1
|
Suárez S, López-Campos JA, Fernández JR, Segade A. Nonlocal damage evaluation of a sigmoid-based damage model for fibrous biological soft tissues. Biomech Model Mechanobiol 2024; 23:655-674. [PMID: 38158483 DOI: 10.1007/s10237-023-01798-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/22/2023] [Indexed: 01/03/2024]
Abstract
The comprehension and modeling of the mechanical behavior of soft biological tissues are essential due to their clinical applications. This knowledge is essential for predicting tissue responses accurately and enhancing our ability to compute the behavior of biological structures and bio-prosthetic devices under specific loading conditions. The current research is centered on modeling the initiation and progression of soft tissues damage, which typically exhibit intricate anisotropic and nonlinear elastic characteristics. For this purpose, the following study presents a comparative analysis of the computational performance of two distinct damage modeling techniques. The first technique employs a well-established damage model, based on a piece-wise exponential damage function as proposed by Calvo et al. (Int J Numer Methods Eng 69:2036-2057, 2007. https://doi.org/10.1002/nme.1825 ). The second approach adopts a sigmoid function, as proposed by López-Campos et al. (Comput Methods Biomech Biomed Eng 23(6):213-223. https://doi.org/10.1080/10255842.2019.1710742 ). The aim of this study is to verify the validity of the López-Campos sigmoid-based damage model to be used in finite element simulation, the implementation of which is unknown. For this proposal, both models were implemented within a commercial Finite Element software package, and their responses to local and non-local damage algorithms were assessed in depth through two standard benchmark tests: a plate with a hole and a ball burst. The results of this study indicate that, for a wide range of cases, such as in-plane stresses, out-plane stresses, stress concentration and contact, all over large displacement conditions, the López-Campos damage model shows a good response to non-local algorithms achieving mesh independence and convergence in all these cases. The results obtained are in line with those obtained for the Calvo's damage model, showing, in addition, larger deformations under in-plane stress and stress concentration conditions and a lower number of iterations under out-plane stress and contact conditions. Consequently, the López-Campos' damage model emerges as a valuable and useful tool in the field of mechanical damage research in biological systems.
Collapse
Affiliation(s)
- Sofía Suárez
- CINTECX, Department of Mechanical Engineering, Universidade de Vigo, Campus As Lagoas, Marcosende, 36310, Vigo, Pontevedra, Spain.
- Design and Numerical Simulation Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Hospital Álvaro Cunqueiro, Carretera Clara Campoamor 341, Tecnical Building 2º Floor, 36312, Vigo, Pontevedra, Spain.
| | - Jose A López-Campos
- CINTECX, Department of Mechanical Engineering, Universidade de Vigo, Campus As Lagoas, Marcosende, 36310, Vigo, Pontevedra, Spain
- Design and Numerical Simulation Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Hospital Álvaro Cunqueiro, Carretera Clara Campoamor 341, Tecnical Building 2º Floor, 36312, Vigo, Pontevedra, Spain
| | - Jose R Fernández
- Design and Numerical Simulation Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Hospital Álvaro Cunqueiro, Carretera Clara Campoamor 341, Tecnical Building 2º Floor, 36312, Vigo, Pontevedra, Spain
- Department of Applied Mathematics I, Industrial Engineering School, Universidade de Vigo, Campus As Lagoas, Marcosende, 36310, Vigo, Pontevedra, Spain
| | - Abraham Segade
- CINTECX, Department of Mechanical Engineering, Universidade de Vigo, Campus As Lagoas, Marcosende, 36310, Vigo, Pontevedra, Spain
- Design and Numerical Simulation Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Hospital Álvaro Cunqueiro, Carretera Clara Campoamor 341, Tecnical Building 2º Floor, 36312, Vigo, Pontevedra, Spain
| |
Collapse
|
2
|
Dwivedi KK, Lakhani P, Kumar S, Kumar N. A hyperelastic model to capture the mechanical behaviour and histological aspects of the soft tissues. J Mech Behav Biomed Mater 2021; 126:105013. [PMID: 34920323 DOI: 10.1016/j.jmbbm.2021.105013] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/10/2021] [Accepted: 11/27/2021] [Indexed: 11/19/2022]
Abstract
It is well established that the soft connective tissues show a nonlinear elastic response that comes from their microstructural arrangement. Tissues' microstructure alters with various physiological conditions and may affect their mechanical responses. Therefore, the accurate prediction of tissue's mechanical response is crucial for clinical diagnosis and treatments. Thus, a physically motivated and mathematically simplified model is required for the accurate prediction of tissues' mechanical and structural responses. This study explored the 'Exp-Ln' hyperelastic model (Khajehsaeid et al., 2013) to capture soft tissues' mechanical and histological behaviour. In this work, uniaxial tensile test data for the belly and back pig skin were extracted from the experiments performed in our laboratory, whereas uniaxial test data for other soft tissues (human skin, tendon, ligament, and aorta) were extracted from the literature. The 'Exp-Ln; and other hyperelastic models (e.g. Money Rivlin, Ogden, Yeoh, and Gent models) were fitted with these experimental data, and obtained results were compared between the models. These results show that the 'Exp-Ln' model could capture the mechanical behaviour of soft tissues more accurately than other hyperelastic models. This model was also found numerically stable for all modes and ranges of deformation. This study also investigated the link between 'Exp-Ln' material parameters and tissue's histological parameters. The histological parameters such as collagen content, fibre free length, crosslink density, and collagen arrangement were measured using staining and ATR-FTIR techniques. The material parameters were found statistically correlated with the histological parameters. Further, 'Exp-Ln' model was implemented in ABAQUS through the VUMAT subroutine, where the mechanical behaviour of various soft tissues was simulated for different modes of deformation. The finite element analysis results obtained using the 'Exp-Ln' model agreed with the experiments and were more accurate than other hyperelastic models. Overall, these results demonstrate the capability of 'Exp-Ln' model to predict the mechanical and structural responses of the soft tissues.
Collapse
Affiliation(s)
- Krashn Kr Dwivedi
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, India
| | - Piyush Lakhani
- Department of Mechanical Engineering, Indian Institute of Technology Ropar, India
| | - Sachin Kumar
- Department of Mechanical Engineering, Indian Institute of Technology Ropar, India
| | - Navin Kumar
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, India; Department of Mechanical Engineering, Indian Institute of Technology Ropar, India.
| |
Collapse
|
3
|
Alvites RD, Branquinho MV, Sousa AC, Lopes B, Sousa P, Mendonça C, Atayde LM, Maurício AC. Small Ruminants and Its Use in Regenerative Medicine: Recent Works and Future Perspectives. BIOLOGY 2021; 10:biology10030249. [PMID: 33810087 PMCID: PMC8004958 DOI: 10.3390/biology10030249] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/16/2021] [Accepted: 03/18/2021] [Indexed: 12/16/2022]
Abstract
Simple Summary Small ruminants such as sheep and goats have been increasingly used as animal models due to their dimensions, physiology and anatomy identical to those of humans. Their low costs, ease of accommodation, great longevity and easy handling make them advantageous animals to be used in a wide range of research work. Although there is already a lot of scientific literature describing these species, their use still lacks some standardization. The purpose of this review is to summarize the general principles related to the use of small ruminants as animal models for scientific research. Abstract Medical and translational scientific research requires the use of animal models as an initial approach to the study of new therapies and treatments, but when the objective is an exploration of translational potentialities, classical models fail to adequately mimic problems in humans. Among the larger animal models that have been explored more intensely in recent decades, small ruminants, namely sheep and goats, have emerged as excellent options. The main advantages associated to the use of these animals in research works are related to their anatomy and dimensions, larger than conventional laboratory animals, but very similar to those of humans in most physiological systems, in addition to their low maintenance and feeding costs, tendency to be docile, long life expectancies and few ethical complications raised in society. The most obvious disadvantages are the significant differences in some systems such as the gastrointestinal, and the reduced amount of data that limits the comparison between works and the validation of the characterization essays. Despite everything, recently these species have been increasingly used as animal models for diseases in different systems, and the results obtained open doors for their more frequent and advantageous use in the future. The purpose of this review is to summarize the general principles related to the use of small ruminants as animal models, with a focus on regenerative medicine, to group the most relevant works and results published recently and to highlight the potentials for the near future in medical research.
Collapse
Affiliation(s)
- Rui Damásio Alvites
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto, Praça Gomes Teixeira, 4051-401 Porto, Portugal; (R.D.A.); (M.V.B.); (A.C.S.); (B.L.); (P.S.); (C.M.); (L.M.A.)
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, 4050-313 Porto, Portugal
| | - Mariana Vieira Branquinho
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto, Praça Gomes Teixeira, 4051-401 Porto, Portugal; (R.D.A.); (M.V.B.); (A.C.S.); (B.L.); (P.S.); (C.M.); (L.M.A.)
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, 4050-313 Porto, Portugal
| | - Ana Catarina Sousa
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto, Praça Gomes Teixeira, 4051-401 Porto, Portugal; (R.D.A.); (M.V.B.); (A.C.S.); (B.L.); (P.S.); (C.M.); (L.M.A.)
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, 4050-313 Porto, Portugal
| | - Bruna Lopes
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto, Praça Gomes Teixeira, 4051-401 Porto, Portugal; (R.D.A.); (M.V.B.); (A.C.S.); (B.L.); (P.S.); (C.M.); (L.M.A.)
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, 4050-313 Porto, Portugal
| | - Patrícia Sousa
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto, Praça Gomes Teixeira, 4051-401 Porto, Portugal; (R.D.A.); (M.V.B.); (A.C.S.); (B.L.); (P.S.); (C.M.); (L.M.A.)
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, 4050-313 Porto, Portugal
| | - Carla Mendonça
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto, Praça Gomes Teixeira, 4051-401 Porto, Portugal; (R.D.A.); (M.V.B.); (A.C.S.); (B.L.); (P.S.); (C.M.); (L.M.A.)
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, 4050-313 Porto, Portugal
| | - Luís Miguel Atayde
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto, Praça Gomes Teixeira, 4051-401 Porto, Portugal; (R.D.A.); (M.V.B.); (A.C.S.); (B.L.); (P.S.); (C.M.); (L.M.A.)
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, 4050-313 Porto, Portugal
| | - Ana Colette Maurício
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto, Praça Gomes Teixeira, 4051-401 Porto, Portugal; (R.D.A.); (M.V.B.); (A.C.S.); (B.L.); (P.S.); (C.M.); (L.M.A.)
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, 4050-313 Porto, Portugal
- Correspondence: ; Tel.: +351-919-071-286 or +351-220-428-000
| |
Collapse
|