1
|
Sajad Daneshi S, Tayebi L, Talaei-Khozani T, Tavanafar S, Hadaegh AH, Rasoulianboroujeni M, Rastegari B, Asadi-Yousefabad SL, Nammian P, Zare S, Mussin NM, Kaliyev AA, Zhelisbayeva KR, Tanideh N, Tamadon A. Reconstructing Critical-Sized Mandibular Defects in a Rabbit Model: Enhancing Angiogenesis and Facilitating Bone Regeneration via a Cell-Loaded 3D-Printed Hydrogel-Ceramic Scaffold Application. ACS Biomater Sci Eng 2024; 10:3316-3330. [PMID: 38619014 DOI: 10.1021/acsbiomaterials.4c00580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
In this study, we propose a spatially patterned 3D-printed nanohydroxyapatite (nHA)/beta-tricalcium phosphate (β-TCP)/collagen composite scaffold incorporating human dental pulp-derived mesenchymal stem cells (hDP-MSCs) for bone regeneration in critical-sized defects. We investigated angiogenesis and osteogenesis in a rabbit critical-sized mandibular defect model treated with this engineered construct. The critical and synergistic role of collagen coating and incorporation of stem cells in the regeneration process was confirmed by including a cell-free uncoated 3D-printed nHA/β-TCP scaffold, a stem cell-loaded 3D-printed nHA/β-TCP scaffold, and a cell-free collagen-coated 3D-printed nHA/β-TCP scaffold in the experimental design, in addition to an empty defect. Posteuthanasia evaluations through X-ray analysis, histological assessments, immunohistochemistry staining, histomorphometry, and reverse transcription-polymerase chain reaction (RT-PCR) suggest the formation of substantial woven and lamellar bone in the cell-loaded collagen-coated 3D-printed nHA/β-TCP scaffolds. Histomorphometric analysis demonstrated a significant increase in osteoblasts, osteocytes, osteoclasts, bone area, and vascularization compared to that observed in the control group. Conversely, a significant decrease in fibroblasts/fibrocytes and connective tissue was observed in this group compared to that in the control group. RT-PCR indicated a significant upregulation in the expression of osteogenesis-related genes, including BMP2, ALPL, SOX9, Runx2, and SPP1. The findings suggest that the hDP-MSC-loaded 3D-printed nHA/β-TCP/collagen composite scaffold is promising for bone regeneration in critical-sized defects.
Collapse
Affiliation(s)
- Seyyed Sajad Daneshi
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz 71348, Iran
| | - Lobat Tayebi
- Marquette University School of Dentistry, Milwaukee, Wisconsin 53233, United States
| | - Tahereh Talaei-Khozani
- Tissue Engineering Laboratory, Department of Anatomy, School of Medicine, Shiraz University of Medical Sciences, Shiraz 71348, Iran
| | - Saeid Tavanafar
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Birjand University of Medical Sciences, Birjand 97178, Iran
| | - Amir Hossein Hadaegh
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz 71348, Iran
- Ryangene Biolab Co. LTD, Shiraz 71348, Iran
| | | | - Banafsheh Rastegari
- Ryangene Biolab Co. LTD, Shiraz 71348, Iran
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz 71348, Iran
| | - Seyedeh-Leili Asadi-Yousefabad
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz 71348, Iran
| | - Pegah Nammian
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz 71348, Iran
| | - Shahrokh Zare
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz 71348, Iran
| | - Nadiar M Mussin
- Department of Surgery No. 2, West Kazakhstan Medical University, Aktobe 030012, Kazakhstan
| | - Asset A Kaliyev
- Department of Surgery No. 2, West Kazakhstan Medical University, Aktobe 030012, Kazakhstan
| | - Kulyash R Zhelisbayeva
- Department of Scientific Works, West Kazakhstan Marat Ospanov Medical University, Aktobe 030012, Kazakhstan
| | - Nader Tanideh
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz 71348, Iran
- Department of Pharmacology, School of Medicine, Shiraz University of Medical Sciences, Shiraz 71348, Iran
- PerciaVista R&D Co., Shiraz 71348, Iran
| | - Amin Tamadon
- PerciaVista R&D Co., Shiraz 71348, Iran
- Department of Natural Sciences, West Kazakhstan Marat Ospanov Medical University, Aktobe 030012, Kazakhstan
| |
Collapse
|
2
|
Tangsuksant T, Ummartyotin S, Pongprayoon T, Arpornmaeklong P, Apinyauppatham K. Property and biological effects of the cuttlebone derived calcium phosphate particles, a potential bioactive bone substitute material. J Biomed Mater Res B Appl Biomater 2023; 111:1207-1223. [PMID: 36718607 DOI: 10.1002/jbm.b.35226] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 12/16/2022] [Accepted: 01/13/2023] [Indexed: 02/01/2023]
Abstract
Cuttlebone (CB) is a marine waste-derived biomaterial and a rich source of calcium carbonate for the biosynthesis of the calcium phosphate (CaP) particles. The current study aimed to synthesize CB derived biphasic calcium phosphate (CB-BCP) and investigate biological activity of the CB-CaP: hydroxyapatite (CB-HA), beta-tricalcium phosphate (CB-b-TCP) and biphasic 60:40 (w/w) HA/b-TCP (CB-BCP) with the human dental pulp stem cells (hDPSCs). The particles were synthesized using solid state reactions under mild condition and properties of the particles were compared with a commercial BCP as a reference material. Morphology, particle size, physicochemical properties, mineral contents, and the ion released patterns of the particles were examined. Then the particle/cell interaction, cell cytotoxicity and osteogenic property of the particles were investigated in the direct and indirect cell culture models. It was found that an average particles size of the CB-HA was 304.73 ± 4.19 nm, CB-b-TCP, 503.17 ± 23.06 nm and CB-BCP, 1394.67 ± 168.19 nm. The physicochemical characteristics of the CB-CaP were consistent with the HA, b-TCP and BCP. The highest level of calcium (Ca) was found in the mineral contents and the preincubated medium of the CB-BCP and traces of fluoride, magnesium, strontium, and zinc were identified in the CB-CaP. The cell cytotoxicity and osteogenic property of the particles were dose dependent. The particles adhered on cell surface and were internalized into the cell cytoplasm. The CB-BCP and CB-HA indirectly and directly promote osteoblastic differentiations of the hDPSCs in stronger levels than other groups. The CB-BCP and CB-HA were potential bioactive bone substitute materials.
Collapse
Affiliation(s)
- Thanin Tangsuksant
- Master of Science Program in Dental Implantology, Faculty of Dentistry, Thammasat University Rangsit Campus, Khlong Luang, Thailand
| | - Sarute Ummartyotin
- Department of Materials and Textile Technology, Faculty of Science and Technology, Thammasat University Rangsit Campus, Khlong Luang, Thailand
| | - Thirawudh Pongprayoon
- Department of Chemical Engineering, Faculty of Engineering, King Mongkut's University of Technology North Bangkok (KMUTNB), Bangkok, Thailand
| | - Premjit Arpornmaeklong
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Thammasat University Rangsit Campus, Khlong Luang, Thailand
| | - Komsan Apinyauppatham
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Thammasat University Rangsit Campus, Khlong Luang, Thailand
| |
Collapse
|
3
|
Wu S, Weir MD, Lei L, Liu J, Xu HHK. Novel nanographene oxide-calcium phosphate cement inhibits Enterococcus faecalis biofilm and supports dental pulp stem cells. J Orthop Surg Res 2021; 16:580. [PMID: 34627321 PMCID: PMC8501535 DOI: 10.1186/s13018-021-02736-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 09/21/2021] [Indexed: 02/08/2023] Open
Abstract
Background Enterococcus faecalis (E. faecalis) is the most recovered species from the root canals after failed root canal treatment. Calcium phosphate bone cement (CPC) scaffold is promising for applications in endodontic treatment as a kind of root canal sealer. Graphene oxide (GO) has been extensively considered as a kind of promising nano-materials for antibacterial applications. In the present study, an injectable CPC-chitosan paste containing GO was developed for promising endodontic therapy. The antibacterial properties of this paste against E. faecalis biofilms as well as the support for human dental pulp stem cells (hDPSCs) were investigated. Methods CPC-chitosan composite with or without GO injectable scaffold was fabricated. The hDPSC growth and viability on scaffolds were investigated by live/dead assay. Antibacterial effects against E. faecalis biofilms were determined in clinical detin block samples. Results The antibacterial CPC-chitosan-GO disks had excellent hDPSC support with the percentages of live cells at around 90%. CPC-chitosan-GO also had greater antibacterial activity on E. faecalis than that of CPC-chitosan control using detin block models (p < 0.05). Conclusions The injectable CPC-chitosan-GO paste had strong effects on inhibition E. faecalis and hDPSC support, which could fill the void of adjusting paste to the defect and shaping in situ for promising endodontic therapy.
Collapse
Affiliation(s)
- Shizhou Wu
- Department of Orthopedic Surgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.,Biomaterials & Tissue Engineering Division, Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD, 21201, USA
| | - Michael D Weir
- Biomaterials & Tissue Engineering Division, Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD, 21201, USA
| | - Lei Lei
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Jun Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Hockin H K Xu
- Biomaterials & Tissue Engineering Division, Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD, 21201, USA.,Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.,Center for Stem Cell Biology and Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| |
Collapse
|
4
|
Phosphorylated PAMAM dendrimers: an analog of dentin non-collagenous proteins, enhancing the osteo/odontogenic differentiation of dental pulp stem cells. Clin Oral Investig 2021; 26:1737-1751. [PMID: 34515858 DOI: 10.1007/s00784-021-04149-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 08/14/2021] [Indexed: 01/09/2023]
Abstract
OBJECTIVES Polyamidoamine (PAMAM) dendrimers have well-defined structures, with monodispersity and easily modified surface groups, and they have broad applications in biomedicine. In this study, phosphorylated PAMAM (P-PAMAM) dendrimers were synthesized based on the idea of mimicking the phosphorylated proteins of dentin non-collagenous proteins (DNCP). Then, proliferation and osteo/odontogenic differentiation effects of P-PAMAM on dental pulp stem cells (DPSCs) were investigated and were compared with DNCP. MATERIALS AND METHODS P-PAMAM was synthesized via the Mannich-type reaction. DNCP were extracted directly from human dentin with ethylenediaminetetraacetic acid (EDTA) solution. Then, the conditioned medium of P-PAMAM and DNCP were prepared respectively and applied to DPSCs. Proliferation of P-PAMAM was investigated with CCK-8, flow cytometry, and EdU test. Osteo/odontogenic differentiation of P-PAMAM was analyzed using alkaline phosphatase activity and staining, RT-PCR, western blot, alizarin red staining, and immunofluorescence staining. RESULTS Fourier transform infrared spectroscopy and 1H nuclear magnetic resonance revealed that PAMAM were successfully phosphorylated. Western blot verified that the extracted DNCP contained dentin-related proteins DSPP, OPN, and BMP2. In cell proliferation, there was no apparent difference between P-PAMAM, DNCP, and Control groups (P > 0.05). P-PAMAM and DNCP upregulated related genes and proteins expression (DSPP/DSPP, COL-1/COL-1, ALP/ALP, RUNX2/RUNX2, OSX/OSX, OCN/OCN) and matrix mineralization. Still, the potential was lower than that of DNCP (P < 0.05). CONCLUSIONS P-PAMAM dendrimers, as a biomimetic analog of DNCP, promote osteo/odontogenic differentiation of DPSCs without influencing their proliferation at a low concentration. CLINICAL RELEVANCE This preliminary study about P-PAMAM dendrimers is expected to provide a more convenient bioactive macromolecular material for the regeneration of the pulp-dentin complex.
Collapse
|
5
|
Huang X, Huang D, Zhu T, Yu X, Xu K, Li H, Qu H, Zhou Z, Cheng K, Wen W, Ye Z. Sustained zinc release in cooperation with CaP scaffold promoted bone regeneration via directing stem cell fate and triggering a pro-healing immune stimuli. J Nanobiotechnology 2021; 19:207. [PMID: 34247649 PMCID: PMC8274038 DOI: 10.1186/s12951-021-00956-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/05/2021] [Indexed: 12/21/2022] Open
Abstract
Metal ions have been identified as important bone metabolism regulators and widely used in the field of bone tissue engineering, however their exact role during bone regeneration remains unclear. Herein, the aim of study was to comprehensively explore the interactions between osteoinductive and osteo-immunomodulatory properties of these metal ions. In particular, the osteoinductive role of zinc ions (Zn2+), as well as its interactions with local immune microenvironment during bone healing process, was investigated in this study using a sustained Zn2+ delivery system incorporating Zn2+ into β-tricalcium phosphate/poly(L-lactic acid) (TCP/PLLA) scaffolds. The presence of Zn2+ largely enhanced osteogenic differentiation of periosteum-derived progenitor cells (PDPCs), which was coincident with increased transition from M1 to M2 macrophages (M\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\varphi $$\end{document}φs). We further confirmed that induction of M2 polarization by Zn2+ was realized via PI3K/Akt/mTOR pathway, whereas marker molecules on this pathway were strictly regulated by the addition of Zn2+. Synergically, this favorable immunomodulatory effect of Zn2+ further improved the osteogenic differentiation of PDPCs induced by Zn2+ in vitro. Consistently, the spontaneous osteogenesis and pro-healing osteoimmunomodulation of the scaffolds were thoroughly identified in vivo using a rat air pouch model and a calvarial critical-size defect model. Taken together, Zn2+-releasing bioactive ceramics could be ideal scaffolds in bone tissue engineering due to their reciprocal interactions between osteoinductive and immunomodulatory characteristics. Clarification of this synergic role of Zn2+ during osteogenesis could pave the way to develop more sophisticated metal-ion based orthopedic therapeutic strategies.![]()
Collapse
Affiliation(s)
- Xin Huang
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88# Jiefang Road, Hangzhou, 310009, China
| | - Donghua Huang
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88# Jiefang Road, Hangzhou, 310009, China
| | - Ting Zhu
- Department of Thoracic Surgery, Shaoxing People's Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, No. 568 Zhongxing North Road, Yuecheng District, Shaoxing, 312000, China
| | - Xiaohua Yu
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88# Jiefang Road, Hangzhou, 310009, China
| | - Kaicheng Xu
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88# Jiefang Road, Hangzhou, 310009, China
| | - Hengyuan Li
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88# Jiefang Road, Hangzhou, 310009, China
| | - Hao Qu
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88# Jiefang Road, Hangzhou, 310009, China
| | - Zhiyuan Zhou
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Kui Cheng
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Wenjian Wen
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Zhaoming Ye
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88# Jiefang Road, Hangzhou, 310009, China.
| |
Collapse
|
6
|
Shoushrah SH, Transfeld JL, Tonk CH, Büchner D, Witzleben S, Sieber MA, Schulze M, Tobiasch E. Sinking Our Teeth in Getting Dental Stem Cells to Clinics for Bone Regeneration. Int J Mol Sci 2021; 22:6387. [PMID: 34203719 PMCID: PMC8232184 DOI: 10.3390/ijms22126387] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/27/2021] [Accepted: 06/02/2021] [Indexed: 12/12/2022] Open
Abstract
Dental stem cells have been isolated from the medical waste of various dental tissues. They have been characterized by numerous markers, which are evaluated herein and differentiated into multiple cell types. They can also be used to generate cell lines and iPSCs for long-term in vitro research. Methods for utilizing these stem cells including cellular systems such as organoids or cell sheets, cell-free systems such as exosomes, and scaffold-based approaches with and without drug release concepts are reported in this review and presented with new pictures for clarification. These in vitro applications can be deployed in disease modeling and subsequent pharmaceutical research and also pave the way for tissue regeneration. The main focus herein is on the potential of dental stem cells for hard tissue regeneration, especially bone, by evaluating their potential for osteogenesis and angiogenesis, and the regulation of these two processes by growth factors and environmental stimulators. Current in vitro and in vivo publications show numerous benefits of using dental stem cells for research purposes and hard tissue regeneration. However, only a few clinical trials currently exist. The goal of this review is to pinpoint this imbalance and encourage scientists to pick up this research and proceed one step further to translation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Edda Tobiasch
- Department of Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences, von-Liebig- Strasse. 20, 53359 Rheinbach, Germany; (S.H.S.); (J.L.T.); (C.H.T.); (D.B.); (S.W.); (M.A.S.); (M.S.)
| |
Collapse
|
7
|
Alshemary AZ, Bilgin S, Işık G, Motameni A, Tezcaner A, Evis Z. Biomechanical Evaluation of an Injectable Alginate / Dicalcium Phosphate Cement Composites for Bone Tissue Engineering. J Mech Behav Biomed Mater 2021; 118:104439. [PMID: 33691231 DOI: 10.1016/j.jmbbm.2021.104439] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 02/22/2021] [Accepted: 02/26/2021] [Indexed: 01/27/2023]
Abstract
Biocompatible dicalcium phosphate (DCP) cements are widely used as bone repair materials. In this study, we aimed to investigate the impact of different amounts of sodium alginate (SA) on the microstructural, mechanical, and biological properties of DCP cements. Beta-tricalcium phosphate (β-TCP) was prepared using a microwave-assisted wet precipitation system. Lattice parameters of the obtained particles determined from X-ray diffraction (XRD), were in good match with a standard phase of β-TCP. Scanning electron microscopy (SEM) examination revealed that the particles were in globular shape. Furthermore, all functional groups of β-TCP were also detected using Fourier-transform infrared spectroscopy (FTIR) spectra. DCP cement (pure phase) was synthesized using monocalcium phosphate monohydrate (MCPM)/β-TCP powder mixture blended with 1.0 mL of water. SA/DCP cement composites were synthesized by dissolving different amounts of SA into water (1.0 mL) to obtain different final concentrations (0.5%, 1%, 2% and 3%). The prepared cements were characterized with XRD, SEM, FTIR and Thermogravimetric analysis (TGA). XRD results showed that pure DCP and SA/DCP cements were in a good match with Monetite phase. SEM results confirmed that addition of SA inhibited the growth of DCP particles. Setting time and injectability behaviour were significantly improved upon increasing the SA amount into DCP cements. In vitro biodegradation was evaluated using Simulated body fluid (SBF) over 21 days at 37 °C. The highest cumulative weight loss (%) in SBF was observed for 2.0% SA/DCP (about 26.52%) after 21 days of incubation. Amount of Ca2+ ions released in SBF increased with the addition of SA. DCP and SA/DCP cements showed the highest mechanical strength after 3 days of incubation in SBF and declined with prolonged immersion periods. In vitro cell culture experiments were conducted using Dental pulp stem cells (DPSCs). Viability and morphology of cells incubated in extract media of DCP and SA/DCP discs after 24 h incubation was studied with MTT assay and fluorescence microscopy imaging, respectively. All cements were cytocompatible and viability of cells incubated in extracts of cements was higher than observed in the control group. Based on the outcomes, SA/DCP bone cements have a promising future to be utilized as bone filler.
Collapse
Affiliation(s)
- Ammar Z Alshemary
- Department of Biomedical Engineering, Faculty of Engineering, Karabuk University, Karabuk, 78050, Turkey.
| | - Saliha Bilgin
- Department of Biomedical Engineering, Faculty of Engineering, Karabuk University, Karabuk, 78050, Turkey
| | - Gülhan Işık
- Department of Biotechnology, Middle East Technical University, Ankara 06800, Turkey
| | - Ali Motameni
- Department of Engineering Sciences, Middle East Technical University, Ankara, 06800, Turkey
| | - Aysen Tezcaner
- Department of Biotechnology, Middle East Technical University, Ankara 06800, Turkey; Department of Engineering Sciences, Middle East Technical University, Ankara, 06800, Turkey
| | - Zafer Evis
- Department of Engineering Sciences, Middle East Technical University, Ankara, 06800, Turkey
| |
Collapse
|