1
|
Li C, Zhu A, Yang L, Wang X, Guo Z. Advances in magnetoelectric composites for promoting bone regeneration: a review. J Mater Chem B 2024; 12:4361-4374. [PMID: 38639047 DOI: 10.1039/d3tb02617e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Repair of large bone defects is one of the clinical problems that have not yet been fully solved. The dynamic balance of bone tissue is regulated by many biological, chemical and physical environmental factors. Simulating the microenvironment of bone tissue in the physiological state through biomimetic materials is an important development direction of tissue engineering in recent years. With the deepening of research, it has been found that when bone tissue is damaged, its surrounding magnetoelectric microenvironment is subsequently destroyed, and providing a magnetoelectric microenvironment in the biomimetic state will be beneficial to promote bone repair. This review describes the piezoelectric effect of natural bone tissue with magnetoelectric stimulation for bone regeneration, provides a detailed account of the historical development of magnetoelectric composites and the current magnetoelectric composites that are most commonly utilized in the field of tissue engineering. Besides, the hypothesized mechanistic pathways through which magnetoelectric composite materials promote bone regeneration are critically examined, including the enhancement of osteogenesis, promotion of cell adhesion and angiogenesis, modulation of bone immunity, and promotion of nerve regeneration.
Collapse
Affiliation(s)
- Chengyu Li
- Department of Periodontology and Implantology, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, P. R. China.
| | - Andi Zhu
- Department of Implantology and Prosthodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, P. R. China
| | - Liqing Yang
- Department of Periodontology and Implantology, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, P. R. China.
| | - Xinyi Wang
- Department of Periodontology and Implantology, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, P. R. China.
| | - Zehong Guo
- Department of Periodontology and Implantology, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, P. R. China.
| |
Collapse
|
2
|
Jin S, Fu X, Zeng W, Chen A, Luo Z, Li Y, Zhou Z, Li J. Chopped fibers and nano-hydroxyapatite enhanced silk fibroin porous hybrid scaffolds for bone augmentation. J Mater Chem B 2023; 11:1557-1567. [PMID: 36692356 DOI: 10.1039/d2tb02510h] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Chopped fiber (CF)- and nano-hydroxyapatite (n-HA)-enhanced silk fibroin (SF) porous hybrid scaffolds (SHCF) were prepared by freeze-drying for bone augmentation. Compared with pristine SF scaffolds, the incorporation of CF and n-HA can significantly enhance the mechanical properties of the composite scaffold. The results of cell experiments and mouse subcutaneous implantation indicated that the SHCF could alleviate foreign body reactions (FBR) led by macrophages and neutrophils, promote the polarization of RAW264.7 cells to anti-inflammatory M2 macrophages, and inhibit the secretion of pro-inflammatory cytokine TNF-α. A rat femoral defect repair model and bulk-RNA-seq analysis indicated that the CF- and n-HA-enhanced SHCF promoted the proliferation and osteogenic differentiation of bone mesenchymal stem cells (BMSCs) by the upregulation of Capns1 expression and regulated the calcium signaling pathway to mediate osteogenesis-related cell behavior, subsequently promoting bone regeneration.
Collapse
Affiliation(s)
- Shue Jin
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, P. R. China.
| | - Xiaoxue Fu
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, P. R. China.
| | - Weinan Zeng
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, P. R. China.
| | - Anjing Chen
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, P. R. China.
| | - Zhenyu Luo
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, P. R. China.
| | - Yubao Li
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu 610065, P. R. China.
| | - Zongke Zhou
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, P. R. China.
| | - Jidong Li
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu 610065, P. R. China.
| |
Collapse
|
3
|
Helaehil JV, Helaehil LV, Alves LF, Huang B, Santamaria-Jr M, Bartolo P, Caetano GF. Electrical Stimulation Therapy and HA/TCP Composite Scaffolds Modulate the Wnt Pathways in Bone Regeneration of Critical-Sized Defects. BIOENGINEERING (BASEL, SWITZERLAND) 2023; 10:bioengineering10010075. [PMID: 36671647 PMCID: PMC9854456 DOI: 10.3390/bioengineering10010075] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/16/2022] [Accepted: 12/29/2022] [Indexed: 01/11/2023]
Abstract
Critical bone defects are the most difficult challenges in the area of tissue repair. Polycaprolactone (PCL) scaffolds, associated with hydroxyapatite (HA) and tricalcium phosphate (TCP), are reported to have an enhanced bioactivity. Moreover, the use of electrical stimulation (ES) has overcome the lack of bioelectricity at the bone defect site and compensated the endogenous electrical signals. Such treatments could modulate cells and tissue signaling pathways. However, there is no study investigating the effects of ES and bioceramic composite scaffolds on bone tissue formation, particularly in the view of cell signaling pathway. This study aims to investigate the application of HA/TCP composite scaffolds and ES and their effects on the Wingless-related integration site (Wnt) pathway in critical bone repair. Critical bone defects (25 mm2) were performed in rats, which were divided into four groups: PCL, PCL + ES, HA/TCP and HA/TCP + ES. The scaffolds were grafted at the defect site and applied with the ES application twice a week using 10 µA of current for 5 min. Bone samples were collected for histomorphometry, immunohistochemistry and molecular analysis. At the Wnt canonical pathway, HA/TCP and HA/TCP + ES groups showed higher Wnt1 and β-catenin gene expression levels, especially HA/TCP. Moreover, HA/TCP + ES presented higher Runx2, Osterix and Bmp-2 levels. At the Wnt non-canonical pathway, HA/TCP group showed higher voltage-gated calcium channel (Vgcc), calmodulin-dependent protein kinase II, and Wnt5a genes expression, while HA/TCP + ES presented higher protein expression of VGCC and calmodulin (CaM) at the same period. The decrease in sclerostin and osteopontin genes expressions and the lower bone sialoprotein II in the HA/TCP + ES group may be related to the early bone remodeling. This study shows that the use of ES modulated the Wnt pathways and accelerated the osteogenesis with improved tissue maturation.
Collapse
Affiliation(s)
- Júlia Venturini Helaehil
- Graduate Program in Biomedical Sciences, University Center of Hermínio Ometto Foundation, FHO, Araras 13607-339, Brazil
| | - Luiza Venturini Helaehil
- Graduate Program in Biomedical Sciences, University Center of Hermínio Ometto Foundation, FHO, Araras 13607-339, Brazil
| | - Laryssa Fernanda Alves
- Graduate Program in Biomedical Sciences, University Center of Hermínio Ometto Foundation, FHO, Araras 13607-339, Brazil
| | - Boyang Huang
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Milton Santamaria-Jr
- Graduate Program in Biomedical Sciences, University Center of Hermínio Ometto Foundation, FHO, Araras 13607-339, Brazil
- Graduate Program of Orthodontics, University Center of Hermínio Ometto Foundation, FHO, Araras 13607-339, Brazil
| | - Paulo Bartolo
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Singapore
- Correspondence: (P.B.); (G.F.C.)
| | - Guilherme Ferreira Caetano
- Graduate Program in Biomedical Sciences, University Center of Hermínio Ometto Foundation, FHO, Araras 13607-339, Brazil
- Graduate Program of Orthodontics, University Center of Hermínio Ometto Foundation, FHO, Araras 13607-339, Brazil
- Division of Dermatology, Department of Internal Medicine, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo 05508-060, Brazil
- Correspondence: (P.B.); (G.F.C.)
| |
Collapse
|
4
|
Meneghetti DH, Bagne L, de Andrade Pinto SA, de Carvalho Zavaglia CA, Amaral MEC, Esquisatto MAM, Dos Santos GMT, de Andrade TAM, Santamaria M, Caetano GF, de Aro AA, Mendonça FAS. Electrical stimulation therapy and rotary jet-spinning scaffold to treat bone defects. Anat Rec (Hoboken) 2023; 306:79-91. [PMID: 35535414 DOI: 10.1002/ar.24994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 04/28/2022] [Accepted: 05/02/2022] [Indexed: 01/29/2023]
Abstract
The combination of electrical stimulation (ES) and bone tissue engineering (BTE) has been successful in treatments of bone regeneration. This study evaluated the effects of ES combined with PCL + β-TCP 5% scaffolds obtained by rotary jet spinning (RJS) in the regeneration of bone defects in the calvaria of Wistar rats. We used 120 animals with induced bone defects divided into 4 groups (n = 30): (C) without treatment; (S) with PCL+ β-TCP 5% scaffold; (ES) treated with ES (10 μA/5 min); (ES + S) with PCL + β-TCP 5% scaffold. The ES occurred twice a week during the entire experimental period. Cell viability (in vitro: Days 3 and 7) and histomorphometric, histochemical, and immunohistochemical (in vivo; Days 30, 60, and 90) analysis were performed. In vitro, ES + S increased cell viability after Day 7 of incubation. In vivo, it was observed modulation of inflammatory cells in ES therapy, which also promoted blood vessels proliferation, and increase of collagen. Moreover, ES therapy played a role in osteogenesis by decreasing ligand kappa B nuclear factor-TNFSF11 (RANKL), increasing alkaline phosphatase (ALP), and decreasing the tartarate-resistant acid phosphatase. The combination of ES with RJS scaffolds may be a promising strategy for bone defects regeneration, since the therapy controlled inflammation, favored blood vessels proliferation, and osteogenesis, which are important processes in bone remodeling.
Collapse
Affiliation(s)
- Damaris Helena Meneghetti
- Graduate Program in Biomedical Sciences, University Center of Hermínio Ometto Foundation, Araras, Brazil
| | - Leonardo Bagne
- Graduate Program in Biomedical Sciences, University Center of Hermínio Ometto Foundation, Araras, Brazil
| | | | | | | | | | | | | | - Milton Santamaria
- Graduate Program in Biomedical Sciences, University Center of Hermínio Ometto Foundation, Araras, Brazil.,Faculty of Mechanical Engineering, University of Campinas, Campinas, Brazil.,Graduate Program in Orthodontics, University Center of Hermínio Ometto Foundation, Araras, Brazil
| | - Guilherme Ferreira Caetano
- Graduate Program in Biomedical Sciences, University Center of Hermínio Ometto Foundation, Araras, Brazil
| | - Andrea Aparecida de Aro
- Graduate Program in Biomedical Sciences, University Center of Hermínio Ometto Foundation, Araras, Brazil
| | | |
Collapse
|
5
|
Heng BC, Bai Y, Li X, Lim LW, Li W, Ge Z, Zhang X, Deng X. Electroactive Biomaterials for Facilitating Bone Defect Repair under Pathological Conditions. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204502. [PMID: 36453574 PMCID: PMC9839869 DOI: 10.1002/advs.202204502] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 10/24/2022] [Indexed: 06/02/2023]
Abstract
Bone degeneration associated with various diseases is increasing due to rapid aging, sedentary lifestyles, and unhealthy diets. Living bone tissue has bioelectric properties critical to bone remodeling, and bone degeneration under various pathological conditions results in significant changes to these bioelectric properties. There is growing interest in utilizing biomimetic electroactive biomaterials that recapitulate the natural electrophysiological microenvironment of healthy bone tissue to promote bone repair. This review first summarizes the etiology of degenerative bone conditions associated with various diseases such as type II diabetes, osteoporosis, periodontitis, osteoarthritis, rheumatoid arthritis, osteomyelitis, and metastatic osteolysis. Next, the diverse array of natural and synthetic electroactive biomaterials with therapeutic potential are discussed. Putative mechanistic pathways by which electroactive biomaterials can mitigate bone degeneration are critically examined, including the enhancement of osteogenesis and angiogenesis, suppression of inflammation and osteoclastogenesis, as well as their anti-bacterial effects. Finally, the limited research on utilization of electroactive biomaterials in the treatment of bone degeneration associated with the aforementioned diseases are examined. Previous studies have mostly focused on using electroactive biomaterials to treat bone traumatic injuries. It is hoped that this review will encourage more research efforts on the use of electroactive biomaterials for treating degenerative bone conditions.
Collapse
Affiliation(s)
- Boon Chin Heng
- Central LaboratoryPeking University School and Hospital of StomatologyBeijing100081P. R. China
- School of Medical and Life SciencesSunway UniversityDarul EhsanSelangor47500Malaysia
| | - Yunyang Bai
- Department of Geriatric DentistryPeking University School and Hospital of StomatologyBeijing100081P. R. China
| | - Xiaochan Li
- Department of Geriatric DentistryPeking University School and Hospital of StomatologyBeijing100081P. R. China
| | - Lee Wei Lim
- Neuromodulation LaboratorySchool of Biomedical SciencesLi Ka Shing Faculty of MedicineThe University of Hong KongPokfulamHong KongP. R. China
| | - Wang Li
- Department of Biomedical EngineeringPeking UniversityBeijing100871P. R. China
| | - Zigang Ge
- Department of Biomedical EngineeringPeking UniversityBeijing100871P. R. China
| | - Xuehui Zhang
- Department of Dental Materials & Dental Medical Devices Testing CenterPeking University School and Hospital of StomatologyBeijing100081P. R. China
- National Engineering Research Center of Oral Biomaterials and Digital Medical DevicesNMPA Key Laboratory for Dental MaterialsBeijing Laboratory of Biomedical Materials & Beijing Key Laboratory of Digital StomatologyPeking University School and Hospital of StomatologyBeijing100081P. R. China
| | - Xuliang Deng
- Department of Geriatric DentistryPeking University School and Hospital of StomatologyBeijing100081P. R. China
- Department of Dental Materials & Dental Medical Devices Testing CenterPeking University School and Hospital of StomatologyBeijing100081P. R. China
- National Engineering Research Center of Oral Biomaterials and Digital Medical DevicesNMPA Key Laboratory for Dental MaterialsBeijing Laboratory of Biomedical Materials & Beijing Key Laboratory of Digital StomatologyPeking University School and Hospital of StomatologyBeijing100081P. R. China
| |
Collapse
|
6
|
Calsa B, Bortolança TJ, Masiero BC, Esquisatto MAM, de Oliveira CA, Catisti R, Santamaria-Jr M. Maxillary and dental development in the offspring of protein-restricted female rats. Eur J Oral Sci 2022; 130:e12895. [PMID: 36199171 DOI: 10.1111/eos.12895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/31/2022] [Indexed: 12/13/2022]
Abstract
Nutritional restriction during developmental periods impairs organ physiology. Female rats were subjected to protein restriction during pregnancy and lactation to analyze dental and maxillary development. Four exposure groups were considered: normal-protein diet during pregnancy and lactation (NP, 17% casein), low-protein diet during lactation (LP-L, 6% casein), low-protein diet during pregnancy and lactation (LP), and low-protein diet during pregnancy (LP-G). Maxillae from 15-day-old male pups were collected. All protein-restricted groups presented increased dentin thickness and reduced alveolar bone area. When protein restriction was applied during both gestation and lactation (LP), harmful effects were observed in the form of loss of protective OPG (osteoprotegerin) in tooth epithelium-mesenchyme, due to higher RANKL expression, delay in odontoblast maturation, less dental pulp vascularity, reduction in amount of alveolar bone, and less matrix mineralization. In the LP-L group, effects of protein restriction seemed less harmful, and despite less alveolar bone, the enhancement in BMP-7, VEGF, and RANKL seems a compensatory signal to maintain maxillary osteogenesis. In LP-G animals, Dspp expression was higher, suggesting a delay in odontoblast maturation or expression recuperation. In conclusion, maternal protein restriction affects dental and maxillary development. A low-protein diet only in gestation allows for normal development. A low-protein diet during gestation-lactation results in impaired odontogenesis that may increase susceptibility of dental anomalies.
Collapse
Affiliation(s)
- Bruno Calsa
- Graduate Program of Biomedical Sciences, Herminio Ometto University Center, Araras, São Paulo, Brazil
| | | | - Beatriz Calloni Masiero
- Graduate Program of Biomedical Sciences, Herminio Ometto University Center, Araras, São Paulo, Brazil
| | | | - Camila Andrea de Oliveira
- Graduate Program of Biomedical Sciences, Herminio Ometto University Center, Araras, São Paulo, Brazil
| | - Rosana Catisti
- Graduate Program of Biomedical Sciences, Herminio Ometto University Center, Araras, São Paulo, Brazil
| | - Milton Santamaria-Jr
- Graduate Program of Biomedical Sciences, Herminio Ometto University Center, Araras, São Paulo, Brazil.,Graduate Program of Orthodontics, Herminio Ometto University Center, Araras, São Paulo, Brazil
| |
Collapse
|
7
|
Hu Z, Cheng J, Xu S, Cheng X, Zhao J, Kenny Low ZW, Chee PL, Lu Z, Zheng L, Kai D. PVA/pectin composite hydrogels inducing osteogenesis for bone regeneration. Mater Today Bio 2022; 16:100431. [PMID: 36186849 PMCID: PMC9519593 DOI: 10.1016/j.mtbio.2022.100431] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 08/31/2022] [Accepted: 09/13/2022] [Indexed: 11/29/2022]
Abstract
Hydrogels composed from biomolecules have gained great interests as biomaterials for tissue engineering. However, their poor mechanical properties limit their application potential. Here, we synthesized a series of tough composite hydrogels from poly (vinyl alcohol) (PVA) and pectin for bone tissue engineering. With a balance of scaffold stiffness and pore size, PVA-Pec-10 hydrogel enhanced adhesion and proliferation of osteoblasts. The hydrogel significantly promoted osteogenesis in vitro by improving the alkaline phosphates (ALP) activity and calcium biomineralization, as well as upregulating the expressions of osteoblastic genes. The composite hydrogel also accelerated the bone healing process in vivo after transplantation into the femoral defect. Additionally, our study demonstrated that pectin and its Ca2+ crosslinking network play a crucial role of inducing osteogenesis through regulating the Ca2+/CaMKII and BMP-SMAD1/5 signaling. The optimized structure composition and multifunctional properties make PVA-Pec hydrogel highly promising to serve as a candidate for bone tissue regeneration. Recoverable PVA-Pec hydrogel is prepared by the freezing-thawing process. PVA-Pec-10 hydrogel display well attachment and osteogenesis capacity. PVA-Pecl-10 hydrogel enhanced osteogenesis by Ca2+/CaMKII and BMP-SMAD1/5 signaling.
Collapse
Affiliation(s)
- Ziwei Hu
- Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.,Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed By the Province and Ministry, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.,Research Center for Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.,Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Jianwen Cheng
- Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.,Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed By the Province and Ministry, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.,Research Center for Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.,Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.,Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Sheng Xu
- Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.,Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed By the Province and Ministry, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.,Research Center for Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.,Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.,School of Basic Medical Sciences, Guangxi Medical University, Nanning, 530021, China
| | - Xiaojing Cheng
- Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.,Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed By the Province and Ministry, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.,Research Center for Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.,Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.,Life Science Institute, Guangxi Medical University, Nanning, 530021, China
| | - Jinmin Zhao
- Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.,Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed By the Province and Ministry, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.,Research Center for Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.,Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.,Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Zhi Wei Kenny Low
- Institute of Materials Research and Engineering (IMRE), A∗STAR, 2 Fusionopolis Way, #08-03 Innovis, 138634, Singapore
| | - Pei Lin Chee
- Institute of Materials Research and Engineering (IMRE), A∗STAR, 2 Fusionopolis Way, #08-03 Innovis, 138634, Singapore
| | - Zhenhui Lu
- Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.,Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed By the Province and Ministry, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.,Research Center for Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.,Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Li Zheng
- Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.,Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed By the Province and Ministry, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.,Research Center for Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.,Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Dan Kai
- Institute of Materials Research and Engineering (IMRE), A∗STAR, 2 Fusionopolis Way, #08-03 Innovis, 138634, Singapore.,Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), A∗STAR, 2 Fusionopolis Way, Innovis, #08-03, 138634, Singapore
| |
Collapse
|
8
|
Pulsed Electrical Stimulation Affects Osteoblast Adhesion and Calcium Ion Signaling. Cells 2022; 11:cells11172650. [PMID: 36078058 PMCID: PMC9454840 DOI: 10.3390/cells11172650] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/18/2022] [Accepted: 08/23/2022] [Indexed: 11/17/2022] Open
Abstract
An extensive research field in regenerative medicine is electrical stimulation (ES) and its impact on tissue and cells. The mechanism of action of ES, particularly the role of electrical parameters like intensity, frequency, and duration of the electric field, is not yet fully understood. Human MG-63 osteoblasts were electrically stimulated for 10 min with a commercially available multi-channel system (IonOptix). We generated alternating current (AC) electrical fields with a voltage of 1 or 5 V and frequencies of 7.9 or 20 Hz, respectively. To exclude liquid-mediated effects, we characterized the AC-stimulated culture medium. AC stimulation did not change the medium’s pH, temperature, and oxygen content. The H2O2 level was comparable with the unstimulated samples except at 5 V_7.9 Hz, where a significant increase in H2O2 was found within the first 30 min. Pulsed electrical stimulation was beneficial for the process of attachment and initial adhesion of suspended osteoblasts. At the same time, the intracellular Ca2+ level was enhanced and highest for 20 Hz stimulated cells with 1 and 5 V, respectively. In addition, increased Ca2+ mobilization after an additional trigger (ATP) was detected at these parameters. New knowledge was provided on why electrical stimulation contributes to cell activation in bone tissue regeneration.
Collapse
|
9
|
In Vivo Investigation of Polymer-Ceramic PCL/HA and PCL/β-TCP 3D Composite Scaffolds and Electrical Stimulation for Bone Regeneration. Polymers (Basel) 2021; 14:polym14010065. [PMID: 35012090 PMCID: PMC8747620 DOI: 10.3390/polym14010065] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/15/2021] [Accepted: 11/22/2021] [Indexed: 02/06/2023] Open
Abstract
Critical bone defects are a major clinical challenge in reconstructive bone surgery. Polycaprolactone (PCL) mixed with bioceramics, such as hydroxyapatite (HA) and tricalcium phosphate (TCP), create composite scaffolds with improved biological recognition and bioactivity. Electrical stimulation (ES) aims to compensate the compromised endogenous electrical signals and to stimulate cell proliferation and differentiation. We investigated the effects of composite scaffolds (PCL with HA; and PCL with β-TCP) and the use of ES on critical bone defects in Wistar rats using eight experimental groups: untreated, ES, PCL, PCL/ES, HA, HA/ES, TCP, and TCP/ES. The investigation was based on histomorphometry, immunohistochemistry, and gene expression analysis. The vascular area was greater in the HA/ES group on days 30 and 60. Tissue mineralization was greater in the HA, HA/ES, and TCP groups at day 30, and TCP/ES at day 60. Bmp-2 gene expression was higher in the HA, TCP, and TCP/ES groups at day 30, and in the TCP/ES and PCL/ES groups at day 60. Runx-2, Osterix, and Osteopontin gene expression were also higher in the TCP/ES group at day 60. These results suggest that scaffolds printed with PCL and TCP, when paired with electrical therapy application, improve bone regeneration.
Collapse
|
10
|
Yang L, Liu Y, Sun L, Zhao C, Chen G, Zhao Y. Biomass Microcapsules with Stem Cell Encapsulation for Bone Repair. NANO-MICRO LETTERS 2021; 14:4. [PMID: 34859316 PMCID: PMC8639896 DOI: 10.1007/s40820-021-00747-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 10/08/2021] [Indexed: 05/11/2023]
Abstract
Bone defects caused by trauma, tumor, or osteoarthritis remain challenging due to the lack of effective treatments in clinic. Stem cell transplantation has emerged as an alternative approach for bone repair and attracted widespread attention owing to its excellent biological activities and therapy effect. The attempts to develop this therapeutic approach focus on the generation of effective cell delivery vehicles, since the shortcomings of direct injection of stem cells into target tissues. Here, we developed a novel core-shell microcapsule with a stem cell-laden core and a biomass shell by using all-aqueous phase microfluidic electrospray technology. The designed core-shell microcapsules showed a high cell viability during the culture procedure. In addition, the animal experiments exhibited that stem cell-laden core-shell microcapsules have good biocompatibility and therapeutic effect for bone defects. This study indicated that the core-shell biomass microcapsules generated by microfluidic electrospray have promising potential in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Lei Yang
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, People's Republic of China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, Zhejiang, People's Republic of China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, 325001, Zhejiang, People's Republic of China
| | - Yuxiao Liu
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, People's Republic of China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, People's Republic of China
| | - Lingyu Sun
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, People's Republic of China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, People's Republic of China
| | - Cheng Zhao
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, People's Republic of China
| | - Guopu Chen
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, People's Republic of China
| | - Yuanjin Zhao
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, People's Republic of China.
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, People's Republic of China.
| |
Collapse
|