1
|
Visan AI, Negut I. Development and Applications of PLGA Hydrogels for Sustained Delivery of Therapeutic Agents. Gels 2024; 10:497. [PMID: 39195026 DOI: 10.3390/gels10080497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 08/29/2024] Open
Abstract
Poly(lactic-co-glycolic acid) (PLGA) hydrogels are highly utilized in biomedical research due to their biocompatibility, biodegradability, and other versatile properties. This review comprehensively explores their synthesis, properties, sustained release mechanisms, and applications in drug delivery. The introduction underscores the significance of PLGA hydrogels in addressing challenges like short half-lives and systemic toxicity in conventional drug formulations. Synthesis methods, including emulsion solvent evaporation, solvent casting, electrospinning, thermal gelation, and photopolymerization, are described in detail and their role in tailoring hydrogel properties for specific applications is highlighted. Sustained release mechanisms-such as diffusion-controlled, degradation-controlled, swelling-controlled, and combined systems-are analyzed alongside key kinetic models (zero-order, first-order, Higuchi, and Peppas models) for designing controlled drug delivery systems. Applications of PLGA hydrogels in drug delivery are discussed, highlighting their effectiveness in localized and sustained chemotherapy for cancer, as well as in the delivery of antibiotics and antimicrobials to combat infections. Challenges and future prospects in PLGA hydrogel research are discussed, with a focus on improving drug loading efficiency, improving release control mechanisms, and promoting clinical translation. In summary, PLGA hydrogels provide a promising platform for the sustained delivery of therapeutic agents and meet diverse biomedical requirements. Future advancements in materials science and biomedical engineering are anticipated to further optimize their efficacy and applicability in clinical settings. This review consolidates the current understanding and outlines future research directions for PLGA hydrogels, emphasizing their potential to revolutionize therapeutic delivery and improve patient outcomes.
Collapse
Affiliation(s)
- Anita Ioana Visan
- National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, 077125 Magurele, Romania
| | - Irina Negut
- National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, 077125 Magurele, Romania
| |
Collapse
|
2
|
Kesharwani P, Alexander A, Shukla R, Jain S, Bisht A, Kumari K, Verma K, Sharma S. Tissue regeneration properties of hydrogels derived from biological macromolecules: A review. Int J Biol Macromol 2024; 271:132280. [PMID: 38744364 DOI: 10.1016/j.ijbiomac.2024.132280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 05/02/2024] [Accepted: 05/08/2024] [Indexed: 05/16/2024]
Abstract
The successful tissue engineering depends on the development of biologically active scaffolds that possess optimal characteristics to effectively support cellular functions, maintain structural integrity and aid in tissue regeneration. Hydrogels have emerged as promising candidates in tissue regeneration due to their resemblance to the natural extracellular matrix and their ability to support cell survival and proliferation. The integration of hydrogel scaffold into the polymer has a variable impact on the pseudo extracellular environment, fostering cell growth/repair. The modification in size, shape, surface morphology and porosity of hydrogel scaffolds has consequently paved the way for addressing diverse challenges in the tissue engineering process such as tissue architecture, vascularization and simultaneous seeding of multiple cells. The present review provides a comprehensive update on hydrogel production using natural and synthetic biomaterials and their underlying mechanisms. Furthermore, it delves into the application of hydrogel scaffolds in tissue engineering for cardiac tissues, cartilage tissue, adipose tissue, nerve tissue and bone tissue. Besides, the present article also highlights various clinical studies, patents, and the limitations associated with hydrogel-based scaffolds in recent times.
Collapse
Affiliation(s)
- Payal Kesharwani
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan, India; Institute of Pharmacy, Ram-Eesh Institute of Vocational and Technical Education Greater Noida, India
| | - Amit Alexander
- Department of Pharmaceuticals, National Institute of Pharmaceutical Education and Research, Guwahati, Assam, India
| | - Rahul Shukla
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Raebareli, Lucknow, Uttar Pradesh, India
| | - Smita Jain
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan, India
| | - Akansha Bisht
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan, India
| | - Kajal Kumari
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan, India
| | - Kanika Verma
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan, India
| | - Swapnil Sharma
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan, India.
| |
Collapse
|
3
|
Wang A, Ni C, Peng S, Yang S, Wu Q, Zhou S. Preparation and indoor virulence determination of a temperature-sensitive insecticide against Zeugodacus cucurbitae (Coquillett). ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2024; 116:e22115. [PMID: 38770623 DOI: 10.1002/arch.22115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/11/2024] [Accepted: 04/18/2024] [Indexed: 05/22/2024]
Abstract
Zeugodacus cucurbitae (Coquillett) is an important fruit and vegetable pest, especially in high-temperature seasons. In our previous research, we developed a temperature-sensitive sustained-release attractant for Z. cucurbitae, that not only can control the release rate of cuelure according to the temperature change, but also shows an excellent trapping effect on Z. cucurbitae. To further enhance the killing effect of the temperature-sensitive attractant on Z. cucurbitae, this study proposed using it in combination with an insecticide to prepare a temperature-sensitive insecticide for Z. cucurbitae. Based on the controlled release technology of pesticides, a temperature-sensitive Z. cucurbitae insecticide was developed by using PNIPAM gel as a temperature-sensitive switch to carry both cuelure and insecticide at the same time. In addition, the lethal effect of different pesticides on Z. cucurbitae were tested by indoor toxicity test, and the best pesticide combination was screened out. The temperature-sensitive insecticide prepared in this study not only had excellent thermal response and controlled release ability, but also enhanced its toxicological effects on Z. cucurbitae because it contained insecticides. Among them, combining thiamethoxam and clothianidin with the temperature-sensitive attractants was the most effective, and their lethality reached more than 97% against Z. cucurbitae. This study is not only of great practical significance for the monitoring and controlling Z. cucurbitae, but also provides theoretical basis and reference value for the combination of temperature-sensitive attractant and insecticide.
Collapse
Affiliation(s)
- Aqiang Wang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, China
| | - Chengcheng Ni
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, China
| | - Sihua Peng
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, China
| | - Shuyan Yang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, China
| | - Qianxing Wu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, China
| | - Shihao Zhou
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, China
| |
Collapse
|
4
|
Mfoafo K, Omidi Y, Omidian H. Thermoresponsive mucoadhesive hybrid gels in advanced drug delivery systems. Int J Pharm 2023; 636:122799. [PMID: 36914019 DOI: 10.1016/j.ijpharm.2023.122799] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 02/22/2023] [Accepted: 03/01/2023] [Indexed: 03/13/2023]
Abstract
Thermoresponsive polymers have seen extensive use in the development of stimuli-responsive drug formulations for oral, buccal, nasal, ocular, topical, rectal, parenteral, and vaginal routes of administration. Despite their great potential, their use has been limited by various obstacles, such as undesirable high polymer concentration, wide gelation temperature, low gel strength, poor mucoadhesiveness, and short retention. Mucoadhesive polymers have been suggested to improve the mucoadhesive features of thermoresponsive gels, leading to increased drug bioavailability and efficacy. This article highlights the use of in-situ thermoresponsive mucoadhesive hydrogel blends or hybrids that have been developed and assessed in various routes of administration.
Collapse
Affiliation(s)
- Kwadwo Mfoafo
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Yadollah Omidi
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Hossein Omidian
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, USA.
| |
Collapse
|
5
|
Shao H, Wang Z, Jiang S, Zhang Y, Xi X, Wu Z. Mining Polyethylene Glycol-Based Thermosensitive Hydrogel Materials: Preparation and Flame Retardant Properties. ACS OMEGA 2023; 8:5947-5957. [PMID: 36816633 PMCID: PMC9933237 DOI: 10.1021/acsomega.2c07827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
A new type of efficient and anti-extinguishing materials to inhibit coal spontaneous combustion is required because of the current situation of the short activity cycle of existing anti-extinguishing technology. Now, polyethylene glycol (PEG) was used as a water-absorbing monomer to polymerize various substances to prepare an AB-type mining thermosensitive hydrogel that was obviously thermoresponsive. The thermosensitive hydrogel, which is low-cost and stable, can be stored for a long time, and it is prepared by compounding A and B components. The orthogonal experiments determined the optimal ratio of component A, while the controlling variable experiments determined the optimal ratio of component B. The thermal stability and flame-retardant properties of the AB-type thermosensitive hydrogel were analyzed during the process of natural oxidation of coal, and the temperature responsiveness of thermosensitive hydrogels was investigated at different temperatures. The results showed that the optimal ratio of polyethylene glycol:methyl cellulose:sodium carboxymethyl cellulose:guar gum of component A was 6:6:1.2:1.5; and the ratio of bentonite:kaolin:Mg(OH)2 of component B was 2:1:1. When the ratio of component A to component B was 1:2, the AB-type thermosensitive hydrogel shows the best flame retardant properties. When this ratio of gel was applied to coal samples, the weight loss was just 6%, and the reduction of CO was as high as 72.6%. The gel, which was convenient for transportation in mining pipelines, had strong fluidity at low temperatures and rapid temperature response. As the temperature rose, a phase transition occurred gradually, and after the phase transition, a high-viscosity solid substance was formed, whose viscosity was approximately 11 times that of the room temperature. It plugged the pores effectively, and in the high-temperature region, the occurred phase transition gathered to extinguish the fire. It is a new type of high-efficiency anti-extinguishing material with excellent properties.
Collapse
Affiliation(s)
- Hao Shao
- Key
Laboratory of Gas and Fire Control for Coal Mines, China University of Mining & Technology, Ministry of Education, Xuzhou, Jiangsu221116, People’s Republic
of China
- School
of Safety Engineering, China University
of Mining & Technology, Xuzhou, Jiangsu221116, People’s Republic of China
| | - Zihang Wang
- State
Key Laboratory of Coal Resources and Safe Mining, China University of Mining & Technology, Xuzhou, Jiangsu221116, People’s Republic
of China
- School
of Safety Engineering, China University
of Mining & Technology, Xuzhou, Jiangsu221116, People’s Republic of China
| | - Shuguang Jiang
- Key
Laboratory of Gas and Fire Control for Coal Mines, China University of Mining & Technology, Ministry of Education, Xuzhou, Jiangsu221116, People’s Republic
of China
- State
Key Laboratory of Coal Resources and Safe Mining, China University of Mining & Technology, Xuzhou, Jiangsu221116, People’s Republic
of China
- School
of Safety Engineering, China University
of Mining & Technology, Xuzhou, Jiangsu221116, People’s Republic of China
| | - Yue Zhang
- State
Key Laboratory of Coal Resources and Safe Mining, China University of Mining & Technology, Xuzhou, Jiangsu221116, People’s Republic
of China
- School
of Safety Engineering, China University
of Mining & Technology, Xuzhou, Jiangsu221116, People’s Republic of China
| | - Xian Xi
- Key
Laboratory of Gas and Fire Control for Coal Mines, China University of Mining & Technology, Ministry of Education, Xuzhou, Jiangsu221116, People’s Republic
of China
- State
Key Laboratory of Coal Resources and Safe Mining, China University of Mining & Technology, Xuzhou, Jiangsu221116, People’s Republic
of China
- School
of Safety Engineering, China University
of Mining & Technology, Xuzhou, Jiangsu221116, People’s Republic of China
| | - Zhengyan Wu
- State
Key Laboratory of Coal Resources and Safe Mining, China University of Mining & Technology, Xuzhou, Jiangsu221116, People’s Republic
of China
- School
of Safety Engineering, China University
of Mining & Technology, Xuzhou, Jiangsu221116, People’s Republic of China
| |
Collapse
|
6
|
Wu Y, Hu F, Yang X, Zhang S, Jia C, Liu X, Zhang X. Titanium surface polyethylene glycol hydrogel and gentamicin-loaded cross-linked starch microspheres release system for anti-infective drugs. J Drug Target 2023; 31:217-224. [PMID: 36214127 DOI: 10.1080/1061186x.2022.2134395] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
OBJECTIVE To design and construct a hydrogel drug-controlled release system loaded with gentamicin on a titanium surface, and to evaluate the in vitro drug release behaviour and antibacterial properties and biocompatibility of the controlled release system. METHODS Titanium (Ti) surface was coated with poly dopamine (PDA) substrate, and then polyethylene glycol (PEG) was attached to PDA. The composite drug microsphere controlled release layer formed by gentamicin (GEN) and cross-linked starch (CSt) were subsequently covered with poly lactic⁃co⁃glycolic acid (PLGA) as a barrier to construct a Ti-GEN-Cst-PLGA anti-infective drug controlled release system. RESULTS The hydrogel drug release system was successfully constructed. The results of in vitro anti-staphylococcus aureus (SAU) assay, anti-staphylococcus epidermidis (SEP) assay and anti-Escherichia coli (ECO) assay showed that Ti-GEN-Cst-PLGA could effectively inhibit the growth of three bacteria. Assay in the New Zealand rabbit found that Ti-GEN-Cst-PLGA could promote wound healing at the 3rd week after implantation, and the pathology assay found that the Ti-GEN-Cst-PLGA group had less inflammatory reactions and significant tissue proliferation at the endophyte contact surface. CONCLUSION Ti-GEN-Cst-PLGA can effectively inhibit the inflammatory response and promote wound healing, or may be a potential treatment for orthopaedic endophytes.
Collapse
Affiliation(s)
- Yunfeng Wu
- Medical School of Chinese PLA, Beijing, China.,Department of Orthopedics, The Eighth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Fanqi Hu
- Department of Orthopedics, The Eighth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Xiaoqing Yang
- Department of Orthopedics, The Eighth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Shaofu Zhang
- Department of Orthopedics, The Eighth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Chengqi Jia
- Medical School of Chinese PLA, Beijing, China
| | - Xiaole Liu
- Medical School of Chinese PLA, Beijing, China
| | - Xuesong Zhang
- Department of Orthopedics, The Eighth Medical Centre, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
7
|
Wang Y, Yu DG, Liu Y, Liu YN. Progress of Electrospun Nanofibrous Carriers for Modifications to Drug Release Profiles. J Funct Biomater 2022; 13:jfb13040289. [PMID: 36547549 PMCID: PMC9787859 DOI: 10.3390/jfb13040289] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/15/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022] Open
Abstract
Electrospinning is an advanced technology for the preparation of drug-carrying nanofibers that has demonstrated great advantages in the biomedical field. Electrospun nanofiber membranes are widely used in the field of drug administration due to their advantages such as their large specific surface area and similarity to the extracellular matrix. Different electrospinning technologies can be used to prepare nanofibers of different structures, such as those with a monolithic structure, a core-shell structure, a Janus structure, or a porous structure. It is also possible to prepare nanofibers with different controlled-release functions, such as sustained release, delayed release, biphasic release, and targeted release. This paper elaborates on the preparation of drug-loaded nanofibers using various electrospinning technologies and concludes the mechanisms behind the controlled release of drugs.
Collapse
Affiliation(s)
- Ying Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Deng-Guang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
- Shanghai Engineering Technology Research Center for High-Performance Medical Device Materials, Shanghai 200093, China
- Correspondence: (D.-G.Y.); (Y.-N.L.)
| | - Yang Liu
- School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 333 Long Teng Road, Shanghai 201620, China
| | - Ya-Nan Liu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
- Correspondence: (D.-G.Y.); (Y.-N.L.)
| |
Collapse
|
8
|
Ruan L, Su M, Qin X, Ruan Q, Lang W, Wu M, Chen Y, Lv Q. Progress in the application of sustained-release drug microspheres in tissue engineering. Mater Today Bio 2022; 16:100394. [PMID: 36042853 PMCID: PMC9420381 DOI: 10.1016/j.mtbio.2022.100394] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/05/2022] [Accepted: 08/06/2022] [Indexed: 01/22/2023] Open
Abstract
Sustained-release drug-loaded microspheres provide a long-acting sustained release, with targeted and other effects. There are many types of sustained-release drug microspheres and various preparation methods, and they are easy to operate. For these reasons, they have attracted widespread interest and are widely used in tissue engineering and other fields. In this paper, we provide a systematic review of the application of sustained-release drug microspheres in tissue engineering. First, we introduce this new type of drug delivery system (sustained-release drug carriers), describe the types of sustained-release drug microspheres, and summarize the characteristics of different microspheres. Second, we summarize the preparation methods of sustained-release drug microspheres and summarize the materials required for preparing microspheres. Third, various applications of sustained-release drug microspheres in tissue engineering are summarized. Finally, we summarize the shortcomings and discuss future prospects in the development of sustained-release drug microspheres. The purpose of this paper was to provide a further systematic understanding of the application of sustained-release drug microspheres in tissue engineering for the personnel engaged in related fields and to provide inspiration and new ideas for studies in related fields.
Collapse
Affiliation(s)
- Lian Ruan
- College of Biology & Pharmacy, Yulin Normal University, Yulin, 537000, China
| | - Mengrong Su
- College of Biology & Pharmacy, Yulin Normal University, Yulin, 537000, China
| | - Xinyun Qin
- College of Biology & Pharmacy, Yulin Normal University, Yulin, 537000, China
| | - Qingting Ruan
- College of Biology & Pharmacy, Yulin Normal University, Yulin, 537000, China
| | - Wen Lang
- College of Biology & Pharmacy, Yulin Normal University, Yulin, 537000, China
| | - Minhui Wu
- College of Biology & Pharmacy, Yulin Normal University, Yulin, 537000, China
| | - Yujie Chen
- College of Biology & Pharmacy, Yulin Normal University, Yulin, 537000, China
| | - Qizhuang Lv
- College of Biology & Pharmacy, Yulin Normal University, Yulin, 537000, China
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Yulin, 537000, China
| |
Collapse
|
9
|
Zhang M, Feng T, Wu H, Ma W, Wang Z, Wang C, Wang Y, Wang S, Lin HL. An injectable thermosensitive hydrogel with self-assembled peptide coupled with antimicrobial peptide for enhanced wound healing. J Mater Chem B 2022; 10:6143-6157. [DOI: 10.1039/d2tb00644h] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Wound dressing based on thermosensitive hydrogel shows advantages over performed traditional dressings such as rapid reversible sol-gel-sol transition property and the capacity of filling the irregular wound area. Herein, RA-Amps...
Collapse
|