Fan X, Li L, Zhu H, Yan L, Zhu S, Yan Y. Preparation, characterization, and in vitro and in vivo biocompatibility evaluation of polymer (amino acid and glycolic acid)/hydroxyapatite composite for bone repair.
Biomed Mater 2021;
16:025004. [PMID:
33599212 DOI:
10.1088/1748-605x/abdbdd]
[Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A composite of hydroxyapatite (HA) and polymers prepared from amino acids and glycolic acid (PAG) was synthesized using an in situ melting polycondensation method. The in vitro degradability and bioactivity of the composite were evaluated, as well as its in vitro and in vivo biocompatibility based on subcutaneous and osseous implantation of samples in New Zealand white rabbits for 8 weeks. The results showed that the PAG/HA composite had higher degradability than PAG and showed a typical apatite morphology after immersion in simulated body fluid for 5 d. Both the PAG/HA composite and PAG alone showed excellent in vitro biocompatibility. In the rabbit model, PAG/HA composite could induce formation of new bone tissue after 4 weeks implantation, mainly owing to the excellent in vivo bioactivity of the implant. These results suggest that PAG/HA composites have the potential to guide bone regeneration and could be used as biodegradable biomaterials for bone repair.
Collapse