1
|
Fujiwara E, Rosa LO, Oku H, Cordeiro CMB. Agar-based optical sensors for electric current measurements. Sci Rep 2023; 13:13517. [PMID: 37598288 PMCID: PMC10439927 DOI: 10.1038/s41598-023-40749-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/16/2023] [Indexed: 08/21/2023] Open
Abstract
Biodegradable optical waveguides are breakthrough technologies to light delivery and sensing in biomedical and environmental applications. Agar emerges as an edible, soft, low-cost, and renewable alternative to traditional biopolymers, presenting remarkable optical and mechanical characteristics. Previous works introduced agar-made optical fibers for chemical measurements based on their inherent response to humidity and surrounding concentration. Therefore, we propose, for the first time, an all-optical, biodegradable electric current sensor. As flowing charges heat the agar matrix and modulate its refractive index, we connect the optical device to a DC voltage source using pin headers and excite the agar sample with coherent light to project spatiotemporally deviating speckle fields. Experiments proceeded with spheres and no-core fibers comprising 2 wt% agar/water. Once the increasing current stimulates the speckles' motion, we acquire such images with a camera and evaluate their correlation coefficients, yielding exponential decay-like functions whose time constants provide the input amperage. Furthermore, the light granules follow the polarization of the applied voltage drop, providing visual information about the current direction. The results indicate a maximum resolution of [Formula: see text]0.4 [Formula: see text]A for electrical stimuli [Formula: see text] 100 [Formula: see text]A, which fulfills the requirements for bioelectrical signal assessment.
Collapse
Affiliation(s)
- Eric Fujiwara
- School of Mechanical Engineering, University of Campinas, Campinas, 13083-860, Brazil.
| | - Lidia O Rosa
- School of Mechanical Engineering, University of Campinas, Campinas, 13083-860, Brazil
| | - Hiromasa Oku
- Faculty of Informatics, Gunma University, Kiryu, 376-8518, Japan
| | | |
Collapse
|
2
|
Sui K, Meneghetti M, Berg RW, Markos C. Optoelectronic and mechanical properties of microstructured polymer optical fiber neural probes. OPTICS EXPRESS 2023; 31:21563-21575. [PMID: 37381252 DOI: 10.1364/oe.493602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/05/2023] [Indexed: 06/30/2023]
Abstract
Multifunctional optical fiber-based neural interfaces have attracted significant attention for neural stimulation, recording, and photopharmacology towards understanding the central nervous system. In this work, we demonstrate the fabrication, optoelectrical characterization, and mechanical analysis of four types of microstructured polymer optical fiber neural probes using different soft thermoplastic polymers. The developed devices have integrated metallic elements for electrophysiology and microfluidic channels for localized drug delivery, and can be used for optogenetics in the visible spectrum at wavelengths spanning from 450 nm up to 800 nm. Their impedance, measured by electrochemical impedance spectroscopy, was found to be as low as 21 kΩ and 4.7 kΩ at 1kHz when indium and tungsten wires are used as the integrated electrodes, respectively. Uniform on-demand drug delivery can be achieved by the microfluidic channels with a measured delivery rate from 10 up to 1000 nL/min. In addition, we identified the buckling failure threshold (defined as the conditions for successful implantation) as well as the bending stiffness of the fabricated fibers. Using finite element analysis, we calculated the main critical mechanical properties of the developed probes to avoid buckling during implantation and maintain high flexibility of the probe within the tissue. Our results aim to demonstrate the impact of design, fabrication, and characteristics of the materials on the development of polymer fibers as next-generation implants and neural interfaces.
Collapse
|
3
|
Wicaksono G, Toni F, Wei Feng Tok L, Jun Ting Thng J, Šolić I, Singh M, Djordjevic I, Baino F, Steele TWJ. Fixation of Transparent Bone Pins with Photocuring Biocomposites. ACS Biomater Sci Eng 2021; 7:4463-4473. [PMID: 34387486 DOI: 10.1021/acsbiomaterials.1c00473] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Bone fractures are in need of rapid fixation methods, but the current strategies are limited to metal pins and screws, which necessitate secondary surgeries upon removal. New techniques are sought to avoid surgical revisions, while maintaining or improving the fixation speed. Herein, a method of bone fixation is proposed with transparent biopolymers anchored in place via light-activated biocomposites based on expanding CaproGlu bioadhesives. The transparent biopolymers serve as a UV light guide for the activation of CaproGlu biocomposites, which results in evolution of molecular nitrogen (from diazirine photolysis), simultaneously expanding the covalently cross-linked matrix. Osseointegration additives of hydroxyapatite or Bioglass 45S5 yield a biocomposite matrix with increased stiffness and pullout strength. The structure-property relationships of UV joules dose, pin diameter, and biocomposite additives are assessed with respect to the apparent viscosity, shear modulus, spatiotemporal pin curing, and lap-shear adhesion. Finally, a model system is proposed based on ex vivo investigation with bone tissue for the exploration and optimization of UV-active transparent biopolymer fixation.
Collapse
Affiliation(s)
- Gautama Wicaksono
- School of Materials Science and Engineering (MSE), Nanyang Technological University (NTU), 639798 Singapore
| | - Felicia Toni
- School of Materials Science and Engineering (MSE), Nanyang Technological University (NTU), 639798 Singapore
| | - Leonard Wei Feng Tok
- School of Materials Science and Engineering (MSE), Nanyang Technological University (NTU), 639798 Singapore
| | - Jeanette Jun Ting Thng
- School of Materials Science and Engineering (MSE), Nanyang Technological University (NTU), 639798 Singapore
| | - Ivan Šolić
- School of Materials Science and Engineering (MSE), Nanyang Technological University (NTU), 639798 Singapore
| | - Manisha Singh
- School of Materials Science and Engineering (MSE), Nanyang Technological University (NTU), 639798 Singapore
| | - Ivan Djordjevic
- School of Materials Science and Engineering (MSE), Nanyang Technological University (NTU), 639798 Singapore
| | - Francesco Baino
- Institute of Materials Physics and Engineering, Department of Applied Science and Technology, Politecnico di Torino, 10129 Torino, Italy
| | - Terry W J Steele
- School of Materials Science and Engineering (MSE), Nanyang Technological University (NTU), 639798 Singapore
| |
Collapse
|
4
|
Mtibe A, Motloung MP, Bandyopadhyay J, Ray SS. Synthetic Biopolymers and Their Composites: Advantages and Limitations-An Overview. Macromol Rapid Commun 2021; 42:e2100130. [PMID: 34216411 DOI: 10.1002/marc.202100130] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 06/20/2021] [Indexed: 12/17/2022]
Abstract
Recently, polymer science and engineering research has shifted toward the development of environmentally benign polymers to reduce the impact of plastic leakage on the ecosystems. Stringent regulations and concerns regarding conventional polymers are the main driving forces for the development of renewable, biodegradable, sustainable, and environmentally benign materials. Although biopolymers can alleviate plastic-related pollution, several factors dictate the utilization of biopolymers. Herein, an overview of the potential and limitations of synthetic biopolymers and their composites in the context of environmentally benign materials for a sustainable future are presented. The synthetic biopolymer market, technical advancements for different applications, lifecycle analysis, and biodegradability are covered. The current trends, challenges, and opportunities for bioplastic recycling are also discussed. In summary, this review is expected to provide guidelines for future development related to synthetic biopolymer-based sustainable polymeric materials suitable for various applications.
Collapse
Affiliation(s)
- Asanda Mtibe
- Centre for Nanostructures and Advanced Materials, DSI-CSIR Nanotechnology Innovation Centre, Council for Scientific and Industrial Research, Pretoria, 0001, South Africa
| | - Mpho Phillip Motloung
- Centre for Nanostructures and Advanced Materials, DSI-CSIR Nanotechnology Innovation Centre, Council for Scientific and Industrial Research, Pretoria, 0001, South Africa.,Department of Chemical Sciences, University of Johannesburg, Doornfontein, 2028, Johannesburg, South Africa
| | - Jayita Bandyopadhyay
- Centre for Nanostructures and Advanced Materials, DSI-CSIR Nanotechnology Innovation Centre, Council for Scientific and Industrial Research, Pretoria, 0001, South Africa
| | - Suprakas Sinha Ray
- Centre for Nanostructures and Advanced Materials, DSI-CSIR Nanotechnology Innovation Centre, Council for Scientific and Industrial Research, Pretoria, 0001, South Africa
| |
Collapse
|
5
|
Gierej A, Geernaert T, Van Vlierberghe S, Dubruel P, Thienpont H, Berghmans F. Challenges in the Fabrication of Biodegradable and Implantable Optical Fibers for Biomedical Applications. MATERIALS 2021; 14:ma14081972. [PMID: 33920842 PMCID: PMC8071099 DOI: 10.3390/ma14081972] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/03/2021] [Accepted: 04/13/2021] [Indexed: 02/07/2023]
Abstract
The limited penetration depth of visible light in biological tissues has encouraged researchers to develop novel implantable light-guiding devices. Optical fibers and waveguides that are made from biocompatible and biodegradable materials offer a straightforward but effective approach to overcome this issue. In the last decade, various optically transparent biomaterials, as well as different fabrication techniques, have been investigated for this purpose, and in view of obtaining fully fledged optical fibers. This article reviews the state-of-the-art in the development of biocompatible and biodegradable optical fibers. Whilst several reviews that focus on the chemical properties of the biomaterials from which these optical waveguides can be made have been published, a systematic review about the actual optical fibers made from these materials and the different fabrication processes is not available yet. This prompted us to investigate the essential properties of these biomaterials, in view of fabricating optical fibers, and in particular to look into the issues related to fabrication techniques, and also to discuss the challenges in the use and operation of these optical fibers. We close our review with a summary and an outline of the applications that may benefit from these novel optical waveguides.
Collapse
Affiliation(s)
- Agnieszka Gierej
- Brussels Photonics (B-PHOT), Department of Applied Physics and Photonics, Vrije Universiteit Brussel and Flanders Make, Pleinlaan 2, B-1050 Brussels, Belgium; (T.G.); (S.V.V.); (H.T.); (F.B.)
- Correspondence:
| | - Thomas Geernaert
- Brussels Photonics (B-PHOT), Department of Applied Physics and Photonics, Vrije Universiteit Brussel and Flanders Make, Pleinlaan 2, B-1050 Brussels, Belgium; (T.G.); (S.V.V.); (H.T.); (F.B.)
| | - Sandra Van Vlierberghe
- Brussels Photonics (B-PHOT), Department of Applied Physics and Photonics, Vrije Universiteit Brussel and Flanders Make, Pleinlaan 2, B-1050 Brussels, Belgium; (T.G.); (S.V.V.); (H.T.); (F.B.)
- Polymer Chemistry and Biomaterials Group (PBM), Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4-bis, B-9000 Ghent, Belgium;
| | - Peter Dubruel
- Polymer Chemistry and Biomaterials Group (PBM), Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4-bis, B-9000 Ghent, Belgium;
| | - Hugo Thienpont
- Brussels Photonics (B-PHOT), Department of Applied Physics and Photonics, Vrije Universiteit Brussel and Flanders Make, Pleinlaan 2, B-1050 Brussels, Belgium; (T.G.); (S.V.V.); (H.T.); (F.B.)
| | - Francis Berghmans
- Brussels Photonics (B-PHOT), Department of Applied Physics and Photonics, Vrije Universiteit Brussel and Flanders Make, Pleinlaan 2, B-1050 Brussels, Belgium; (T.G.); (S.V.V.); (H.T.); (F.B.)
| |
Collapse
|