1
|
Yang G, Ji B, Li H, Liu X, Liu G, Sun J, Yao Y, Li Y, Liu S, Xiao W. Inhibition of CRLF1 expression by miR-8485 alleviates IL-1β-induced chondrocyte inflammation, apoptosis, and extracellular matrix degradation. Int Immunopharmacol 2025; 144:113643. [PMID: 39580860 DOI: 10.1016/j.intimp.2024.113643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 10/22/2024] [Accepted: 11/13/2024] [Indexed: 11/26/2024]
Abstract
The aim of this study was to investigate the impact of differentially expressed miR-8485 on chondrocyte inflammation in osteoarthritis (OA) and its underlying pathological mechanisms. MiR-8485, which was downregulated in OA, was identified by microarray analysis, and was also found to be decreased in IL-1β-induced C28/I2 cells. miR-8485 down-regulation or IL-1β treated of C28/I2 cells induces a decrease in cellular activity, an increase in apoptosis, an elevation in Cleaved caspase-3, MMP13, and ADAMTS5 protein levels, a decrease in Collagen II and Aggrecan levels, and an increase in the levels of pro-inflammatory factors TNF-α and IL-6. CRLF1 was identified to be a downstream target gene of miR-8485 using bioinformatics prediction and dual luciferase reporter gene assays. CRLF1 was shown to be increased in IL-1β-treated C28/I2 cells, and CRLF1 overexpression partially abrogated the suppressive effect of upregulated miR-8485 on chondrocyte inflammation. In addition, miR-8485 was able to inhibit MAPK/ERK and PI3K/AKT signaling activation by inhibiting CRLF1. In conclusion, miR-8485 was able to inhibit CRLF1 expression and thus inhibit IL-1β-triggered inflammation in chondrocytes, potentially through the inhibition of MAPK/ERK and PI3K/AKT signaling pathways.
Collapse
Affiliation(s)
- Guang Yang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Bingzhou Ji
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Hengzhen Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Xiu Liu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Gaoming Liu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Jianfeng Sun
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yuming Yao
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yusheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Shuguang Liu
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| | - Wenfeng Xiao
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.
| |
Collapse
|
2
|
Roseti L, Cavallo C, Desando G, D’Alessandro M, Grigolo B. Forty Years of the Use of Cells for Cartilage Regeneration: The Research Side. Pharmaceutics 2024; 16:1622. [PMID: 39771600 PMCID: PMC11677864 DOI: 10.3390/pharmaceutics16121622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/13/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025] Open
Abstract
Background: The treatment of articular cartilage damage has always represented a problem of considerable practical interest for orthopedics. Over the years, many surgical techniques have been proposed to induce the growth of repairing tissue and limit degeneration. In 1994, the turning point occurred: implanted autologous cells paved the way for a new treatment option based more on regeneration than repair. Objectives: This review aims to outline biological and clinical advances, from the use of mature adult chondrocytes to cell-derived products, going through progenitor cells derived from bone marrow or adipose tissue and their concentrates for articular cartilage repair. Moreover, it highlights the relevance of gene therapy as a valuable tool for successfully implementing current regenerative treatments, and overcoming the limitations of the local delivery of growth factors. Conclusions: Finally, this review concludes with an outlook on the importance of understanding the role and mechanisms of action of the different cell compounds with a view to implementing personalized treatments.
Collapse
Affiliation(s)
| | - Carola Cavallo
- Laboratorio RAMSES, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano, 1/10, 40136 Bologna, Italy; (L.R.); (G.D.); (M.D.); (B.G.)
| | | | | | | |
Collapse
|
3
|
Liao J, Gu Q, Liu Z, Wang H, Yang X, Yan R, Zhang X, Song S, Wen L, Wang Y. Edge advances in nanodrug therapies for osteoarthritis treatment. Front Pharmacol 2024; 15:1402825. [PMID: 39539625 PMCID: PMC11559267 DOI: 10.3389/fphar.2024.1402825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 09/25/2024] [Indexed: 11/16/2024] Open
Abstract
As global population and lifestyles change, osteoarthritis (OA) is becoming a major healthcare challenge world. OA, a chronic condition characterized by inflammatory and degeneration, often present with joint pain and can lead to irreversible disability. While there is currently no cure for OA, it is commonly managed using nonsteroidal anti-inflammatory drugs (NSAIDs), glucocorticoids, and glucosamine. Although these treatments can alleviate symptoms, it is difficult to effectively deliver and sustain therapeutic agents within joints. The emergence of nanotechnology, particularly in form of smart nanomedicine, has introduced innovative therapeutic approaches for OA treatment. Nanotherapeutic strategies offer promising advantages, including more precise targeting of affected areas, prolonged therapeutic effects, enhanced bioavailability, and reduced systemic toxicity compared to traditional treatments. While nanoparticles show potential as a viable delivery system for OA therapies based on encouraging lab-based and clinical trials results, there remails a considerable gap between current research and clinical application. This review highlights recent advances in nanotherapy for OA and explore future pathways to refine and optimize OA treatments strategies.
Collapse
Affiliation(s)
- Jinfeng Liao
- Department of Dermatology, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, Chengdu, Sichuan, China
| | - Qingjia Gu
- Department of ENT, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, Chengdu, Sichuan, China
| | - Zheng Liu
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| | - Hailian Wang
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Center of Organ Transplantation, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, Chengdu, Sichuan, China
| | - Xian Yang
- Department of Critical Care Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Rongkai Yan
- Department of Radiology, Ohio state university, Columbus, OH, United States
| | - Xiaofeng Zhang
- Greenwich Hospital, Yale New Haven Health, Greenwich, CT, United States
| | - Siyuan Song
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| | - Lebin Wen
- Department of Thyroid, Sichuan Second Hospital of TCM, Chengdu, China
| | - Yi Wang
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Center of Organ Transplantation, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, Chengdu, Sichuan, China
- Department of Critical Care Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
4
|
Chen H, Li Z, Li X, Lu J, Chen B, Wang Q, Wu G. Biomaterial-Based Gene Delivery: Advanced Tools for Enhanced Cartilage Regeneration. Drug Des Devel Ther 2023; 17:3605-3624. [PMID: 38076630 PMCID: PMC10706074 DOI: 10.2147/dddt.s432056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/09/2023] [Indexed: 12/18/2023] Open
Abstract
Gene therapy has emerged as a promising and innovative approach in cartilage regeneration. Integrating biomaterials into gene therapy offers a unique opportunity to enhance gene delivery efficiency, optimize gene expression dynamics, modulate immune responses, and promote tissue regeneration. Despite the rapid progress in biomaterial-based gene delivery, there remains a deficiency of comprehensive discussions on recent advances and their specific application in cartilage regeneration. Therefore, this review aims to provide a thorough overview of various categories of biomaterials employed in gene delivery, including both viral and non-viral vectors, with discussing their distinct advantages and limitations. Furthermore, the diverse strategies employed in gene therapy are discussed and summarized, such as the utilization of growth factors, anti-inflammatory cytokines, and chondrogenic genes. Additionally, we highlights the significant challenges that hinder biomaterial-based gene delivery in cartilage regeneration, including immune response modulation, gene delivery efficiency, and the sustainability of long-term gene expression. By elucidating the functional properties of biomaterials-based gene therapy and their pivotal roles in cartilage regeneration, this review aims to enhance further advances in the design of sophisticated gene delivery systems for improved cartilage regeneration outcomes.
Collapse
Affiliation(s)
- Hongfeng Chen
- Department of Foot and Ankle Surgery, The Second Affiliated Hospital of Luohe Medical College, Luohe, Henan, 462300, People’s Republic of China
| | - Zhen Li
- Department of Foot and Ankle Surgery, The Second Affiliated Hospital of Luohe Medical College, Luohe, Henan, 462300, People’s Republic of China
| | - Xiaoqi Li
- Department of Foot and Ankle Surgery, The Second Affiliated Hospital of Luohe Medical College, Luohe, Henan, 462300, People’s Republic of China
| | - Jiongjiong Lu
- Department of Foot and Ankle Surgery, The Second Affiliated Hospital of Luohe Medical College, Luohe, Henan, 462300, People’s Republic of China
| | - Beibei Chen
- Department of Foot and Ankle Surgery, The Second Affiliated Hospital of Luohe Medical College, Luohe, Henan, 462300, People’s Republic of China
| | - Qiongchao Wang
- Department of Foot and Ankle Surgery, The Second Affiliated Hospital of Luohe Medical College, Luohe, Henan, 462300, People’s Republic of China
| | - Guangliang Wu
- Department of Orthopaedics, The Second Affiliated Hospital of Luohe Medical College, Luohe, Henan, 462300, People’s Republic of China
| |
Collapse
|
5
|
Yang J, Song QY, Niu SX, Chen HJ, Petersen RB, Zhang Y, Huang K. Emerging roles of angiopoietin-like proteins in inflammation: Mechanisms and potential as pharmacological targets. J Cell Physiol 2021; 237:98-117. [PMID: 34289108 DOI: 10.1002/jcp.30534] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 06/16/2021] [Accepted: 07/09/2021] [Indexed: 12/17/2022]
Abstract
Angiopoietin-like proteins (ANGPTLs), a family of eight secreted glycoproteins termed ANGTPL1-8, are involved in angiogenesis, lipid metabolism, cancer progression, and inflammation. Their roles in regulating lipid metabolism have been intensively studied, as some ANGPTLs are promising pharmacological targets for hypertriglyceridemia and associated cardiovascular disease. Recently, the emerging roles of ANGPTLs in inflammation have attracted great attention. First, elevated levels of multiple circulating ANGPTLs in inflammatory diseases make them potential disease biomarkers. Second, multiple ANGPTLs regulate acute or chronic inflammation via various mechanisms, including triggering inflammatory signaling through their action as ligands for integrin or forming homo- /hetero-oligomers to regulate signal transduction via extra- or intracellular mechanisms. As dysregulation of the inflammatory response is a critical trigger in many diseases, understanding the roles of ANGPTLs in inflammation will aid in drug/therapy development. Here, we summarize the roles, mechanisms, and potential therapeutic values for ANGPTLs in inflammation and inflammatory diseases.
Collapse
Affiliation(s)
- Jing Yang
- Department of Biopharmacy, Tongji School of Pharmacy, Huazhong University of Science & Technology, Wuhan, China
| | - Qiu-Yi Song
- Department of Biopharmacy, Tongji School of Pharmacy, Huazhong University of Science & Technology, Wuhan, China
| | - Shu-Xuan Niu
- Department of Biopharmacy, Tongji School of Pharmacy, Huazhong University of Science & Technology, Wuhan, China
| | - Hui-Jing Chen
- Department of Biopharmacy, Tongji School of Pharmacy, Huazhong University of Science & Technology, Wuhan, China
| | - Robert B Petersen
- Foundational Sciences, Central Michigan University College of Medicine, Mt. Pleasant, MI, USA
| | - Yu Zhang
- Department of Biopharmacy, Tongji School of Pharmacy, Huazhong University of Science & Technology, Wuhan, China
| | - Kun Huang
- Department of Biopharmacy, Tongji School of Pharmacy, Huazhong University of Science & Technology, Wuhan, China
| |
Collapse
|
6
|
Minicircles for Investigating and Treating Arthritic Diseases. Pharmaceutics 2021; 13:pharmaceutics13050736. [PMID: 34067675 PMCID: PMC8156692 DOI: 10.3390/pharmaceutics13050736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/10/2021] [Accepted: 05/15/2021] [Indexed: 01/22/2023] Open
Abstract
Gene delivery systems have become an essential component of research and the development of therapeutics for various diseases. Minicircles are non-viral vectors with promising characteristics for application in a variety of fields. With their minimal size, minicircles exhibit relatively high safety and efficient delivery of genes of interest into cells. Cartilage tissue lacks the natural ability to heal, making it difficult to treat osteoarthritis (OA) and rheumatoid arthritis (RA), which are the two main types of joint-related disease. Although both OA and RA affect the joint, RA is an autoimmune disease, while OA is a degenerative joint condition. Gene transfer using minicircles has also been used in many studies regarding cartilage and its diseased conditions. In this review, we summarize the cartilage-, OA-, and RA-based studies that have used minicircles as the gene delivery system.
Collapse
|
7
|
Enhancing the chondrogenic potential of chondrogenic progenitor cells by deleting RAB5C. iScience 2021; 24:102464. [PMID: 34013174 PMCID: PMC8113995 DOI: 10.1016/j.isci.2021.102464] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/24/2021] [Accepted: 04/21/2021] [Indexed: 11/21/2022] Open
Abstract
Osteoarthritis (OA) is the most prevalent chronic joint disease that affects a large proportion of the elderly population. Chondrogenic progenitor cells (CPCs) reside in late-stage OA cartilage tissue, producing a fibrocartilaginous extracellular matrix; these cells can be manipulated in vitro to deposit proteins of healthy articular cartilage. CPCs are under the control of SOX9 and RUNX2. In our earlier studies, we showed that a knockdown of RUNX2 enhanced the chondrogenic potential of CPCs. Here we demonstrate that CPCs carrying a knockout of RAB5C, a protein involved in endosomal trafficking, exhibited elevated expression of multiple chondrogenic markers, including the SOX trio, and increased COL2 deposition, whereas no changes in COL1 deposition were observed. We report RAB5C as an attractive target for future therapeutic approaches designed to increase the COL2 content in the diseased joint.
Collapse
|
8
|
miR-137 targets the inhibition of TCF4 to reverse the progression of osteoarthritis through the AMPK/NF-κB signaling pathway. Biosci Rep 2021; 40:224888. [PMID: 32432314 PMCID: PMC7295621 DOI: 10.1042/bsr20200466] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/15/2020] [Accepted: 05/19/2020] [Indexed: 12/19/2022] Open
Abstract
Purpose: To explore the regulatory mechanism of miR-137 and transcription factor 4 (TCF4) in the progression of osteoarthritis (OA). Patients and Methods: The expressions of miR-137 and TCF4 were detected in OA cartilage tissue, chondrocytes and OA rat cartilage tissue. miR-137 and TCF4 were up-regulated or down-regulated and transfected into chondrocytes and OA rat cartilage tissue. The gene expression, protein level, cell proliferation, apoptosis and inflammatory factors were detected, respectively. LPS and anterior cruciate ligament transection (ACLT) on the right knee were used to induce chondrocyte inflammation and establish rat OA model, respectively. Results: miR-137 was low expressed in cartilage tissue of OA group, while TCF4 expression and protein level were significantly higher, showing significant negative correlation. In LPS group, chondrocyte activity was significantly inhibited, cell apoptosis ability was significantly enhanced, and the levels of inflammatory factors TNF-α, IL-1β, IL-6 were significantly increased. However, the above results were significantly improved after the up-regulation of miR-137 or down-regulation of TCF4. Double luciferase report revealed that miR-137 and TCF4 had targeted relationship. LPS induced activation of AMPK/NF-κB pathway and higher level of apoptosis. AMPK/NF-κB pathway inhibitor C could inhibit activation of this pathway, and up-regulation of miR-137 or down-regulation of TCF4 could significantly weaken the regulation of LPS on the pathway and apoptosis. Analysis of OA rat model showed that over-expression of miR-137 could inhibit up-regulation of inflammatory factors and activation of AMPK/NF-κB pathway. Conclusion: miR-137 targets the inhibition of TCF4 to reverse the progression of OA through the AMPK/NF-κB signaling pathway.
Collapse
|
9
|
Dubashynskaya NV, Bokatyi AN, Skorik YA. Dexamethasone Conjugates: Synthetic Approaches and Medical Prospects. Biomedicines 2021; 9:341. [PMID: 33801776 PMCID: PMC8067246 DOI: 10.3390/biomedicines9040341] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/20/2021] [Accepted: 03/24/2021] [Indexed: 12/12/2022] Open
Abstract
Dexamethasone (DEX) is the most commonly prescribed glucocorticoid (GC) and has a wide spectrum of pharmacological activity. However, steroid drugs like DEX can have severe side effects on non-target organs. One strategy to reduce these side effects is to develop targeted systems with the controlled release by conjugation to polymeric carriers. This review describes the methods available for the synthesis of DEX conjugates (carbodiimide chemistry, solid-phase synthesis, reversible addition fragmentation-chain transfer [RAFT] polymerization, click reactions, and 2-iminothiolane chemistry) and perspectives for their medical application as GC drug or gene delivery systems for anti-tumor therapy. Additionally, the review focuses on the development of DEX conjugates with different physical-chemical properties as successful delivery systems in the target organs such as eye, joint, kidney, and others. Finally, polymer conjugates with improved transfection activity in which DEX is used as a vector for gene delivery in the cell nucleus have been described.
Collapse
Affiliation(s)
| | | | - Yury A. Skorik
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoy pr. V.O. 31, 199004 St. Petersburg, Russia; (N.V.D.); (A.N.B.)
| |
Collapse
|
10
|
Xiao S, Chen L. The emerging landscape of nanotheranostic-based diagnosis and therapy for osteoarthritis. J Control Release 2020; 328:817-833. [PMID: 33176171 DOI: 10.1016/j.jconrel.2020.11.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/02/2020] [Accepted: 11/04/2020] [Indexed: 02/06/2023]
Abstract
Osteoarthritis (OA) is a common degenerative disease involving numerous joint tissues and cells, with a growing rate in prevalence that ultimately results in a negative social impact. Early diagnosis, OA progression monitoring and effective treatment are of significant importance in halting OA process. However, traditional imaging techniques lack sensitivity and specificity, which lead to a delay in timely clinical intervention. Additionally, current treatments only slow the progression of OA but have not meet the largely medical need for disease-modifying therapy. In order to overcome the above-mentioned problems and improve clinical efficacy, nanotheranostics has been proposed on OA remedy, which has confirmed success in animal models. In this review, different imaging targets-based nanoprobe for early and timely OA diagnosis is first discussed. Second, therapeutic strategies delivered by nanosystem are summarized as much as possible. Their advantages and the potential for clinical translation are detailed discussed. Third, nanomedicine simultaneously combined with the imaging for OA treatment is introduced. Nanotheranostics dynamically tracked the OA treatment outcomes to timely and individually adjust therapy. Finally, future prospects and challenges of nanotechnology-based OA diagnosis, imaging and treatment are concluded and predicted. It is believed that nanoprobe and nanomedicine will become prospective in OA therapeutic revolution.
Collapse
Affiliation(s)
- Shuyi Xiao
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, PR China; Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, PR China
| | - Liang Chen
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, PR China.
| |
Collapse
|
11
|
Arévalo-Soliz LM, Hardee CL, Fogg JM, Corman NR, Noorbakhsh C, Zechiedrich L. Improving therapeutic potential of non-viral minimized DNA vectors. CELL & GENE THERAPY INSIGHTS 2020; 6:1489-1505. [PMID: 33953961 PMCID: PMC8095377 DOI: 10.18609/cgti.2020.163] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The tragic deaths of three patients in a recent AAV-based X-linked myotubular myopathy clinical trial highlight once again the pressing need for safe and reliable gene delivery vectors. Non-viral minimized DNA vectors offer one possible way to meet this need. Recent pre-clinical results with minimized DNA vectors have yielded promising outcomes in cancer therapy, stem cell therapy, stem cell reprograming, and other uses. Broad clinical use of these vectors, however, remains to be realized. Further advances in vector design and production are ongoing. An intriguing and promising potential development results from manipulation of the specific shape of non-viral minimized DNA vectors. By improving cellular uptake and biodistribution specificity, this approach could impact gene therapy, DNA nanotechnology, and personalized medicine.
Collapse
Affiliation(s)
- Lirio M Arévalo-Soliz
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Cinnamon L Hardee
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jonathan M Fogg
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Nathan R Corman
- Rural Medical Education Program, University of Illinois College of Medicine, Rockford, IL 61107, USA
| | - Cameron Noorbakhsh
- Weiss School of Natural Sciences, Rice University, Houston, TX 77005, USA
| | - Lynn Zechiedrich
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
12
|
Farhang N, Silverman L, Bowles RD. Improving Cell Therapy Survival and Anabolism in Harsh Musculoskeletal Disease Environments. TISSUE ENGINEERING PART B-REVIEWS 2020; 26:348-366. [PMID: 32070243 DOI: 10.1089/ten.teb.2019.0324] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Cell therapies are an up and coming technology in orthopedic medicine that has the potential to provide regenerative treatments for musculoskeletal disease. Despite numerous cell therapies showing preclinical success for common musculoskeletal indications of disc degeneration and osteoarthritis, there have been mixed results when testing these therapies in humans during clinical trials. A theory behind the mixed success of these cell therapies is that the harsh microenvironments of the disc and knee they are entering inhibit their anabolism and survival. Therefore, there is much ongoing research looking into how to improve the survival and anabolism of cell therapies within these musculoskeletal disease environments. This includes research into improving cell function under specific microenvironmental conditions known to exist in the intervertebral disc (IVD) and knee environment such as hypoxia, low-nutrient conditions, hyperosmolarity, acidity, and inflammation. This research also includes improving differentiation of cells into desired native cell phenotypes to better enhance their survival and anabolism in the knee and IVD. This review highlights the effects of specific musculoskeletal microenvironmental challenges on cell therapies and what research is being done to overcome these challenges. Impact statement While there has been significant clinical interest in using cell therapies for musculoskeletal pathologies in the knee and intervertebral disc, cell therapy clinical trials have had mixed outcomes. The information presented in this review includes the environmental challenges (i.e., acidic pH, inflammation, hyperosmolarity, hypoxia, and low nutrition) that cell therapies experience in these pathological musculoskeletal environments. This review summarizes studies that describe various approaches to improving the therapeutic capability of cell therapies in these harsh environments. The result is an overview of what approaches can be targeted and/or combined to develop a more consistent cell therapy for musculoskeletal pathologies.
Collapse
Affiliation(s)
- Niloofar Farhang
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, USA
| | | | - Robby D Bowles
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|