1
|
Yan K, Wu Y, Xie Z, Yan S, Qiao C, Qu Y, Gao S, Shangguan W, Wu G. Endoscopic-Assisted Forehead Augmentation with Polyetheretherketone (PEEK) Patient-Specific Implant (PSI) for Aesthetic Considerations. Aesthetic Plast Surg 2024; 48:1889-1898. [PMID: 38409347 DOI: 10.1007/s00266-024-03899-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/30/2024] [Indexed: 02/28/2024]
Abstract
BACKGROUND Forehead augmentation have become popular aesthetic procedures among Asians in recent years. However, the use of polyetheretherketone (PEEK) patient-specific implant (PSI) in the facial contouring surgery for aesthetic considerations is not well documented in the existing studies. The purpose of this study was to develop a novel method for forehead augmentation and assess the clinical outcomes and complications in patients who underwent forehead augmentation with PEEK PSI assisted by endoscopy. METHODS The PEEK PSIs were fabricated using the virtual surgical planning (VSP) and the computer-aided manufacturing (CAM) for each patient, preoperatively. The implant pockets were dissected in the subperiosteal plane, and PEEK PSIs were placed in their designed position and fixed assisting by endoscopy via small incision within the hairline. All patients were asked to complete the FACE-Q questionnaire before and 6 months after the operation. Pre- and postoperative demographics, photographs, and other clinical data of patients were collected and analyzed. RESULTS 11 patients underwent forehead augmentation were enrolled in this study. All procedures were completed successfully with the help of endoscope. The average patient age was 30.63 ± 2.54 years. The mean thickness and size of PEEK PSI were 4.44 ± 1.77 mm and 38.43 ± 22.66 cm2, respectively. The mean operative time was 83.00 ± 29.44 min, and the mean postoperative follow-up period was 11.00 ± 6.50 months. No implant exposure, extrusion or removal were reported. The FACE-Q scores of patients in satisfaction with the forehead increased from 47.64 ± 7.15 to 78.81 ± 6.35. CONCLUSIONS PEEK PSIs can be prefabricated to achieve accurate remodeling of the frontal contour with good esthetic outcomes. The endoscope provides direct and magnified vision, which allow easy access to the supraorbital rim and lateral edge of the eyebrow arch and confirming the position of the implants without damaging nerves and vessels. Endoscopic-assisted forehead augmentation with PEEK PSI is safe and effective. LEVEL OF EVIDENCE IV This journal requires that authors assign a level of evidence to each article. For a full description of these evidence-based medicine ratings, please refer to the Table of contents or the online Instructions to Authors www.springer.com/00266 .
Collapse
Affiliation(s)
- Kaili Yan
- Department of Plastic Surgery, The Affiliated Friendship Plastic Surgery Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Yarui Wu
- School of Medicine, University of Tasmania, Hobart, TAS, 7000, Australia
| | - Zhiyang Xie
- Department of Plastic Surgery, The Affiliated Friendship Plastic Surgery Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Shunchao Yan
- Department of Plastic Surgery, The Affiliated Friendship Plastic Surgery Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Chongxu Qiao
- Department of Plastic Surgery, The Affiliated Friendship Plastic Surgery Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Yuming Qu
- Department of Plastic Surgery, The Affiliated Friendship Plastic Surgery Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Sheng Gao
- Department of Plastic Surgery, The Affiliated Friendship Plastic Surgery Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Wensong Shangguan
- Department of Plastic Surgery, The Affiliated Friendship Plastic Surgery Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Guoping Wu
- Department of Plastic Surgery, The Affiliated Friendship Plastic Surgery Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China.
| |
Collapse
|
2
|
Smith JA, Petersmann S, Arbeiter F, Schäfer U. Optimization and manufacture of polyetheretherketone patient specific cranial implants by material extrusion - A clinical perspective. J Mech Behav Biomed Mater 2023; 144:105965. [PMID: 37343357 DOI: 10.1016/j.jmbbm.2023.105965] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/01/2023] [Accepted: 06/06/2023] [Indexed: 06/23/2023]
Abstract
Polyetheretherketone (PEEK) is a high performing thermoplastic that has established itself as a 'gold-standard' material for cranial reconstruction. Traditionally, milled PEEK patient specific cranial implants (PSCIs) exhibit uniform levels of smoothness (excusing suture/drainage holes) to the touch (<1 μm) and homogenous coloration throughout. They also demonstrate predictable and repeatable levels of mechanical performance, as they are machined from isotropic material blocks. The combination of such factors inspires confidence from the surgeon and in turn, approval for implantation. However, manufacturing lead-times and affiliated costs to fabricate a PSCI are high. To simplify their production and reduce expenditure, hospitals are exploring the production of in-house PEEK PSCIs by material extrusion-based additive manufacturing. From a geometrical and morphological perspective, such implants have been produced with good-to-satisfactory clinical results. However, lack of clinical adoption persists. To determine the reasoning behind this, it was necessary to assess the benefits and limitations of current printed PEEK PSCIs in order to establish the status quo. Afterwards, a review on individual PEEK printing variables was performed in order to identify a combination of parameters that could enhance the aesthetics and performance of the PSCIs to that of milled implants/cranial bone. The findings from this review could be used as a baseline to help standardize the production of PEEK PSCIs by material extrusion in the hospital.
Collapse
Affiliation(s)
- James A Smith
- Research Unit Experimental Neurotraumatology, Department of Neurosurgery, Medical University of Graz, Auenbruggerplatz 2(9), 8036, Graz, Austria.
| | - Sandra Petersmann
- Materials Science and Testing of Polymers, Montanuniversitaet Leoben, Otto Gloeckel-Straße 2, 8700, Leoben, Austria
| | - Florian Arbeiter
- Materials Science and Testing of Polymers, Montanuniversitaet Leoben, Otto Gloeckel-Straße 2, 8700, Leoben, Austria
| | - Ute Schäfer
- Research Unit Experimental Neurotraumatology, Department of Neurosurgery, Medical University of Graz, Auenbruggerplatz 2(9), 8036, Graz, Austria; BioTechMed-Graz, Graz, Austria
| |
Collapse
|
3
|
Liu B, Lv Y, Li X, Liu Z, Zheng Y, Wen P, Liu N, Huo Y, Zhou F, Tian Y. Influence of different fixation modes on biomechanical conduction of 3D printed prostheses for treating critical diaphyseal defects of lower limbs: A finite element study. Front Surg 2022; 9:959306. [PMID: 36090321 PMCID: PMC9448880 DOI: 10.3389/fsurg.2022.959306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/04/2022] [Indexed: 11/15/2022] Open
Abstract
Background Applying 3D printed prostheses to repair diaphyseal defects of lower limbs has been clinically conducted in orthopedics. However, there is still no unified reference standard for which the prosthesis design and fixation mode are more conducive to appropriate biomechanical conduction. Methods We built five different types of prosthesis designs and fixation modes, from Mode I to Mode V. Finite element analysis (FEA) was used to study and compare the mechanical environments of overall bone-prosthesis structure, and the maximum stress concentration were recorded. Additionally, by comparing the maximum von Mises stress of bone, intramedullary (IM) nail, screw, and prosthesis with their intrinsic yield strength, the risk of fixation failure was further clarified. Results In the modes in which the prosthesis was fixed by an interlocking IM nail (Mode I and Mode IV), the stress mainly concentrated at the distal bone-prosthesis interface and the middle-distal region of nail. When a prosthesis with integrally printed IM nail and lateral wings was implanted (Mode II), the stress mainly concentrated at the bone-prosthesis junctional region. For cases with partially lateral defects, the prosthesis with integrally printed wings mainly played a role in reconstructing the structural integrity of bone, but had a weak role in sharing the stress conduction (Mode V). The maximum von Mises stress of both the proximal and distal tibia appeared in Mode III, which were 18.5 and 47.1 MPa. The maximum peak stress shared by the prosthesis, screws and IM nails appeared in Mode II, III and I, which were 51.8, 87.2, and 101.8 MPa, respectively. These peak stresses were all lower than the yield strength of the materials themselves. Thus, the bending and breakage of both bone and implants were unlikely to happen. Conclusion For the application of 3D printed prostheses to repair diaphyseal defects, different fixation modes will lead to the change of biomechanical environment. Interlocking IM nail fixation is beneficial to uniform stress conduction, and conducive to new bone regeneration in the view of biomechanical point. All five modes we established have reliable biomechanical safety.
Collapse
Affiliation(s)
- Bingchuan Liu
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Peking University Third Hospital, Beijing, China
| | - Yang Lv
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Peking University Third Hospital, Beijing, China
| | - Xingcai Li
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
| | - Zhongjun Liu
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Peking University Third Hospital, Beijing, China
| | - Yufeng Zheng
- School of Materials Science and Engineering, Peking University, Beijing, China
| | - Peng Wen
- Department of Mechanical Engineering, Tsinghua University, Beijing, China
| | - Ning Liu
- R&D Center, AK Medical Co., Ltd., Beijing, China
| | - Yaping Huo
- R&D Center, AK Medical Co., Ltd., Beijing, China
| | - Fang Zhou
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Peking University Third Hospital, Beijing, China
- Correspondence: Fang Zhou Yun Tian
| | - Yun Tian
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Peking University Third Hospital, Beijing, China
- Correspondence: Fang Zhou Yun Tian
| |
Collapse
|
4
|
Naghavi SA, Sun C, Hejazi M, Tamaddon M, Zheng J, Wang L, Zhang C, Varma SN, Li D, Moazen M, Wang L, Liu C. On the mechanical aspect of additive manufactured polyether-ether-ketone scaffold for repair of large bone defects. BIOMATERIALS TRANSLATIONAL 2022; 3:142-151. [PMID: 36105563 PMCID: PMC9465988 DOI: 10.12336/biomatertransl.2022.02.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/02/2022] [Accepted: 06/09/2022] [Indexed: 02/02/2023]
Abstract
Polyether-ether-ketone (PEEK) is widely used in producing prosthesis and have gained great attention for repair of large bone defect in recent years with the development of additive manufacturing. This is due to its excellent biocompatibility, good heat and chemical stability and similar mechanical properties which mimics natural bone. In this study, three replicates of rectilinear scaffolds were designed for compression, tension, three-point bending and torsion test with unit cell size of 0.8 mm, a pore size of 0.4 mm, strut thickness of 0.4 mm and nominal porosity of 50%. Stress-strain graphs were developed from experimental and finite element analysis models. Experimental Young's modulus and yield strength of the scaffolds were measured from the slop of the stress-strain graph to be 395 and 19.50 MPa respectively for compression, 427 and 6.96 MPa respectively for tension, 257 and 25.30 MPa respectively for three-point bending and 231 and 12.83 MPa respectively for torsion test. The finite element model was found to be in good agreement with the experimental results. Ductile fracture of the struct subjected to tensile strain was the main failure mode of the PEEK scaffold, which stems from the low crystallinity of additive manufacturing PEEK. The mechanical properties of porous PEEK are close to those of cancellous bone and thus are expected to be used in additive manufacturing PEEK bone implants in the future, but the lower yield strength poses a design challenge.
Collapse
Affiliation(s)
- Seyed Ataollah Naghavi
- Institute of Orthopaedic & Musculoskeletal Science, University College London, Royal National Orthopaedic Hospital, London, UK
| | - Changning Sun
- State Key Laboratory for Manufacturing Systems Engineering, School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| | - Mahbubeh Hejazi
- Department of Mechanical Engineering, University College London, London, UK
| | - Maryam Tamaddon
- Institute of Orthopaedic & Musculoskeletal Science, University College London, Royal National Orthopaedic Hospital, London, UK
| | - Jibao Zheng
- State Key Laboratory for Manufacturing Systems Engineering, School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| | - Leilei Wang
- State Key Laboratory for Manufacturing Systems Engineering, School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| | - Chenrui Zhang
- State Key Laboratory for Manufacturing Systems Engineering, School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| | - Swastina Nath Varma
- Institute of Orthopaedic & Musculoskeletal Science, University College London, Royal National Orthopaedic Hospital, London, UK
| | - Dichen Li
- State Key Laboratory for Manufacturing Systems Engineering, School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| | - Mehran Moazen
- Department of Mechanical Engineering, University College London, London, UK
| | - Ling Wang
- State Key Laboratory for Manufacturing Systems Engineering, School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi Province, China,Corresponding authors: Ling Wang, ; Chaozong Liu,
| | - Chaozong Liu
- Institute of Orthopaedic & Musculoskeletal Science, University College London, Royal National Orthopaedic Hospital, London, UK,Corresponding authors: Ling Wang, ; Chaozong Liu,
| |
Collapse
|
5
|
Liu B, Li X, Qiu W, Liu Z, Zhou F, Zheng Y, Wen P, Tian Y. Mechanical Distribution and New Bone Regeneration After Implanting 3D Printed Prostheses for Repairing Metaphyseal Bone Defects: A Finite Element Analysis and Prospective Clinical Study. Front Bioeng Biotechnol 2022; 10:921545. [PMID: 35721863 PMCID: PMC9204204 DOI: 10.3389/fbioe.2022.921545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 05/17/2022] [Indexed: 11/13/2022] Open
Abstract
Critical metaphyseal bone defects caused by nonunion and osteomyelitis are intractable to repair in clinical practice owing to the rigorous demanding of structure and performance. Compared with traditional treatment methods, 3D printing of customized porous titanium alloy prostheses offer feasible and safe opportunities in repairing such bone defects. Yet, so far, no standard guidelines for optimal 3D printed prostheses design and fixation mode have been proposed to further promote prosthesis stability as well as ensure the continuous growth of new bone. In this study, we used a finite element analysis (FEA) to explore the biomechanical distribution and observed new bone regeneration in clinical practice after implanting 3D printed prostheses for repairing metaphyseal bone defects. The results reflected that different fixation modes could result in diverse prosthesis mechanical conductions. If an intramedullary (IM) nail was applied, the stress mainly conducted equally along the nail instead of bone and prosthesis structure. While the stress would transfer more to the lateral bone and prosthesis’s body when the printed wing and screws are selected to accomplish fixation. All these fixation modes could guarantee the initial and long-term stability of the implanted prosthesis, but new bone regenerated with varying degrees under special biomechanical environments. The fixation mode of IM nail was more conducive to new bone regeneration and remodeling, which conformed to the Wolff’s law. Nevertheless, when the prosthesis was fixed by screws alone, no dense new callus could be observed. This fixation mode was optional for defects extremely close to the articular surface. In conclusion, our innovative study could provide valuable references for the fixation mode selection of 3D printed prosthesis to repair metaphyseal bone defect.
Collapse
Affiliation(s)
- Bingchuan Liu
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Peking University Third Hospital, Beijing, China
| | - Xingcai Li
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Peking University Third Hospital, Beijing, China
| | - Weipeng Qiu
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
| | - Zhongjun Liu
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Peking University Third Hospital, Beijing, China
| | - Fang Zhou
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Peking University Third Hospital, Beijing, China
| | - Yufeng Zheng
- School of Materials Science and Engineering, Peking University, Beijing, China
| | - Peng Wen
- Department of Mechanical Engineering, Tsinghua University, Beijing, China
- *Correspondence: Peng Wen, ; Yun Tian,
| | - Yun Tian
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Peking University Third Hospital, Beijing, China
- *Correspondence: Peng Wen, ; Yun Tian,
| |
Collapse
|