCID: PMC7288803 DOI: 10.1177/2041731420930379] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 05/09/2020] [Indexed: 12/18/2022] Open
Abstract
Mesenchymal stem cells sheets have been verified as a promising non-scaffold
strategy for bone regeneration. Alveolar bone marrow mesenchymal stem cells,
derived from neural crest, have the character of easily obtained and strong
multi-differential potential. However, the bone regenerative features of
alveolar bone marrow mesenchymal stem cells sheets in the craniofacial region
remain unclear. The purpose of the present study was to compare the osteogenic
differentiation and bone defect repairment characteristics of bone marrow
mesenchymal stem cells sheets derived from alveolar bone (alveolar bone marrow
mesenchymal stem cells) and iliac bone (Lon-bone marrow mesenchymal stem cells)
in vitro and in vivo. Histology character,
osteogenic differentiation, and osteogenic gene expression of human alveolar
bone marrow mesenchymal stem cells and Lon-bone marrow mesenchymal stem cells
were compared in vitro. The cell sheets were implanted in
rabbit calvarial defects to evaluate tissue regeneration characteristics.
Integrated bioinformatics analysis was used to reveal the specific gene and
pathways expression profile of alveolar bone marrow mesenchymal stem cells. Our
results showed that alveolar bone marrow mesenchymal stem cells had higher
osteogenic differentiation than Lon-bone marrow mesenchymal stem cells. Although
no obvious differences were found in the histological structure, fibronectin and
integrin β1 expression between them, alveolar-bone marrow mesenchymal stem cells
sheet exhibited higher mineral deposition and expression levels of osteogenic
marker genes. After being transplanted in the rabbit calvarial defects area, the
results showed that greater bone volume and trabecular thickness regeneration
were found in bone marrow mesenchymal stem cells sheet group compared to
Lon-bone marrow mesenchymal stem cells group at both 4 weeks and 8 weeks.
Finally, datasets of bone marrow mesenchymal stem cells versus Lon-bone marrow
mesenchymal stem cells, and periodontal ligament mesenchymal stem cells (another
neural crest derived mesenchymal stem cells) versus umbilical cord mesenchymal
stem cells were analyzed. Total 71 differential genes were identified by overlap
between the 2 datasets. Homeobox genes, such as LHX8, MKX, PAX9,
MSX, and HOX, were identified as the most
significantly changed and would be potential specific genes in neural crest
mesenchymal stem cells. In conclusion, the Al-bone marrow mesenchymal stem cells
sheet-based tissue regeneration appears to be a promising strategy for
craniofacial defect repair in future clinical applications.
Collapse
Affiliation(s)
- Yanan Liu
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China.,Department of Stomatology, Beijing Bo'ai Hospital, China Rehabilitation Research Center, School of Rehabilitation, Capital Medical University, Beijing, China.,Department of Prosthodontics, School of Stomatology, Capital Medical University, Beijing, China
| | - Haifeng Wang
- Department of Stomatology, Beijing Bo'ai Hospital, China Rehabilitation Research Center, School of Rehabilitation, Capital Medical University, Beijing, China
| | - Huixin Dou
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
| | - Bin Tian
- Department of Prosthodontics, School of Stomatology, Capital Medical University, Beijing, China
| | - Le Li
- Department of Stomatology, Tsinghua University Hospital, Beijing, China
| | - Luyuan Jin
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
| | - Zhenting Zhang
- Department of Prosthodontics, School of Stomatology, Capital Medical University, Beijing, China
| | - Lei Hu
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China.,Department of Prosthodontics, School of Stomatology, Capital Medical University, Beijing, China
| |
Collapse
|
11
|
Umeyama R, Yamawaki T, Liu D, Kanazawa S, Takato T, Hoshi K, Hikita A. Optimization of culture duration of bone marrow cells before transplantation with a β-tricalcium phosphate/recombinant collagen peptide hybrid scaffold. Regen Ther 2020; 14:284-295. [PMID: 32462057 PMCID: PMC7240285 DOI: 10.1016/j.reth.2020.04.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/15/2020] [Accepted: 04/04/2020] [Indexed: 01/05/2023] Open
Abstract
INTRODUCTION Currently, various kinds of materials are used for the treatment of bone defects. In general, these materials have a problem of formativeness. The three -dimensional (3D) printing technique has been introduced to fabricate artificial bone with arbitrary shapes, but poor bone replacement is still problematic.Our group has created a β⁻tricalcium phosphate (β⁻TCP) scaffold by applying 3D printing technology. This scaffold has an arbitrary shape and an internal structure suitable for cell loading, growth, and colonization. The scaffold was coated with a recombinant collagen peptide (RCP) to promote bone replacement.As indicated by several studies, cells loaded to scaffolds promote bone regeneration, especially when they are induced osteoblastic differentiation before transplantation. In this study, culture duration for bone marrow cells was optimized before being loaded to this new scaffold material. METHOD Bone marrow cells isolated from C57BL/6J mice were subjected to osteogenic culture for 4, 7, and 14 days. The differentiation status of the cells was examined by alkaline phosphatase staining, alizarin red staining, and real-time RT-PCR for differentiation markers. In addition, the flow of changes in the abundance of endothelial cells and monocytes was analyzed by flow cytometry according to the culture period of bone marrow cells.Next, cells at days 4, 7, and 14 of culture were placed on a β-TCP/RCP scaffold and implanted subcutaneously into the back of C57BL/6J mice. Grafts were harvested and evaluated histologically 8 weeks later. Finally, Cells cultured for 7 days were also transplanted subperiosteally in the skull of the mouse with scaffolds. RESULT Alkaline phosphatase staining was most prominent at 7 days, and alizarin red staining was positive at 14 days. Real-time RT-PCR revealed that Runx2 and Alp peaked at 7 days, while expression of Col1a1 and Bglap was highest at 14 days. Flow cytometry indicated that endothelial cells increased from day 0 to day 7, while monocytes increased continuously from day 0 to day 14. When transplanted into mice, the scaffold with cells cultured for 7 days exhibited the most prominent osteogenesis. The scaffold, which was transplanted subperiosteally in the skull, retained its shape and was replaced with regenerated bone over a large area of the field of view. CONCLUSION Osteoblasts before full maturation are most efficient for bone regeneration, and the pre-culture period suitable for cells to be loaded onto a β-TCP/RCP hybrid scaffold is approximately 7 days.This β-TCP/RCP hybrid scaffolds will also be useful for bone augmentation.
Collapse
Affiliation(s)
- Ryo Umeyama
- Department of Sensory and Motor System Medicine, Department of Oral-maxillofacial Surgery, Dentistry and Orthodontics, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Takanori Yamawaki
- Department of Sensory and Motor System Medicine, Department of Oral-maxillofacial Surgery, Dentistry and Orthodontics, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Dan Liu
- Department of Sensory and Motor System Medicine, Department of Oral-maxillofacial Surgery, Dentistry and Orthodontics, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Sanshiro Kanazawa
- Department of Sensory and Motor System Medicine, Department of Oral-maxillofacial Surgery, Dentistry and Orthodontics, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Tsuyoshi Takato
- JR Tokyo General Hospital, 2-1-3 Yoyogi, Shibuya, Tokyo 151-8528
| | - Kazuto Hoshi
- Department of Sensory and Motor System Medicine, Department of Oral-maxillofacial Surgery, Dentistry and Orthodontics, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8655, Japan
- Department of Cell & Tissue Engineering (FUJISOFT), Division of Tissue Engineering, The University of Tokyo Hospital, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Atsuhiko Hikita
- Department of Cell & Tissue Engineering (FUJISOFT), Division of Tissue Engineering, The University of Tokyo Hospital, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8655, Japan
| |
Collapse
|
12
|
Kim DH, Cha J, Song YW, Woo KM, Jung U. Bone augmentation using small molecules with biodegradable calcium sulfate particles in a vertical onlay graft model in the rabbit calvarium. J Biomed Mater Res B Appl Biomater 2020; 108:1343-1350. [DOI: 10.1002/jbm.b.34483] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 08/16/2019] [Accepted: 08/17/2019] [Indexed: 12/22/2022]
Affiliation(s)
- Doo H. Kim
- Department of Periodontology, Research Institute for Periodontal RegenerationYonsei University College of Dentistry Seoul Republic of Korea
| | - Jae‐Kook Cha
- Department of Periodontology, Research Institute for Periodontal RegenerationYonsei University College of Dentistry Seoul Republic of Korea
| | - Young W. Song
- Department of Periodontology, Research Institute for Periodontal RegenerationYonsei University College of Dentistry Seoul Republic of Korea
| | - Kyung M. Woo
- Department of Pharmacology and Dental Therapeutics, School of DentistrySeoul National University Seoul Republic of Korea
| | - Ui‐Won Jung
- Department of Periodontology, Research Institute for Periodontal RegenerationYonsei University College of Dentistry Seoul Republic of Korea
| |
Collapse
|
13
|
Kazemi M, Dehghan MM, Azami M. Biological evaluation of porous nanocomposite scaffolds based on strontium substituted β-TCP and bioactive glass: An in vitro and in vivo study. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 105:110071. [PMID: 31546377 DOI: 10.1016/j.msec.2019.110071] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 07/28/2019] [Accepted: 08/09/2019] [Indexed: 02/06/2023]
Abstract
In the current study, in vitro analysis of the osteogenic potential of different scaffolds based on strontium-substituted β-TCP (Sr-TCP) and bioactive glass (BG) ceramics was conducted using rabbit bone marrow-derived mesenchymal stem cells (rBMSCs) and the osteogenic ability of the prepared Sr-TCP and BG scaffold was evaluated through alkaline phosphatase activity, mineral deposition by Alizarin red staining, and osteoblastic gene expression experiments. The obtained in vitro results revealed that among experimental Sr-TCP/BG nanocomposite scaffold samples with the composition of Sr-TCP/BG: 100/0, 50/50, 75/25, and 25/75, the 50Sr-TCP/50BG sample presented better osteoinductive properties. Therefore, the optimized 50Sr-TCP/50BG nanocomposite scaffold was chosen for further in vivo experiments. In vivo implantation of 50Sr-TCP/50BG scaffold and hydroxyapatite (HA)/TCP granules in a rabbit calvarial defect model showed slow degradation of 50Sr-TCP/50BG scaffold and high resorption rate of HA/TCP granules at 5 months' post-surgery. However, the 50Sr-TCP/50BG scaffolds loaded by mesenchymal stem cells (MSCs) were mainly replaced with new bone even at 2 months post-implantation. Based on the obtained engineering and biological results, 50Sr-TCP/50BG nanocomposite scaffold containing MSCs could be considered as a promising alternative substitute even for load-bearing bone tissue engineering applications.
Collapse
Affiliation(s)
- Mansure Kazemi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mehdi Dehghan
- Department of Surgery and Radiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Mahmoud Azami
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
14
|
Sun T, Man Z, Peng C, Wang G, Sun S. A specific affinity cyclic peptide enhances the adhesion, expansion and proliferation of rat bone mesenchymal stem cells on β‑tricalcium phosphate scaffolds. Mol Med Rep 2019; 20:1157-1166. [PMID: 31173215 PMCID: PMC6625420 DOI: 10.3892/mmr.2019.10335] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Accepted: 05/14/2019] [Indexed: 01/02/2023] Open
Abstract
Osteonecrosis of the femoral head (ONFH) is a common osteological disease. Treatment of ONFH prior to the collapse of the femoral head is critical for increasing therapeutic efficiency. Tissue engineering therapy using bone mesenchymal stem cells (BMSCs) combined with a scaffold is a promising strategy. However, it is currently unclear how to improve the efficiency of BMSC recruitment under such conditions. In the present study, a specific cyclic peptide for Sprague-Dawley rat BMSCs, CTTNPFSLC (known as C7), was used, which was identified via phage display technology. Its high affinity for BMSCs was demonstrated using flow cytometry and fluorescence staining. Subsequently, the cyclic peptide was placed on β-tricalcium phosphate (β-TCP) scaffolds using absorption and freeze-drying processes. Adhesion, expansion and proliferation of BMSCs was investigated in vitro on the C7-treated β-TCP scaffolds and compared with pure β-TCP scaffolds. The results revealed that C7 had a promoting effect on the adhesion, expansion and proliferation of BMSCs on β-TCP scaffolds. Therefore, C7 may be effective in future tissue engineering therapy for ONFH.
Collapse
Affiliation(s)
- Tiantong Sun
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Zhentao Man
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Changliang Peng
- Department of Orthopedics, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Guozong Wang
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Shui Sun
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| |
Collapse
|
15
|
Lu Y, Zhang W, Wang J, Yang G, Yin S, Tang T, Yu C, Jiang X. Recent advances in cell sheet technology for bone and cartilage regeneration: from preparation to application. Int J Oral Sci 2019; 11:17. [PMID: 31110170 PMCID: PMC6527566 DOI: 10.1038/s41368-019-0050-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 03/08/2019] [Accepted: 04/10/2019] [Indexed: 12/19/2022] Open
Abstract
Bone defects caused by trauma, tumour resection, infection and congenital deformities, together with articular cartilage defects and cartilage-subchondral bone complex defects caused by trauma and degenerative diseases, remain great challenges for clinicians. Novel strategies utilising cell sheet technology to enhance bone and cartilage regeneration are being developed. The cell sheet technology has shown great clinical potential in regenerative medicine due to its effective preservation of cell-cell connections and extracellular matrix and its scaffold-free nature. This review will first introduce several widely used cell sheet preparation systems, including traditional approaches and recent improvements, as well as their advantages and shortcomings. Recent advances in utilising cell sheet technology to regenerate bone or cartilage defects and bone-cartilage complex defects will be reviewed. The key challenges and future research directions for the application of cell sheet technology in bone and cartilage regeneration will also be discussed.
Collapse
Affiliation(s)
- Yuezhi Lu
- Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine; National Clinical Research Center for Oral Diseases; Shanghai Engineering Research Center of Advanced Dental Technology and Materials; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Wenjie Zhang
- Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine; National Clinical Research Center for Oral Diseases; Shanghai Engineering Research Center of Advanced Dental Technology and Materials; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Jie Wang
- Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine; National Clinical Research Center for Oral Diseases; Shanghai Engineering Research Center of Advanced Dental Technology and Materials; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Guangzheng Yang
- Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine; National Clinical Research Center for Oral Diseases; Shanghai Engineering Research Center of Advanced Dental Technology and Materials; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Shi Yin
- Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine; National Clinical Research Center for Oral Diseases; Shanghai Engineering Research Center of Advanced Dental Technology and Materials; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Tingting Tang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chunhua Yu
- Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine; National Clinical Research Center for Oral Diseases; Shanghai Engineering Research Center of Advanced Dental Technology and Materials; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China.
| | - Xinquan Jiang
- Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine; National Clinical Research Center for Oral Diseases; Shanghai Engineering Research Center of Advanced Dental Technology and Materials; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China.
| |
Collapse
|
16
|
Feng P, He J, Peng S, Gao C, Zhao Z, Xiong S, Shuai C. Characterizations and interfacial reinforcement mechanisms of multicomponent biopolymer based scaffold. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 100:809-825. [PMID: 30948118 DOI: 10.1016/j.msec.2019.03.030] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 03/02/2019] [Accepted: 03/09/2019] [Indexed: 12/20/2022]
Abstract
It is difficult for a single component biopolymer to meet the requirements of scaffold at present. The development of multicomponent biopolymer based scaffold provides an effective method to solve the issue based on the advantages of each kind of the biomaterials. However, the compatibility between different components might be very poor due to the difficulties in forming strong interfacial bonding, and thereby significantly degrading the integrated mechanical properties of the scaffold. In recent years, interface phase introduction, surface modification and in situ growth have been the major strategies for enhancing interfacial bonding. This article presents a comprehensive overview on the research in the area of constructing multicomponent biopolymer based scaffold and reinforcing their interfacial properties, and more importantly, the interfacial bonding mechanisms are systematically summarized. Detailly, interface phase introduction can build a bridge between biopolymer and other components to form strong interface bonding with the two phases under the action of interface phase. Surface modification can graft organic molecules or polymers containing functional groups onto other components to crosslink with biopolymer. In situ growth can directly in situ synthesize other components with the action of nucleating agent serving as an adherent platform for the nucleation and growth of other components to biopolymer surface by chemical bonding. In addition, the mechanical properties (including strength and modulus) and biological properties (including bioactivity, cytocompatibility and biosensing in vitro, and tissue compatibility, bone regeneration capacity in vivo) of multicomponent biopolymer based scaffold after interfacial reinforcing are also reviewed and discussed. Finally, suggestions for further research are given with highlighting the need for specific investigations to assess the interface formation, structure, properties, and more in vivo studies of scaffold before applications.
Collapse
Affiliation(s)
- Pei Feng
- State Key Laboratory of High Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
| | - Jiyao He
- State Key Laboratory of High Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
| | - Shuping Peng
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, China
| | - Chengde Gao
- State Key Laboratory of High Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
| | - Zhenyu Zhao
- Shenzhen Institute of Information Technology, Shenzhen 518172, China
| | - Shixian Xiong
- Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Cijun Shuai
- State Key Laboratory of High Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China; Jiangxi University of Science and Technology, Ganzhou 341000, China; Shenzhen Institute of Information Technology, Shenzhen 518172, China.
| |
Collapse
|
17
|
Di Crescenzo A, Zara S, Di Nisio C, Ettorre V, Ventrella A, Zavan B, Di Profio P, Cataldi A, Fontana A. Graphene Oxide Foils as an Osteoinductive Stem Cell Substrate. ACS APPLIED BIO MATERIALS 2019; 2:1643-1651. [DOI: 10.1021/acsabm.9b00041] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Antonello Di Crescenzo
- Dipartimento di Farmacia, University G. d’Annunzio, Via dei Vestini, Chieti I-66100, Italy
| | - Susi Zara
- Dipartimento di Farmacia, University G. d’Annunzio, Via dei Vestini, Chieti I-66100, Italy
| | - Chiara Di Nisio
- Dipartimento di Farmacia, University G. d’Annunzio, Via dei Vestini, Chieti I-66100, Italy
| | - Valeria Ettorre
- Dipartimento di Farmacia, University G. d’Annunzio, Via dei Vestini, Chieti I-66100, Italy
| | - Alessia Ventrella
- Dipartimento di Farmacia, University G. d’Annunzio, Via dei Vestini, Chieti I-66100, Italy
| | - Barbara Zavan
- Dipartimento di Scienze Biomediche, University of Padova, Via Ugo Bassi, 58/B, Padova I-35121, Italy
| | - Pietro Di Profio
- Dipartimento di Farmacia, University G. d’Annunzio, Via dei Vestini, Chieti I-66100, Italy
| | - Amelia Cataldi
- Dipartimento di Farmacia, University G. d’Annunzio, Via dei Vestini, Chieti I-66100, Italy
| | - Antonella Fontana
- Dipartimento di Farmacia, University G. d’Annunzio, Via dei Vestini, Chieti I-66100, Italy
| |
Collapse
|
18
|
Wang J, Li J, Lu Y, Yang H, Hong N, Jin L, Li Y, Wu S. Incorporation of Stromal Cell-Derived Factor-1α in Three-Dimensional Hydroxyapatite/Polyacrylonitrile Composite Scaffolds for Bone Regeneration. ACS Biomater Sci Eng 2018; 5:911-921. [PMID: 33405848 DOI: 10.1021/acsbiomaterials.8b01146] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Bone regeneration strategies rely on biomaterial constructs with stem cells or growth factors. By comparison, cell homing strategies employ chemokines to recruit the host endogenous stem or progenitor cells to the defect site to support endogenous healing. In the present study, we used a novel fluffy hydroxyapatite/polyacrylonitrile (HA/PAN) composite scaffold to provide a better three-dimensional cell culture microenvironment. These HA/PAN composite scaffolds loaded with stromal cell-derived factor-1α (SDF-1α) provided a diffusion-controlled SDF-1α release profile and endowed the scaffolds with cell homing capabilities. Furthermore, the scaffolds significantly stimulated bone marrow stromal cell (BMSC) recruitment, facilitated BMSC osteogenic differentiation, and promoted ectopic bone formation. Our results suggest that a HA/PAN composite scaffold loaded with SDF-1α offers a clinically beneficial bone repair strategy.
Collapse
Affiliation(s)
- Jieda Wang
- Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, No. 56, Lingyuan West Road, Guangzhou 510055, China
| | - Jiayan Li
- Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, No. 56, Lingyuan West Road, Guangzhou 510055, China
| | - Yeming Lu
- Department of Stomatology, The Third Affiliated Hospital of Sun Yat-sen University, No. 600, Tianhe Road, Guangzhou 510000, China
| | - Huifang Yang
- Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, No. 56, Lingyuan West Road, Guangzhou 510055, China
| | - Nanrui Hong
- Department of Stomatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, No. 16, Airport Road, Guangzhou 510405, China
| | - Lin Jin
- International Joint Research Laboratory for Biomedical Nanomaterials of Henan, Zhoukou Normal University, No. 6, Wenchang Road, Zhoukou 466001, China
| | - Yan Li
- Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, No. 56, Lingyuan West Road, Guangzhou 510055, China
| | - Shuyi Wu
- Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, No. 56, Lingyuan West Road, Guangzhou 510055, China
| |
Collapse
|
19
|
Semaphorin 3A promotes osteogenic differentiation of BMSC from type 2 diabetes mellitus rats. J Mol Histol 2018; 49:369-376. [PMID: 29774455 DOI: 10.1007/s10735-018-9776-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Accepted: 05/10/2018] [Indexed: 02/05/2023]
Abstract
Bone regeneration is impaired in patients with type 2 diabetes mellitus (T2DM), which leads to non-healing after bone loss. The decreased osteogenic capacity of bone mesenchymal stem cells (BMSCs) might be a main reason. Sema3A, as a powerful protein promoting osteocyte differentiation, shows potential for bone regeneration treatment. BMSCs may be a therapeutic solution. In this study, we divided BMSCs from T2DM rats (BMSCs-D) and normal rats (BMSCs-N), identified their ability to differentiate into different cell types. Then we found decreased expression of Sema3A in BMSCs-D compared with BMSCs-N. Stimulating with Sema3A showed no influence in the proliferation or migration of BMSCs. However, Sema3A stimulation significantly increased the expression of osteogenic‑related genes, including type I collagen, alkaline phosphatase, Runt-related transcription factor 2 (RUNX2), bone morphogenetic protein and osteocalcin. Besides, the osteogenic capacity of BMSCs was also increased by Sema3A stimulation. In conclusion, we proved that exogenous Sema3A stimulation might repair the osteogenic capacity of BMSCs-D, thus providing a new strategy for restoring the impaired bone regeneration ability for T2DM patients.
Collapse
|