1
|
Zhang Q, Duncan S, Szulc DA, de Mestral C, Kutryk MJ. Development of a universal, oriented antibody immobilization method to functionalize vascular prostheses for enhanced endothelialization for potential clinical application. J Biol Eng 2023; 17:37. [PMID: 37264409 DOI: 10.1186/s13036-023-00356-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/19/2023] [Indexed: 06/03/2023] Open
Abstract
BACKGROUND Thrombosis is a common cause of vascular prosthesis failure. Antibody coating of prostheses to capture circulating endothelial progenitor cells to aid endothelialization on the device surface appears a promising solution to prevent thrombus formation. Compared with random antibody immobilization, oriented antibody coating (OAC) increases antibody-antigen binding capacity and reduces antibody immunogenicity in vivo. Currently, few OAC methods have been documented, with none possessing clinical application potential. RESULTS Dopamine and the linker amino-PEG8-hydrazide-t-boc were successfully deposited on the surface of cobalt chromium (CC) discs, CC stents and expanded polytetrafluoroethylene (ePTFE) grafts under a slightly basic condition. CD34 antibodies were immobilized through the reaction between aldehydes in the Fc region created by oxidation and hydrazides in the linker after t-boc removal. CD34 antibody-coated surfaces were integral and smooth as shown by scanning electron microscopy (SEM), had significantly reduced or no substrate-specific signals as revealed by X-ray photoelectron spectroscopy, were hospitable for HUVEC growth as demonstrated by cell proliferation assay, and specifically bound CD34 + cells as shown by cell binding testing. CD34 antibody coating turned hydrophobic property of ePTFE grafts to hydrophilic. In a porcine carotid artery interposition model, a confluent monolayer of cobblestone-shaped CD31 + endothelial cells on the luminal surface of the CD34 antibody coated ePTFE graft were observed. In contrast, thrombi and fibrin fibers on the bare graft, and sporadic cells on the graft coated by chemicals without antibodies were seen. CONCLUSION A universal, OAC method was developed. Our in vitro and in vivo data suggest that the method can be potentially translated into clinical application, e.g., modifying ePTFE grafts to mitigate their thrombotic propensity and possibly provide for improved long-term patency for small-diameter grafts.
Collapse
Affiliation(s)
- Qiuwang Zhang
- Division of Cardiology, Keenan Research Center for Biomedical Science, St. Michael's Hospital, Unity Health Toronto, University of Toronto, Toronto, ON, Canada.
| | - Sebastian Duncan
- Division of Cardiology, Keenan Research Center for Biomedical Science, St. Michael's Hospital, Unity Health Toronto, University of Toronto, Toronto, ON, Canada
| | - Daniel A Szulc
- Division of Cardiology, Keenan Research Center for Biomedical Science, St. Michael's Hospital, Unity Health Toronto, University of Toronto, Toronto, ON, Canada
| | - Charles de Mestral
- Division of Vascular Surgery, Keenan Research Center for Biomedical Science, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada
- Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Michael Jb Kutryk
- Division of Cardiology, Keenan Research Center for Biomedical Science, St. Michael's Hospital, Unity Health Toronto, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
2
|
Marei I, Ahmetaj-Shala B, Triggle CR. Biofunctionalization of cardiovascular stents to induce endothelialization: Implications for in- stent thrombosis in diabetes. Front Pharmacol 2022; 13:982185. [PMID: 36299902 PMCID: PMC9589287 DOI: 10.3389/fphar.2022.982185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/31/2022] [Indexed: 11/13/2022] Open
Abstract
Stent thrombosis remains one of the main causes that lead to vascular stent failure in patients undergoing percutaneous coronary intervention (PCI). Type 2 diabetes mellitus is accompanied by endothelial dysfunction and platelet hyperactivity and is associated with suboptimal outcomes following PCI, and an increase in the incidence of late stent thrombosis. Evidence suggests that late stent thrombosis is caused by the delayed and impaired endothelialization of the lumen of the stent. The endothelium has a key role in modulating inflammation and thrombosis and maintaining homeostasis, thus restoring a functional endothelial cell layer is an important target for the prevention of stent thrombosis. Modifications using specific molecules to induce endothelial cell adhesion, proliferation and function can improve stents endothelialization and prevent thrombosis. Blood endothelial progenitor cells (EPCs) represent a potential cell source for the in situ-endothelialization of vascular conduits and stents. We aim in this review to summarize the main biofunctionalization strategies to induce the in-situ endothelialization of coronary artery stents using circulating endothelial stem cells.
Collapse
Affiliation(s)
- Isra Marei
- Department of Pharmacology, Weill Cornell Medicine- Qatar, Doha, Qatar
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- *Correspondence: Isra Marei, ; Chris R. Triggle,
| | | | - Chris R. Triggle
- Department of Pharmacology, Weill Cornell Medicine- Qatar, Doha, Qatar
- *Correspondence: Isra Marei, ; Chris R. Triggle,
| |
Collapse
|
3
|
Li L, Liu S, Tan J, Wei L, Wu D, Gao S, Weng Y, Chen J. Recent advance in treatment of atherosclerosis: Key targets and plaque-positioned delivery strategies. J Tissue Eng 2022; 13:20417314221088509. [PMID: 35356091 PMCID: PMC8958685 DOI: 10.1177/20417314221088509] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Atherosclerosis, a chronic inflammatory disease of vascular wall, is a progressive pathophysiological process with lipids oxidation/depositing initiation and innate/adaptive immune responses. The coordination of multi systems covering oxidative stress, dysfunctional endothelium, diseased lipid uptake, cell apoptosis, thrombotic and pro-inflammatory responding as well as switched SMCs contributes to plaque growth. In this circumstance, inevitably, targeting these processes is considered to be effective for treating atherosclerosis. Arriving, retention and working of payload candidates mediated by targets in lesion direct ultimate therapeutic outcomes. Accumulating a series of scientific studies and clinical practice in the past decades, lesion homing delivery strategies including stent/balloon/nanoparticle-based transportation worked as the potent promotor to ensure a therapeutic effect. The objective of this review is to achieve a very brief summary about the effective therapeutic methods cooperating specifical targets and positioning-delivery strategies in atherosclerosis for better outcomes.
Collapse
Affiliation(s)
- Li Li
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, PR China
| | - Sainan Liu
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, PR China
| | - Jianying Tan
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, PR China
| | - Lai Wei
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, PR China
| | - Dimeng Wu
- Chengdu Daxan Innovative Medical Tech. Co., Ltd., Chengdu, PR China
| | - Shuai Gao
- Chengdu Daxan Innovative Medical Tech. Co., Ltd., Chengdu, PR China
| | - Yajun Weng
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, PR China
| | - Junying Chen
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, PR China
| |
Collapse
|
4
|
Bian Q, Chen J, Weng Y, Li S. Endothelialization strategy of implant materials surface: The newest research in recent 5 years. J Appl Biomater Funct Mater 2022; 20:22808000221105332. [PMID: 35666145 DOI: 10.1177/22808000221105332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In recent years, more and more metal or non-metal materials have been used in the treatment of cardiovascular diseases, but the vascular complications after transplantation are still the main factors restricting the clinical application of most grafts, such as acute thrombosis and graft restenosis. Implant materials have been extensively designed and surface optimized by researchers, but it is still too difficult to avoid complications. Natural vascular endodermis has excellent function, anti-coagulant and anti-intimal hyperplasia, and it is also the key to maintaining the homeostasis of normal vascular microenvironment. Therefore, how to promote the adhesion of endothelial cells (ECs) on the surface of cardiovascular materials to achieve endothelialization of the surface is the key to overcoming the complications after implant materialization. At present, the surface endothelialization design of materials based on materials surface science, bioactive molecules, and biological function intervention and feedback has attracted much attention. In this review, we summarize the related research on the surface modification of materials by endothelialization in recent years, and analyze the advantages and challenges of current endothelialization design ideas, explain the relationship between materials, cells, and vascular remodeling in order to find a more ideal endothelialization surface modification strategy for future researchers to meet the requirements of clinical biocompatibility of cardiovascular materials.
Collapse
Affiliation(s)
- Qihao Bian
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, China.,School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Junying Chen
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, China.,School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Yajun Weng
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, China.,School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Suiyan Li
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| |
Collapse
|
5
|
Lau S, Gossen M, Lendlein A. Designing Cardiovascular Implants Taking in View the Endothelial Basement Membrane. Int J Mol Sci 2021; 22:ijms222313120. [PMID: 34884923 PMCID: PMC8658568 DOI: 10.3390/ijms222313120] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/25/2021] [Accepted: 11/29/2021] [Indexed: 12/28/2022] Open
Abstract
Insufficient endothelialization of cardiovascular grafts is a major hurdle in vascular surgery and regenerative medicine, bearing a risk for early graft thrombosis. Neither of the numerous strategies pursued to solve these problems were conclusive. Endothelialization is regulated by the endothelial basement membrane (EBM), a highly specialized part of the vascular extracellular matrix. Thus, a detailed understanding of the structure–function interrelations of the EBM components is fundamental for designing biomimetic materials aiming to mimic EBM functions. In this review, a detailed description of the structure and functions of the EBM are provided, including the luminal and abluminal interactions with adjacent cell types, such as vascular smooth muscle cells. Moreover, in vivo as well as in vitro strategies to build or renew EBM are summarized and critically discussed. The spectrum of methods includes vessel decellularization and implant biofunctionalization strategies as well as tissue engineering-based approaches and bioprinting. Finally, the limitations of these methods are highlighted, and future directions are suggested to help improve future design strategies for EBM-inspired materials in the cardiovascular field.
Collapse
Affiliation(s)
- Skadi Lau
- Institute of Active Polymers and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Hereon, Kantstraße 55, 14513 Teltow, Germany; (S.L.); (M.G.)
| | - Manfred Gossen
- Institute of Active Polymers and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Hereon, Kantstraße 55, 14513 Teltow, Germany; (S.L.); (M.G.)
| | - Andreas Lendlein
- Institute of Active Polymers and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Hereon, Kantstraße 55, 14513 Teltow, Germany; (S.L.); (M.G.)
- Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Straße 25, 14476 Potsdam, Germany
- Correspondence:
| |
Collapse
|
6
|
Abou-Hassan A, Barros A, Buchholz N, Carugo D, Clavica F, de Graaf P, de La Cruz J, Kram W, Mergulhao F, Reis RL, Skovorodkin I, Soria F, Vainio S, Zheng S. Potential strategies to prevent encrustations on urinary stents and catheters - thinking outside the box: a European network of multidisciplinary research to improve urinary stents (ENIUS) initiative. Expert Rev Med Devices 2021; 18:697-705. [PMID: 34085555 DOI: 10.1080/17434440.2021.1939010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Introduction: Urinary stents have been around for the last 4 decades, urinary catheters even longer. They are associated with infections, encrustation, migration, and patient discomfort. Research efforts to improve them have shifted onto molecular and cellular levels. ENIUS brought together translational scientists to improve urinary implants and reduce morbidity.Methods & materials: A working group within the ENIUS network was tasked with assessing future research lines for the improvement of urinary implants.Topics were researched systematically using Embase and PubMed databases. Clinicaltrials.gov was consulted for ongoing trials.Areas covered: Relevant topics were coatings with antibodies, enzymes, biomimetics, bioactive nano-coats, antisense molecules, and engineered tissue. Further, pH sensors, biodegradable metals, bactericidal bacteriophages, nonpathogenic uropathogens, enhanced ureteric peristalsis, electrical charges, and ultrasound to prevent stent encrustations were addressed.Expert opinion: All research lines addressed in this paper seem viable and promising. Some of them have been around for decades but are yet to proceed to clinical application (i.e. tissue engineering). Others are very recent and, at least in urology, still only conceptual (i.e. antisense molecules). Perhaps the most important learning point resulting from this pan-European multidisciplinary effort is that collaboration between all stakeholders is not only fruitful but also truly essential.
Collapse
Affiliation(s)
- Ali Abou-Hassan
- Physico-chimie des Électrolytes Et Nanosystèmes Interfaciaux, Sorbonne Université, Paris, France
| | - Alexandre Barros
- 3B's Research Group, University of Minho, BarcoGuimaraes, Portugal
| | | | - Dario Carugo
- Department of Pharmaceutics, School of Pharmacy, University College London, London, UK
| | - Francesco Clavica
- ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
| | - Petra de Graaf
- Department of Urology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Julia de La Cruz
- U-merge, Scientific Office, Athens, Greece.,Jesus Uson Minimally Invasive Surgery Centre Foundation. Caceres, Spain
| | - Wolfgang Kram
- Department Of Urology, University Medical Center Rostock, Germany
| | - Filipe Mergulhao
- LEPABE, Faculty of Engineering, University of Porto, Porto, Portugal
| | - Rui L Reis
- 3B's Research Group, University of Minho, BarcoGuimaraes, Portugal
| | - Ilya Skovorodkin
- Organogenesis Laboratory, Disease Networks Research Unit, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Federico Soria
- Jesus Uson Minimally Invasive Surgery Centre Foundation. Caceres, Spain
| | - Seppo Vainio
- Flagship GeneCellNano, Infotech Oulu - Kvantum Institut, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Shaokai Zheng
- ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
| |
Collapse
|
7
|
Antibody CD133 Biofunctionalization of Ammonium Acryloyldimethyltaurate and Vinylpyrrolidone Co-Polymer-Based Coating of the Vascular Implants. MATERIALS 2020; 13:ma13245634. [PMID: 33321837 PMCID: PMC7763102 DOI: 10.3390/ma13245634] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/08/2020] [Accepted: 12/08/2020] [Indexed: 11/26/2022]
Abstract
Current vascular stents, such as drug eluting stents (DES), have some serious drawbacks, like in stent restenosis and thrombosis. Therefore, other solutions are sought to overcome these post-implantations complications. These include the strategy of biofunctionalization of the stent surface with antibodies that facilitate adhesion of endothelial cells (ECs) or endothelial progenitor cells (EPCs). Rapid re-endothelialization of the surface minimizes the risk of possible complications. In this study, we proposed ammonium acryloyldimethyltaurate/vinylpyrrolidone co-polymer-based surface (AVC), which was mercaptosilanized in order to expose free thiol groups. The presence of free thiol groups allowed for the covalent attachment of CD133 antibodies by disulfide bridges formation between mercaptosilanized surface and cysteine of the protein molecule thiol groups. Various examinations were performed in order to validate the procedure, including attenuated total reflection–Fourier transform infrared spectroscopy (ATR-FTIR) and Fourier transform Raman spectroscopy (FT-Raman), atomic force microscopy (AFM) and scanning electron microscopy (SEM). By means of ATR-FTIR spectroscopy presence of the CD133 antibody within coating was confirmed. In vitro studies proved good biocompatibility for blood cells without induction of hemolytic response. Thus, proposed biofunctionalized CD133 antibody AVC surface has shown sufficient stability for adapting as cardiovascular implant coating and biocompatibility. According to conducted in vitro studies, the modified surface can be further tested for applications in various biological systems.
Collapse
|