1
|
Phan CM, Wy Chan V, Drolle E, Hui A, Ngo W, Bose S, Shows A, Liang S, Sharma V, Subbaraman L, Zheng Y, Shi X, Wu J, Jones L. Evaluating the in vitro wettability and coefficient of friction of a novel and contemporary reusable silicone hydrogel contact lens materials using an in vitro blink model. Cont Lens Anterior Eye 2024; 47:102129. [PMID: 38423868 DOI: 10.1016/j.clae.2024.102129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 02/09/2024] [Accepted: 02/20/2024] [Indexed: 03/02/2024]
Abstract
PURPOSE To evaluate the in vitro wettability and coefficient of friction of a novel amphiphilic polymeric surfactant (APS), poly(oxyethylene)-co-poly(oxybutylene) (PEO-PBO) releasing silicone hydrogel (SiHy) contact lens material (serafilcon A), compared to other reusable SiHy lens materials. METHODS The release of fluorescently-labelled nitrobenzoxadiazole (NBD)-PEO-PBO was evaluated from serafilcon A over 7 days in a vial. The wettability and coefficient of friction of serafilcon A and three contemporary SiHy contact lens materials (senofilcon A; samfilcon A; comfilcon A) were evaluated using an in vitro blink model over their recommended wearing period; t = 0, 1, 7, 14 days for all lens types and t = 30 days for samfilcon A and comfilcon A (n = 4). Sessile drop contact angles were determined and in vitro non-invasive keratographic break-up time (NIKBUT) measurements were assessed on a blink model via the OCULUS Keratograph 5 M. The coefficient of friction was measured using a nano tribometer. RESULTS The relative fluorescence of NBD-PEO-PBO decreased in serafilcon A by approximately 18 % after 7 days. The amount of NBD-PEO-PBO released on day 7 was 50 % less than the amount released on day 1 (6.5±1.0 vs 3.4±0.5 µg/lens). The reduction in PEO-PBO in the lens also coincided with an increase in contact angles for serafilcon A after 7 days (p < 0.05), although there were no changes in NIKBUT or coefficient of friction (p > 0.05). The other contact lens materials had stable contact angles and NIKBUT over their recommended wearing period (p > 0.05), with the exception of samfilcon A, which had an increase in contact angle after 14 days as compared to t = 0 (p < 0.05). Senofilcon A and samfilcon A also showed an increase in coefficient of friction at 14 and 30 days, respectively, compared to their blister pack values (p < 0.05). CONCLUSION The results indicate that serafilcon A gradually depletes its reserve of PEO-PBO over 1 week, but this decrease did not significantly change the lens performance in vitro during this time frame.
Collapse
Affiliation(s)
- Chau-Minh Phan
- Centre for Ocular Research & Education (CORE), School of Optometry and Vision Science, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada; Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong, China.
| | - Vivian Wy Chan
- Centre for Ocular Research & Education (CORE), School of Optometry and Vision Science, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | - Elizabeth Drolle
- Centre for Ocular Research & Education (CORE), School of Optometry and Vision Science, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | - Alex Hui
- Centre for Ocular Research & Education (CORE), School of Optometry and Vision Science, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada; School of Optometry and Vision Science, Faculty of Medicine and Health, UNSW Sydney, Australia
| | - William Ngo
- Centre for Ocular Research & Education (CORE), School of Optometry and Vision Science, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada; Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong, China
| | - Susmita Bose
- Centre for Ocular Research & Education (CORE), School of Optometry and Vision Science, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | - Amanda Shows
- Alcon Research LLC, Fort Worth TX & Johns Creek, GA, USA
| | - Shuang Liang
- Alcon Research LLC, Fort Worth TX & Johns Creek, GA, USA
| | - Vinay Sharma
- Alcon Research LLC, Fort Worth TX & Johns Creek, GA, USA
| | | | - Ying Zheng
- Alcon Research LLC, Fort Worth TX & Johns Creek, GA, USA
| | - Xinfeng Shi
- Alcon Research LLC, Fort Worth TX & Johns Creek, GA, USA
| | - James Wu
- Alcon Research LLC, Fort Worth TX & Johns Creek, GA, USA
| | - Lyndon Jones
- Centre for Ocular Research & Education (CORE), School of Optometry and Vision Science, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada; Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong, China
| |
Collapse
|
2
|
Ţălu Ş. Advanced morphological analysis of siloxane-hydrogel contact lenses. Microsc Res Tech 2021; 84:2702-2715. [PMID: 34036670 DOI: 10.1002/jemt.23833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/29/2021] [Accepted: 05/06/2021] [Indexed: 02/05/2023]
Abstract
The purpose of this work is to provide a better understanding of three-dimensional (3-D) surface texture of siloxane-hydrogel contact lenses (CLs) using atomic force microscopy (AFM) and stereometric analysis. The 3-D surface texture characterization of unworn/worn siloxane-hydrogel CLs made of Filcon V (I FDA group) was performed with stereometric analysis. The atomic force microscopy (AFM) measurements of surface roughness and micromorphology of CLs were made using a Nanoscope V MultiMode (Bruker) in intermittent-contact mode, in air, on square areas of 5 × 5 μm. Stereometric study of 3-D surface texture was made according with ISO 25178-2:2012 for CLrins (taken from the blister and rinsed with deionized water); CLss (preserved for 12 hr in saline solution and rinsed with deionized water); CLworn-smooth (worn for 8 hr and presenting the smooth type morphology), and CLworn-sharp (worn for 8 hr and presenting the sharp-type morphology). The 3-D surface texture of siloxane-hydrogel CLs was found to have specific morphological characteristics. Statistical parameters revealed local geometrical and morphological spatial structures at nanometer scale attributed to the specific interactions at the CLs surface. Before wear, the surface micromorphology of Filcon V CLs is regular with uniformly distributed microasperities and relatively small heights (Sq = 0.6 nm). After 12 hr in saline, it is found that the micromorphology changes relatively easily, but retaining the main morphological characteristics (Sq = 1.2 nm). After 8 hr of wear, there are two typical micromorphologies: smooth type, characterized by gutter structures and isolated microasperities (Sq = 2.5 nm), while the sharp type has an appearance with compactly arranged microasperities of hill type flanked by compactly arranged microregions of valley type (Sq = 2.2 nm). Surface statistical parameters allow manufacturers in developing the next generation of CLs with improved surface texture while improving biocompatibility and minimizing the impact of the material on corneal physiology. Furthermore, the micro-elastohydrodynamic lubrication due to surface texture at a nanometer scale between the back surface of the CL with the corneal surface and the front surface of the CL with the under-surface of the eyelid can be deeper and more nuanced to understand in light of modern tribological theories.
Collapse
Affiliation(s)
- Ştefan Ţălu
- The Directorate of Research, Development and Innovation Management (DMCDI), Technical University of Cluj-Napoca, Cluj-Napoca, Romania
| |
Collapse
|
3
|
Zhu D, Liu Y, Gilbert JL. Micromechanical measurement of adhesion of dehydrating silicone hydrogel contact lenses to corneal tissue. Acta Biomater 2021; 127:242-251. [PMID: 33812075 DOI: 10.1016/j.actbio.2021.03.053] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 03/19/2021] [Accepted: 03/23/2021] [Indexed: 10/21/2022]
Abstract
Adhesion properties, which can vary with multiple factors, of silicone hydrogel contact lenses are important to their performance and comfort in the eye. In this study, we developed and used a simple, representative testing system and method to study the adhesive interactions of different silicone contact lenses (balafilcon A and senofilcon A) on polished titanium alloy and porcine whole eye cornea under dehydrating conditions. Adhesive interactions for senofilcon A varied by hydration state for both corneal and titanium adhesion, starting low, rising to a maximum and falling with dehydration time and dehydration state. Balafilcon A showed a rise and fall against titanium, but retained a relatively constant adhesive interaction with corneal tissue over dehydration time. Senofilcon A reached the highest adhesion forces (400 mN) within 5 to 10 min of testing against cornea, then dropped with time after that. Johnson-Kendall-Roberts (JKR) theory was applied to determine the surface energy of the lenses, and work of adhesion (WOA) was also determined for both lenses. Similar trends as observed with the force-hydration curves were seen with surface energy and work of adhesion as well (peak surface energy of 8 N/m and work of adhesion of 80 µJ for senofilcon A). Video imaging of the adhesive interactions showed significant corneal deformation taking place during testing, and post-test analysis shows damage to the corneal tissue. This method could be used to assess pre-clinical performance of long-lasting contact lenses and the role of hydration state. STATEMENT OF SIGNIFICANCE: Adhesion properties of contact lenses play significant roles in their performance and comfort in the eye. Adhesion is influenced by polymer chemistry, counterface materials and hydration state of the contact lenses. However, no test method has been developed to directly study the adhesion properties between contact lenses and corneal tissue during the dehydration process. Our work aims to fill this gap by developing testing and analysis methods for evaluating the adhesive interactions in vitro between contact lenses of different chemistries and properties and different counter surfaces under dehydrating conditions over time. Our study shows that adhesive interactions of contact lenses are highly dependent on polymer type, surface treatment, counterface material and hydration state.
Collapse
|
4
|
Wolffsohn JS, Dumbleton K, Huntjens B, Kandel H, Koh S, Kunnen CME, Nagra M, Pult H, Sulley AL, Vianya-Estopa M, Walsh K, Wong S, Stapleton F. CLEAR - Evidence-based contact lens practice. Cont Lens Anterior Eye 2021; 44:368-397. [PMID: 33775383 DOI: 10.1016/j.clae.2021.02.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 02/01/2021] [Indexed: 12/15/2022]
Abstract
Evidence-based contact lens -->practice involves finding, appraising and applying research findings as the basis for patient management decisions. These decisions should be informed by the strength of the research study designs that address the question, as well as by the experience of the practitioner and the preferences and environment of the patient. This reports reviews and summarises the published research evidence that is available to inform soft and rigid contact lens history and symptoms taking, anterior eye health examination (including the optimised use of ophthalmic dyes, grading scales, imaging techniques and lid eversion), considerations for contact lens selection (including the ocular surface measurements required to select the most appropriate lens parameter, lens modality and material selection), evaluation of lens fit, prescribing (teaching self-application and removal, adaptation, care regimen and cleaning instructions, as well as -->minimising risks of lens wear through encouraging compliance) and an aftercare routine.
Collapse
Affiliation(s)
| | - Kathy Dumbleton
- School of Optometry, University of California, Berkeley, CA, USA
| | - Byki Huntjens
- Division of Optometry and Visual Sciences at City, University of London, London, UK
| | - Himal Kandel
- Save Sight Institute, Sydney Medical School, The University of Sydney, Sydney, Australia
| | - Shizuka Koh
- Department of Innovative Visual Science, Osaka University Graduate School of Medicine, Japan
| | | | - Manbir Nagra
- Vision and Eye Research Institute, ARU, Cambridge, UK
| | - Heiko Pult
- Optometry and Vision Research, Weinheim, Germany
| | | | - Marta Vianya-Estopa
- Department of Vision and Hearing Sciences Research Centre, Anglia Ruskin University, Cambridge, UK
| | - Karen Walsh
- Centre for Ocular Research & Education, School of Optometry & Vision Science, University of Waterloo, Waterloo, Canada
| | - Stephanie Wong
- Centre for Ocular Research & Education, School of Optometry & Vision Science, University of Waterloo, Waterloo, Canada
| | - Fiona Stapleton
- School of Optometry and Vision Science, UNSW Sydney, Australia
| |
Collapse
|
5
|
Alves M, Castanheira EMS, Lira M. Interactions between contact lenses and lens care solutions: Influence in optical properties. Cont Lens Anterior Eye 2021; 44:101414. [PMID: 33579643 DOI: 10.1016/j.clae.2021.01.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 01/15/2021] [Accepted: 01/23/2021] [Indexed: 10/22/2022]
Abstract
PURPOSE Investigate changes in optical properties of contact lenses materials (transmittance and reflectance) and lens care solutions (absorption and fluorescence) resulting from its interaction. METHODS From an experimental study, triplicate measurements of transmittance and reflectance of five contact lenses (Senofilcon A, Lotrafilcon B, Balafilcon A, Comfilcon A, and Omafilcon A), as well as UV-vis absorption and fluorescence of four lens care solutions (LCS) (ReNu MultiPlus, Biotrue, OPTI-FREE PureMoist, and AOSept Plus), were evaluated before and after 8 h, one day and one week in storage. The outcomes were provided by Shimadzu UV3101-PC UV-vis-NIR spectrophotometer equipped with an integrating sphere, between 200-700 nm, and SPEX-Fluorolog 2 FL3-22 spectrofluorometer. RESULTS All variables exhibited statistically significant differences over time. Comfilcon A showed the lowest ultraviolet radiation (UVR) A & B attenuation. Balafilcon A and Lotrafilcon B displayed a slight suppression of UVR. Senofilcon A was effective in UVR protection and showed less effect on the fluorescence of lens care solutions. Overall, the reflectance decreased after storage (p < 0.05). AOSept Plus absorbance and fluorescence demonstrated lower interactions than multipurpose solutions (MPS), and Lotrafilcon B induced more remarkable changes in optical properties of LCS than the other materials. CONCLUSION The findings suggest that optical variables of lens care solutions and contact lenses changed mutually after storage, probably associated with biochemical and biophysical interactions between components and the release of some polymer compounds. These findings can provide additional information about the interaction of CL materials and LCS in clinical behavior.
Collapse
Affiliation(s)
- Micael Alves
- Centre of Physics, School of Sciences, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| | - Elisabete M S Castanheira
- Centre of Physics, School of Sciences, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Madalena Lira
- Centre of Physics, School of Sciences, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| |
Collapse
|