1
|
Hu Y, Wang X, Niu Y, He K, Tang M. Application of quantum dots in brain diseases and their neurotoxic mechanism. NANOSCALE ADVANCES 2024; 6:3733-3746. [PMID: 39050959 PMCID: PMC11265591 DOI: 10.1039/d4na00028e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 06/01/2024] [Indexed: 07/27/2024]
Abstract
The early-stage diagnosis and therapy of brain diseases pose a persistent challenge in the field of biomedicine. Quantum dots (QDs), nano-luminescent materials known for their small size and fluorescence imaging capabilities, present promising capabilities for diagnosing, monitoring, and treating brain diseases. Although some investigations about QDs have been conducted in clinical trials, the concerns about the toxicity of QDs have continued. In addition, the lack of effective toxicity evaluation methods and systems and the difference between in vivo and in vitro toxicity evaluation hinder QDs application. The primary objective of this paper is to introduce the neurotoxic effects and mechanisms attributable to QDs. First, we elucidate the utilization of QDs in brain disorders. Second, we sketch out three pathways through which QDs traverse into brain tissue. Ultimately, expound upon the adverse consequences of QDs on the brain and the mechanism of neurotoxicity in depth. Finally, we provide a comprehensive summary and outlook on the potential development of quantum dots in neurotoxicity and the difficulties to be overcome.
Collapse
Affiliation(s)
- Yuanyuan Hu
- Key Laboratory of Environmental Medicine & Engineering, Ministry of Education, School of Public Health, Southeast University Nanjing Jiangsu 210009 China
| | - Xiaoli Wang
- Key Laboratory of Environmental Medicine & Engineering, Ministry of Education, School of Public Health, Southeast University Nanjing Jiangsu 210009 China
| | - Yiru Niu
- Key Laboratory of Environmental Medicine & Engineering, Ministry of Education, School of Public Health, Southeast University Nanjing Jiangsu 210009 China
| | - Keyu He
- Blood Transfusion Department, Clinical Laboratory, Zhongda Hospital, Southeast University Nanjing Jiangsu 210009 China
| | - Meng Tang
- Key Laboratory of Environmental Medicine & Engineering, Ministry of Education, School of Public Health, Southeast University Nanjing Jiangsu 210009 China
| |
Collapse
|
2
|
Fang Q, Tang M. Oxidative stress-induced neurotoxicity of quantum dots and influencing factors. Nanomedicine (Lond) 2024; 19:1013-1028. [PMID: 38606672 PMCID: PMC11225328 DOI: 10.2217/nnm-2023-0326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/26/2024] [Indexed: 04/13/2024] Open
Abstract
Quantum dots (QDs) have significant potential for treating and diagnosing CNS diseases. Meanwhile, the neurotoxicity of QDs has garnered attention. In this review, we focus on elucidating the mechanisms and consequences of CNS oxidative stress induced by QDs. First, we discussed the pathway of QDs transit into the brain. We then elucidate the relationship between QDs and oxidative stress from in vivo and in vitro studies. Furthermore, the main reasons and adverse outcomes of QDs leading to oxidative stress are discussed. In addition, the primary factors that may affect the neurotoxicity of QDs are analyzed. Finally, we propose potential strategies for mitigating QDs neurotoxicity and outline future perspectives for their development.
Collapse
Affiliation(s)
- Qing Fang
- Key Laboratory of Environmental Medicine & Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, People's Republic of China
| | - Meng Tang
- Key Laboratory of Environmental Medicine & Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, People's Republic of China
| |
Collapse
|
3
|
Benatti Justino A, Prado Bittar V, Luiza Borges A, Sol Peña Carrillo M, Sommerfeld S, Aparecida Cunha Araújo I, Maria da Silva N, Beatriz Fonseca B, Christine Almeida A, Salmen Espindola F. Curcumin-functionalized gold nanoparticles attenuate AAPH-induced acute cardiotoxicity via reduction of lipid peroxidation and modulation of antioxidant parameters in a chicken embryo model. Int J Pharm 2023; 646:123486. [PMID: 37802259 DOI: 10.1016/j.ijpharm.2023.123486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/16/2023] [Accepted: 10/03/2023] [Indexed: 10/08/2023]
Abstract
Gold nanoparticles (AuNPs) have gained considerable attention due to their biocompatibility, customizable optical properties and ease of synthesis. In this study, an environmentally friendly method was used for synthesize curcumin-functionalized AuNPs (AuNP-C). AuNP-C exhibited a spherical shape, uniformity, and an average diameter of 6 nm. The in vitro antioxidant activity was analyzed, and cytotoxicity properties of AuNP-C were assessed in fibroblast and macrophage cells. Additionally, the effects of AuNP-C on oxidative stress in chicken embryo liver and hearts were investigated. AuNP-C demonstrated potent free radical scavenging properties without exhibiting cytotoxicity and hepatotoxicity effects. Administration of 300 µg/mL of AuNP-C in chicken embryos, subjected to oxidative damage induced by 2,2'-azobis(2-amidinopropane) dihydrochloride, significantly reduced lipid peroxidation and reactive oxygen species levels in the cardiac tissue. Moreover, the activities of cardiac superoxide dismutase, catalase, and glutathione reductase were restored, accompanied by an increase in overall antioxidant capacity. Furthermore, at higher concentrations, AuNP-C normalized the reduced glutathione content. AuNP-C preserved the normal structure of blood vessels; however, it resulted in an increase in protein carbonylation. This study provides initial evidence for the modulation of antioxidant defense mechanisms by green-synthesized AuNPs and underscores the importance of investigating the in vivo safety of phytoantioxidant-functionalized nanoparticles.
Collapse
Affiliation(s)
- Allisson Benatti Justino
- Biochemistry and Molecular Biology Laboratory, Institute of Biotechnology, Federal University of Uberlandia, Uberlandia, Brazil; Laboratory of New Nanostructured and Functional Materials, Physics Institute, Federal University of Alagoas, Maceio, Brazil; Postgraduate Program of the Northeast Biotechnology Network (RENORBIO), Federal University of Alagoas, Maceio, Alagoas, Brazil
| | - Vinicius Prado Bittar
- Biochemistry and Molecular Biology Laboratory, Institute of Biotechnology, Federal University of Uberlandia, Uberlandia, Brazil
| | - Ana Luiza Borges
- Biochemistry and Molecular Biology Laboratory, Institute of Biotechnology, Federal University of Uberlandia, Uberlandia, Brazil
| | - María Sol Peña Carrillo
- Biochemistry and Molecular Biology Laboratory, Institute of Biotechnology, Federal University of Uberlandia, Uberlandia, Brazil
| | - Simone Sommerfeld
- School of Veterinary Medicine, Federal University of Uberlandia, Uberlandia, Brazil
| | | | - Neide Maria da Silva
- Institute of Biomedical Sciences, Federal University of Uberlandia, Uberlandia, Brazil
| | | | - Anielle Christine Almeida
- Laboratory of New Nanostructured and Functional Materials, Physics Institute, Federal University of Alagoas, Maceio, Brazil; Postgraduate Program of the Northeast Biotechnology Network (RENORBIO), Federal University of Alagoas, Maceio, Alagoas, Brazil
| | - Foued Salmen Espindola
- Biochemistry and Molecular Biology Laboratory, Institute of Biotechnology, Federal University of Uberlandia, Uberlandia, Brazil.
| |
Collapse
|
4
|
Silva JF, Maria de Oliveira J, Silva WF, Costa Soares AC, Rocha U, Oliveira Dantas N, Alves da Silva Filho E, Duzzioni M, Helmut Rulf Cofré A, Wagner de Castro O, Anhezini L, Christine Almeida Silva A, Jacinto C. Supersensitive nanothermometer based on CdSe/CdSxSe1-x magic-sized quantum dots with in vivo low toxicity. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.118153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
5
|
Urbano T, Vinceti M, Mandrioli J, Chiari A, Filippini T, Bedin R, Tondelli M, Simonini C, Zamboni G, Shimizu M, Saito Y. Selenoprotein P Concentrations in the Cerebrospinal Fluid and Serum of Individuals Affected by Amyotrophic Lateral Sclerosis, Mild Cognitive Impairment and Alzheimer’s Dementia. Int J Mol Sci 2022; 23:ijms23179865. [PMID: 36077261 PMCID: PMC9456314 DOI: 10.3390/ijms23179865] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/26/2022] [Accepted: 08/27/2022] [Indexed: 02/06/2023] Open
Abstract
Selenoprotein P, a selenium-transporter protein, has been hypothesized to play a role in the etiology of neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS) and Alzheimer’s dementia (AD). However, data in humans are scarce and largely confined to autoptic samples. In this case–control study, we determined selenoprotein P concentrations in both the cerebrospinal fluid (CSF) and the serum of 50 individuals diagnosed with ALS, 30 with AD, 54 with mild cognitive impairment (MCI) and of 30 controls, using sandwich enzyme-linked immunosorbent assay (ELISA) methods. We found a positive and generally linear association between CSF and serum selenoprotein P concentrations in all groups. CSF selenoprotein P and biomarkers of neurodegeneration were positively associated in AD, while for MCI, we found an inverted-U-shaped relation. CSF selenoprotein P concentrations were higher in AD and MCI than in ALS and controls, while in serum, the highest concentrations were found in MCI and ALS. Logistic and cubic spline regression analyses showed an inverse association between CSF selenoprotein P levels and ALS risk, and a positive association for AD risk, while an inverted-U-shaped relation with MCI risk emerged. Conversely, serum selenoprotein P concentrations were positively associated with risk of all conditions but only in their lower range. Overall, these findings indicate some abnormalities of selenoprotein P concentrations in both the central nervous system and blood associated with ALS and neurocognitive disorders, though in different directions. These alterations may reflect either phenomena of etiologic relevance or disease-induced alterations of nutritional and metabolic status.
Collapse
Affiliation(s)
- Teresa Urbano
- CREAGEN—Environmental, Genetic and Nutritional Epidemiology Research Center, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 287 Via Campi, 41125 Modena, Italy
| | - Marco Vinceti
- CREAGEN—Environmental, Genetic and Nutritional Epidemiology Research Center, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 287 Via Campi, 41125 Modena, Italy
- Center for Neurosciences and Neurotechnology, Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, 287 Via Campi, 41125 Modena, Italy
- Department of Epidemiology, Boston University School of Public Health, 715 Albany Street, Boston, MA 02118, USA
- Correspondence: ; Tel.: +39-059-2055-481
| | - Jessica Mandrioli
- Center for Neurosciences and Neurotechnology, Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, 287 Via Campi, 41125 Modena, Italy
- Neurology Unit, Azienda Ospedaliero Universitaria di Modena, 71 Via del Pozzo, 41121 Modena, Italy
| | - Annalisa Chiari
- Neurology Unit, Azienda Ospedaliero Universitaria di Modena, 71 Via del Pozzo, 41121 Modena, Italy
| | - Tommaso Filippini
- CREAGEN—Environmental, Genetic and Nutritional Epidemiology Research Center, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 287 Via Campi, 41125 Modena, Italy
- Center for Neurosciences and Neurotechnology, Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, 287 Via Campi, 41125 Modena, Italy
- School of Public Health, University of California Berkeley, 1995 University Avenue, Berkeley, CA 94704, USA
| | - Roberta Bedin
- Center for Neurosciences and Neurotechnology, Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, 287 Via Campi, 41125 Modena, Italy
- Neurology Unit, Azienda Ospedaliero Universitaria di Modena, 71 Via del Pozzo, 41121 Modena, Italy
| | - Manuela Tondelli
- Center for Neurosciences and Neurotechnology, Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, 287 Via Campi, 41125 Modena, Italy
- Neurology Unit, Azienda Ospedaliero Universitaria di Modena, 71 Via del Pozzo, 41121 Modena, Italy
| | - Cecilia Simonini
- Center for Neurosciences and Neurotechnology, Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, 287 Via Campi, 41125 Modena, Italy
- Neurology Unit, Azienda Ospedaliero Universitaria di Modena, 71 Via del Pozzo, 41121 Modena, Italy
| | - Giovanna Zamboni
- Center for Neurosciences and Neurotechnology, Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, 287 Via Campi, 41125 Modena, Italy
- Neurology Unit, Azienda Ospedaliero Universitaria di Modena, 71 Via del Pozzo, 41121 Modena, Italy
| | - Misaki Shimizu
- Laboratory of Molecular Biology and Metabolism, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Yoshiro Saito
- Laboratory of Molecular Biology and Metabolism, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| |
Collapse
|