1
|
Musa M, Chukwuyem E, Enaholo E, Esekea I, Iyamu E, D'Esposito F, Tognetto D, Gagliano C, Zeppieri M. Amniotic Membrane Transplantation: Clinical Applications in Enhancing Wound Healing and Tissue Regeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024. [PMID: 39514052 DOI: 10.1007/5584_2024_834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Chronic wounds and non-healing tissue defects pose significant clinical challenges, necessitating innovative therapeutic approaches. A comprehensive literature review of amniotic membrane transplantation for wound healing and tissue repair evaluates the efficacy and safety of amniotic membrane transplantation in enhancing wound healing and tissue repair. Amniotic membranes promote wound closure and reduce inflammation and scarring via abundant growth factors, cytokines, and extracellular matrix components, which foster conducive environments for tissue regeneration. Amniotic membrane transplantation is effective in various medical disciplines, including ophthalmology, dermatology, and orthopedics. Low immunogenicity and anti-microbial properties ensure their safe application. Amniotic membrane transplantation offers a promising therapeutic approach for wound healing and tissue repair, and further research is warranted to explore its regenerative potential fully.
Collapse
Affiliation(s)
- Mutali Musa
- Department of Optometry, University of Benin, Benin City, Nigeria
- Department of Ophthalmology, Centre for Sight Africa, Nkpor, Nigeria
| | - Ekele Chukwuyem
- Department of Ophthalmology, Centre for Sight Africa, Nkpor, Nigeria
| | - Ehimare Enaholo
- Department of Ophthalmology, Centre for Sight Africa, Nkpor, Nigeria
| | - Ifeoma Esekea
- Department of Optometry, University of Benin, Benin City, Nigeria
| | - Eghosasere Iyamu
- Department of Optometry, University of Benin, Benin City, Nigeria
| | - Fabiana D'Esposito
- Imperial College Ophthalmic Research Group (ICORG) Unit, Imperial College, London, UK
- Department of Neurosciences, Reproductive Sciences and Dentistry, University of Naples Federico II, Naples, Italy
| | - Daniele Tognetto
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Caterina Gagliano
- Department of Medicine and Surgery, University of Enna "Kore", Piazza dell'Università, Enna, Italy
- Mediterranean Foundation "G.B. Morgagni", Catania, Italy
| | - Marco Zeppieri
- Department of Ophthalmology, University Hospital of Udine, Udine, Italy.
| |
Collapse
|
2
|
Ramakrishnan R, Chouhan D, Vijayakumar Sreelatha H, Arumugam S, Mandal BB, Krishnan LK. Silk Fibroin-Based Bioengineered Scaffold for Enabling Hemostasis and Skin Regeneration of Critical-Size Full-Thickness Heat-Induced Burn Wounds. ACS Biomater Sci Eng 2022; 8:3856-3870. [PMID: 35969223 DOI: 10.1021/acsbiomaterials.2c00328] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Millions of people around the globe are affected by full-thickness skin injuries. A delay in the healing of such injuries can lead to the formation of chronic wounds, posing several clinical and economic challenges. Current strategies for wound care aim for skin regeneration and not merely skin repair or faster wound closure. The present study aimed to develop a bioactive wound-healing matrix comprising natural biomaterial silk fibroin (SF), clinical-grade human fibrin (FIB), and human hyaluronic acid (HA), resulting in SFFIBHA for regeneration of full-thickness burn wounds. A porous, hemostatic, self-adhesive, moisture-retentive, and biomimetic scaffold that promotes healing was the expected outcome. The study validated a terminal sterilization method, suggesting the stability and translational potential of the novel scaffold. Also, the study demonstrated the regenerative abilities of scaffolds using in vitro cell culture experiments and in vivo full-thickness burn wounds of critical size (4 cm × 4 cm) in a rabbit model. Under in vitro conditions, the scaffold enhanced primary dermal fibroblast adhesion and cell proliferation with regulated extracellular matrix (ECM) synthesis. In vivo, the scaffolds promoted healing with mature epithelium coverage involving intact basal cells, superficial keratinocytes, multilayers of keratohyalin, dermal regeneration with angiogenesis, and deposition of remodeled ECM in 28 days. The relative gene expression of the IL6 marker indicated transitions from inflammation to proliferation stage. In addition, we observed skin appendages and rete peg development in the SFFIBHA-treated wound tissues. Although wound closure was observed, neither negative (untreated/sham) nor positive (commercially available product; NeuSkin) control wounds developed skin appendages/rete pegs or native skin architecture. After 56 days, healing with organized ECM production enabled the recovery of mechanical properties of skin with higher tissue maturity in SFFIBHA-treated wounds. Thus, in a single application, the SFFIBHA scaffold proved to be an efficient biomimetic matrix that can guide burn wound regeneration. The developed matrix is a suture-less, hemostatic, off-the-shelf product for potential wound regenerative applications.
Collapse
Affiliation(s)
- Rashmi Ramakrishnan
- Department of Applied Biology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (SCTIMST), Poojappura, Thiruvananthapuram 695012, Kerala, India
| | - Dimple Chouhan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati 781039, Assam, India
| | - Harikrishnan Vijayakumar Sreelatha
- Department of Applied Biology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (SCTIMST), Poojappura, Thiruvananthapuram 695012, Kerala, India
| | - Sabareeswaran Arumugam
- Department of Applied Biology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (SCTIMST), Poojappura, Thiruvananthapuram 695012, Kerala, India
| | - Biman B Mandal
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati 781039, Assam, India.,Centre for Nanotechnology, Indian Institute of Technology Guwahati (IITG), Guwahati 781039, Assam, India.,School of Health Sciences & Technology, Indian Institute of Technology Guwahati (IITG), Guwahati 781039, Assam, India
| | - Lissy K Krishnan
- Department of Applied Biology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (SCTIMST), Poojappura, Thiruvananthapuram 695012, Kerala, India.,Department of Research & Innovation, DM Wayanad Institute of Medical Sciences (DM WIMS), Meppadi, Wayanad 673577, Kerala, India
| |
Collapse
|
3
|
Ramakrishnan R, Venkiteswaran K, Sreelatha HV, Lekshman A, Arumugham S, KalliyanaKrishnan L. Assembly of skin substitute by cross-linking natural biomaterials on synthetic biodegradable porous mat for critical-size full-thickness burn wound regeneration. Biomed Mater 2022; 17. [PMID: 35168228 DOI: 10.1088/1748-605x/ac5573] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 02/15/2022] [Indexed: 12/21/2022]
Abstract
Human skin architecture comprises several interpenetrating macromolecules seen as organized extracellular matrix (ECM). For regeneration of critical-size acute and chronic wounds, substituting the damaged tissue with artificially assembled biomolecules offer an interactivemilieu. This study reports development and preclinical evaluation of a biodegradable and immuno-compatible scaffold for regeneration of critical-size (4 × 4 cm2) full-thickness rabbit burn wounds. The designed wound care product comprises synthetic terpolymer poly(L-Lactide-co-Glycolide-co-Caprolactone) (PLGC), human clinical-grade fibrin (FIB), and hyaluronic acid (HA), termed as PLGCFIBHA. Here, clotting of fibrinogen concentrate (FC) with excess thrombin in the scaffold create an interpenetrating FIB network harnessed with adhesive molecules like fibronectin and laminin present in FC with exogenous HA to produce ECM-likemilieuon porous PLGC. Penetrating into porous PLGCFIBHA, long term study showed a regulated fibroblast growth resulting in non-fibrotic dermal-like tissuein vitro. The freeze-dried PLGCFIBHA with residual thrombin facilitated suture-less, hemostatic matrix adhesion to the wound bedin vivo. By 28 d, mature and scar-less epidermis-dermis formation with skin appendages was evident in the PLGCFIBHA-treated wound area. Both negative (untreated/sham) and positive (commercial matrix-treated) control wounds showed incomplete regeneration. The PLGCFIBHA-treated wounds were comparable to native skin by 56 d. These regenerative outcomes upon single application of PLGCFIBHA confirms its potential translational value for wound care.
Collapse
Affiliation(s)
- Rashmi Ramakrishnan
- Division of Thrombosis Research, Department of Applied Biology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (SCTIMST), Poojappura, Thiruvananthapuram, Kerala 695012, India
| | - KalliyanaKrishnan Venkiteswaran
- Division of Dental Products, Department of Biomaterials Science and Technology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (SCTIMST), Poojappura, Thiruvananthapuram, Kerala 695012, India
| | - Harikrishnan Vijayakumar Sreelatha
- Division of Laboratory Animal Science, Department of Applied Biology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (SCTIMST), Poojappura, Thiruvananthapuram, Kerala 695012, India
| | - Aishwarya Lekshman
- Division of Laboratory Animal Science, Department of Applied Biology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (SCTIMST), Poojappura, Thiruvananthapuram, Kerala 695012, India
| | - Sabareeswaran Arumugham
- Division of Experimental Pathology, Department of Applied Biology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (SCTIMST), Poojappura, Thiruvananthapuram, Kerala 695012, India
| | - Lissy KalliyanaKrishnan
- Division of Thrombosis Research, Department of Applied Biology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (SCTIMST), Poojappura, Thiruvananthapuram, Kerala 695012, India
| |
Collapse
|
4
|
Ramakrishnan R, Kasoju N, Raju R, Geevarghese R, Gauthaman A, Bhatt A. Exploring the Potential of Alginate-Gelatin-Diethylaminoethyl Cellulose-Fibrinogen based Bioink for 3D Bioprinting of Skin Tissue Constructs. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2022. [DOI: 10.1016/j.carpta.2022.100184] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|