1
|
Alhejailan RS, Garoffolo G, Raveendran VV, Pesce M. Cells and Materials for Cardiac Repair and Regeneration. J Clin Med 2023; 12:jcm12103398. [PMID: 37240504 DOI: 10.3390/jcm12103398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
After more than 20 years following the introduction of regenerative medicine to address the problem of cardiac diseases, still questions arise as to the best cell types and materials to use to obtain effective clinical translation. Now that it is definitively clear that the heart does not have a consistent reservoir of stem cells that could give rise to new myocytes, and that there are cells that could contribute, at most, with their pro-angiogenic or immunomodulatory potential, there is fierce debate on what will emerge as the winning strategy. In this regard, new developments in somatic cells' reprogramming, material science and cell biophysics may be of help, not only for protecting the heart from the deleterious consequences of aging, ischemia and metabolic disorders, but also to boost an endogenous regeneration potential that seems to be lost in the adulthood of the human heart.
Collapse
Affiliation(s)
- Reem Saud Alhejailan
- Cell Biology Department, King's Faisal Specialist Hospital & Research Center, Riyadh 11564, Saudi Arabia
| | - Gloria Garoffolo
- Unità di Ingegneria Tissutale Cardiovascolare, Centro Cardiologico Monzino, IRCCS, 20138 Milan, Italy
| | - Vineesh Vimala Raveendran
- Cell Biology Department, King's Faisal Specialist Hospital & Research Center, Riyadh 11564, Saudi Arabia
| | - Maurizio Pesce
- Unità di Ingegneria Tissutale Cardiovascolare, Centro Cardiologico Monzino, IRCCS, 20138 Milan, Italy
| |
Collapse
|
2
|
Ho WJ, Kobayashi M, Murata K, Hashimoto Y, Izumi K, Kimura T, Kanemitsu H, Yamazaki K, Ikeda T, Minatoya K, Kishida A, Masumoto H. A novel approach for the endothelialization of xenogeneic decellularized vascular tissues by human cells utilizing surface modification and dynamic culture. Sci Rep 2022; 12:22294. [PMID: 36566330 PMCID: PMC9789980 DOI: 10.1038/s41598-022-26792-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/20/2022] [Indexed: 12/25/2022] Open
Abstract
Decellularized xenogeneic vascular grafts can be used in revascularization surgeries. We have developed decellularization methods using high hydrostatic pressure (HHP), which preserves the extracellular structure. Here, we attempted ex vivo endothelialization of HHP-decellularized xenogeneic tissues using human endothelial cells (ECs) to prevent clot formation against human blood. Slices of porcine aortic endothelium were decellularized using HHP and coated with gelatin. Human umbilical vein ECs were directly seeded and cultured under dynamic flow or static conditions for 14 days. Dynamic flow cultures tend to demonstrate higher cell coverage. We then coated the tissues with the E8 fragment of human laminin-411 (hL411), which has high affinity for ECs, and found that Dynamic/hL411showed high area coverage, almost reaching 100% (Dynamic/Gelatin vs Dynamic/hL411; 58.7 ± 11.4 vs 97.5 ± 1.9%, P = 0.0017). Immunostaining revealed sufficient endothelial cell coverage as a single cell layer in Dynamic/hL411. A clot formation assay using human whole blood showed low clot formation in Dynamic/hL411, almost similar to that in the negative control, polytetrafluoroethylene. Surface modification of HHP-decellularized xenogeneic endothelial tissues combined with dynamic culture achieved sufficient ex vivo endothelialization along with prevention of clot formation, indicating their potential for clinical use as vascular grafts in the future.
Collapse
Affiliation(s)
- Wen-Jin Ho
- grid.258799.80000 0004 0372 2033Department of Cardiovascular Surgery, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507 Japan
| | - Mako Kobayashi
- grid.265073.50000 0001 1014 9130Department of Material-Based Medical Engineering, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan ,grid.69566.3a0000 0001 2248 6943Present Address: Department of Materials Processing, Graduate School of Engineering, Tohoku University, Sendai, Japan
| | - Kozue Murata
- grid.258799.80000 0004 0372 2033Department of Cardiovascular Surgery, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507 Japan ,grid.508743.dClinical Translational Research Program, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan ,grid.411217.00000 0004 0531 2775Institute for Advancement of Clinical and Translational Science, Kyoto University Hospital, Kyoto, Japan
| | - Yoshihide Hashimoto
- grid.265073.50000 0001 1014 9130Department of Material-Based Medical Engineering, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan
| | | | - Tsuyoshi Kimura
- grid.265073.50000 0001 1014 9130Department of Material-Based Medical Engineering, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hideo Kanemitsu
- grid.258799.80000 0004 0372 2033Department of Cardiovascular Surgery, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507 Japan ,grid.415392.80000 0004 0378 7849Present Address: Department of Cardiovascular Surgery, Kitano Hospital, Osaka, Japan
| | - Kazuhiro Yamazaki
- grid.258799.80000 0004 0372 2033Department of Cardiovascular Surgery, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507 Japan
| | - Tadashi Ikeda
- grid.258799.80000 0004 0372 2033Department of Cardiovascular Surgery, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507 Japan
| | - Kenji Minatoya
- grid.258799.80000 0004 0372 2033Department of Cardiovascular Surgery, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507 Japan
| | - Akio Kishida
- grid.265073.50000 0001 1014 9130Department of Material-Based Medical Engineering, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hidetoshi Masumoto
- grid.258799.80000 0004 0372 2033Department of Cardiovascular Surgery, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507 Japan ,grid.508743.dClinical Translational Research Program, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| |
Collapse
|
4
|
Talaei-Khozani T, Yaghoubi A. An overview of post transplantation events of decellularized scaffolds. Transpl Immunol 2022; 74:101640. [PMID: 35667545 DOI: 10.1016/j.trim.2022.101640] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/29/2022] [Accepted: 05/31/2022] [Indexed: 12/19/2022]
Abstract
Regenerative medicine and tissue engineering are reasonable techniques for repairing failed tissues and could be a suitable alternative to organ transplantation. One of the most widely used methods for preparing bioscaffolds is the decellularization procedure. Although cell debris and DNA are removed from the decellularized tissues, important compositions of the extracellular matrix including proteins, proteoglycans, and glycoproteins are nearly preserved. Moreover, the obtained scaffolds have a 3-dimensional (3D) structure, appropriate naïve mechanical properties, and good biocompatibility. After transplantation, different types of host cells migrate to the decellularized tissues. Histological and immunohistochemical assessment of the different bioscaffolds after implantation reveals the migration of parenchymal cells, angiogenesis, as well as the invasion of inflammatory and giant foreign cells. In this review, the events after transplantation including angiogenesis, scaffold degradation, and the presence of immune and tissue-specific progenitor cells in the decellularized scaffolds in various hosts, are discussed.
Collapse
Affiliation(s)
- Tahereh Talaei-Khozani
- Histotomorphometry and stereology research center, Shiraz University of Medical Sciences, Shiraz, Iran; Tissue engineering lab, Anatomy Department, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Atefeh Yaghoubi
- Tissue engineering lab, Anatomy Department, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
5
|
Rogozinski N, Yanez A, Bhoi R, Lee MY, Yang H. Current methods for fabricating 3D cardiac engineered constructs. iScience 2022; 25:104330. [PMID: 35602954 PMCID: PMC9118671 DOI: 10.1016/j.isci.2022.104330] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
3D cardiac engineered constructs have yielded not only the next generation of cardiac regenerative medicine but also have allowed for more accurate modeling of both healthy and diseased cardiac tissues. This is critical as current cardiac treatments are rudimentary and often default to eventual heart transplants. This review serves to highlight the various cell types found in cardiac tissues and how they correspond with current advanced fabrication methods for creating cardiac engineered constructs capable of shedding light on various pathologies and providing the therapeutic potential for damaged myocardium. In addition, insight is given toward the future direction of the field with an emphasis on the creation of specialized and personalized constructs that model the region-specific microtopography and function of native cardiac tissues.
Collapse
Affiliation(s)
- Nicholas Rogozinski
- Department of Biomedical Engineering, University of North Texas, 3940 N. Elm Street K240B, Denton, TX 76207-7102, USA
| | - Apuleyo Yanez
- Department of Biomedical Engineering, University of North Texas, 3940 N. Elm Street K240B, Denton, TX 76207-7102, USA
| | - Rahulkumar Bhoi
- Department of Biomedical Engineering, University of North Texas, 3940 N. Elm Street K240B, Denton, TX 76207-7102, USA
| | - Moo-Yeal Lee
- Department of Biomedical Engineering, University of North Texas, 3940 N. Elm Street K240B, Denton, TX 76207-7102, USA
| | - Huaxiao Yang
- Department of Biomedical Engineering, University of North Texas, 3940 N. Elm Street K240B, Denton, TX 76207-7102, USA
| |
Collapse
|