1
|
Ban S, Lee H, Chen J, Kim HS, Hu Y, Cho SJ, Yeo WH. Recent advances in implantable sensors and electronics using printable materials for advanced healthcare. Biosens Bioelectron 2024; 257:116302. [PMID: 38648705 DOI: 10.1016/j.bios.2024.116302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/20/2024] [Accepted: 04/16/2024] [Indexed: 04/25/2024]
Abstract
This review article focuses on the recent printing technological progress in healthcare, underscoring the significant potential of implantable devices across diverse applications. Printing technologies have widespread use in developing health monitoring devices, diagnostic systems, and surgical devices. Recent years have witnessed remarkable progress in fabricating low-profile implantable devices, driven by advancements in printing technologies and nanomaterials. The importance of implantable biosensors and bioelectronics is highlighted, specifically exploring printing tools using bio-printable inks for practical applications, including a detailed examination of fabrication processes and essential parameters. This review also justifies the need for mechanical and electrical compatibility between bioelectronics and biological tissues. In addition to technological aspects, this article delves into the importance of appropriate packaging methods to enhance implantable devices' performance, compatibility, and longevity, which are made possible by integrating cutting-edge printing technology. Collectively, we aim to shed light on the holistic landscape of implantable biosensors and bioelectronics, showcasing their evolving role in advancing healthcare through innovative printing technologies.
Collapse
Affiliation(s)
- Seunghyeb Ban
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30024, USA; IEN Center for Wearable Intelligent Systems and Healthcare at the Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Haran Lee
- Department of Mechanical Engineering, Chungnam National University, 99 Daehak-Ro, Yuseong-Gu, Daejeon, 34134, Republic of Korea
| | - Jiehao Chen
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30024, USA
| | - Hee-Seok Kim
- School of Engineering and Technology, University of Washington Tacoma, Tacoma, WA, 98195, USA
| | - Yuhang Hu
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30024, USA; School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Seong J Cho
- Department of Mechanical Engineering, Chungnam National University, 99 Daehak-Ro, Yuseong-Gu, Daejeon, 34134, Republic of Korea.
| | - Woon-Hong Yeo
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30024, USA; IEN Center for Wearable Intelligent Systems and Healthcare at the Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA, 30332, USA; Wallace H. Coulter Department of Biomedical Engineering, Georgia Tech and Emory University School of Medicine, Atlanta, GA, 30332, USA; Parker H. Petit Institute for Bioengineering and Biosciences, Institute for Materials, Institute for Robotics and Intelligent Machines, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| |
Collapse
|
2
|
Abbadessa A, Ronca A, Salerno A. Integrating bioprinting, cell therapies and drug delivery towards in vivo regeneration of cartilage, bone and osteochondral tissue. Drug Deliv Transl Res 2024; 14:858-894. [PMID: 37882983 DOI: 10.1007/s13346-023-01437-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/18/2023] [Indexed: 10/27/2023]
Abstract
The biological and biomechanical functions of cartilage, bone and osteochondral tissue are naturally orchestrated by a complex crosstalk between zonally dependent cells and extracellular matrix components. In fact, this crosstalk involves biomechanical signals and the release of biochemical cues that direct cell fate and regulate tissue morphogenesis and remodelling in vivo. Three-dimensional bioprinting introduced a paradigm shift in tissue engineering and regenerative medicine, since it allows to mimic native tissue anisotropy introducing compositional and architectural gradients. Moreover, the growing synergy between bioprinting and drug delivery may enable to replicate cell/extracellular matrix reciprocity and dynamics by the careful control of the spatial and temporal patterning of bioactive cues. Although significant advances have been made in this direction, unmet challenges and open research questions persist. These include, among others, the optimization of scaffold zonality and architectural features; the preservation of the bioactivity of loaded active molecules, as well as their spatio-temporal release; the in vitro scaffold maturation prior to implantation; the pros and cons of each animal model and the graft-defect mismatch; and the in vivo non-invasive monitoring of new tissue formation. This work critically reviews these aspects and reveals the state of the art of using three-dimensional bioprinting, and its synergy with drug delivery technologies, to pattern the distribution of cells and/or active molecules in cartilage, bone and osteochondral engineered tissues. Most notably, this work focuses on approaches, technologies and biomaterials that are currently under in vivo investigations, as these give important insights on scaffold performance at the implantation site and its interaction/integration with surrounding tissues.
Collapse
Affiliation(s)
- Anna Abbadessa
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), IDIS Research Institute, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain.
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, School of Pharmacy, Universidade de Santiago de Compostela, Campus Vida, Santiago de Compostela, Spain.
| | - Alfredo Ronca
- Institute of Polymers, Composites and Biomaterials, National Research Council, 80125, Naples, Italy.
| | - Aurelio Salerno
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, 80125, Naples, Italy.
| |
Collapse
|
3
|
Khiari Z. Recent Developments in Bio-Ink Formulations Using Marine-Derived Biomaterials for Three-Dimensional (3D) Bioprinting. Mar Drugs 2024; 22:134. [PMID: 38535475 PMCID: PMC10971850 DOI: 10.3390/md22030134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/12/2024] [Accepted: 03/13/2024] [Indexed: 05/01/2024] Open
Abstract
3D bioprinting is a disruptive, computer-aided, and additive manufacturing technology that allows the obtention, layer-by-layer, of 3D complex structures. This technology is believed to offer tremendous opportunities in several fields including biomedical, pharmaceutical, and food industries. Several bioprinting processes and bio-ink materials have emerged recently. However, there is still a pressing need to develop low-cost sustainable bio-ink materials with superior qualities (excellent mechanical, viscoelastic and thermal properties, biocompatibility, and biodegradability). Marine-derived biomaterials, including polysaccharides and proteins, represent a viable and renewable source for bio-ink formulations. Therefore, the focus of this review centers around the use of marine-derived biomaterials in the formulations of bio-ink. It starts with a general overview of 3D bioprinting processes followed by a description of the most commonly used marine-derived biomaterials for 3D bioprinting, with a special attention paid to chitosan, glycosaminoglycans, alginate, carrageenan, collagen, and gelatin. The challenges facing the application of marine-derived biomaterials in 3D bioprinting within the biomedical and pharmaceutical fields along with future directions are also discussed.
Collapse
Affiliation(s)
- Zied Khiari
- National Research Council of Canada, Aquatic and Crop Resource Development Research Centre, 1411 Oxford Street, Halifax, NS B3H 3Z1, Canada
| |
Collapse
|
4
|
Nitschke BM, Beltran FO, Hahn MS, Grunlan MA. Trends in bioactivity: inducing and detecting mineralization of regenerative polymeric scaffolds. J Mater Chem B 2024; 12:2720-2736. [PMID: 38410921 PMCID: PMC10935659 DOI: 10.1039/d3tb02674d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 02/14/2024] [Indexed: 02/28/2024]
Abstract
Due to limitations of biological and alloplastic grafts, regenerative engineering has emerged as a promising alternative to treat bone defects. Bioactive polymeric scaffolds are an integral part of such an approach. Bioactivity importantly induces hydroxyapatite mineralization that promotes osteoinductivity and osseointegration with surrounding bone tissue. Strategies to confer bioactivity to polymeric scaffolds utilize bioceramic fillers, coatings and surface treatments, and additives. These approaches can also favorably impact mechanical and degradation properties. A variety of fabrication methods are utilized to prepare scaffolds with requisite morphological features. The bioactivity of scaffolds may be evaluated with a broad set of techniques, including in vitro (acellular and cellular) and in vivo methods. Herein, we highlight contemporary and emerging approaches to prepare and assess scaffold bioactivity, as well as existing challenges.
Collapse
Affiliation(s)
- Brandon M Nitschke
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA.
| | - Felipe O Beltran
- Department of Materials Science & Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Mariah S Hahn
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Melissa A Grunlan
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA.
- Department of Materials Science & Engineering, Texas A&M University, College Station, TX 77843, USA
- Department of Chemistry, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
5
|
Moghimi N, Kamaraj M, Zehtabi F, Amin Yavari S, Kohandel M, Khademhosseini A, John JV. Development of bioactive short fiber-reinforced printable hydrogels with tunable mechanical and osteogenic properties for bone repair. J Mater Chem B 2024; 12:2818-2830. [PMID: 38411556 DOI: 10.1039/d3tb02924g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Personalized bone-regenerative materials have attracted substantial interest in recent years. Modern clinical settings demand the use of engineered materials incorporating patient-derived cells, cytokines, antibodies, and biomarkers to enhance the process of regeneration. In this work, we formulated short microfiber-reinforced hydrogels with platelet-rich fibrin (PRF) to engineer implantable multi-material core-shell bone grafts. By employing 3D bioprinting technology, we fabricated a core-shell bone graft from a hybrid composite hydroxyapatite-coated poly(lactic acid) (PLA) fiber-reinforced methacryolyl gelatin (GelMA)/alginate hydrogel. The overall concept involves 3D bioprinting of long bone mimic microstructures that resemble a core-shell cancellous-cortical structure, with a stiffer shell and a softer core with our engineered biomaterial. We observed a significantly enhanced stiffness in the hydrogel scaffold incorporated with hydroxyapatite (HA)-coated PLA microfibers compared to the pristine hydrogel construct. Furthermore, HA non-coated PLA microfibers were mixed with PRF and GelMA/alginate hydrogel to introduce a slow release of growth factors which can further enhance cell maturation and differentiation. These patient-specific bone grafts deliver cytokines and growth factors with distinct spatiotemporal release profiles to enhance tissue regeneration. The biocompatible and bio-responsive bone mimetic core-shell multi-material structures enhance osteogenesis and can be customized to have materials at a specific location, geometry, and material combination.
Collapse
Affiliation(s)
- Nafiseh Moghimi
- Terasaki Institute for Biomedical Innovations, Los Angeles, California, USA.
- Mathematical Medicine Lab, University of Waterloo, Ontario, Canada
| | - Meenakshi Kamaraj
- Terasaki Institute for Biomedical Innovations, Los Angeles, California, USA.
| | - Fatemeh Zehtabi
- Terasaki Institute for Biomedical Innovations, Los Angeles, California, USA.
| | - Saber Amin Yavari
- Terasaki Institute for Biomedical Innovations, Los Angeles, California, USA.
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovations, Los Angeles, California, USA.
| | - Johnson V John
- Terasaki Institute for Biomedical Innovations, Los Angeles, California, USA.
| |
Collapse
|
6
|
Cheng HY, Anggelia MR, Liu SC, Lin CF, Lin CH. Enhancing Immunomodulatory Function of Mesenchymal Stromal Cells by Hydrogel Encapsulation. Cells 2024; 13:210. [PMID: 38334602 PMCID: PMC10854565 DOI: 10.3390/cells13030210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/10/2024] [Accepted: 01/18/2024] [Indexed: 02/10/2024] Open
Abstract
Mesenchymal stromal cells (MSCs) showcase remarkable immunoregulatory capabilities in vitro, positioning them as promising candidates for cellular therapeutics. However, the process of administering MSCs and the dynamic in vivo environment may impact the cell-cell and cell-matrix interactions of MSCs, consequently influencing their survival, engraftment, and their immunomodulatory efficacy. Addressing these concerns, hydrogel encapsulation emerges as a promising solution to enhance the therapeutic effectiveness of MSCs in vivo. Hydrogel, a highly flexible crosslinked hydrophilic polymer with a substantial water content, serves as a versatile platform for MSC encapsulation. Demonstrating improved engraftment and heightened immunomodulatory functions in vivo, MSCs encapsulated by hydrogel are at the forefront of advancing therapeutic outcomes. This review delves into current advancements in the field, with a focus on tuning various hydrogel parameters to elucidate mechanistic insights and elevate functional outcomes. Explored parameters encompass hydrogel composition, involving monomer type, functional modification, and co-encapsulation, along with biomechanical and physical properties like stiffness, viscoelasticity, topology, and porosity. The impact of these parameters on MSC behaviors and immunomodulatory functions is examined. Additionally, we discuss potential future research directions, aiming to kindle sustained interest in the exploration of hydrogel-encapsulated MSCs in the realm of immunomodulation.
Collapse
Affiliation(s)
- Hui-Yun Cheng
- Center for Vascularized Composite Allotransplantation, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (M.R.A.)
| | - Madonna Rica Anggelia
- Center for Vascularized Composite Allotransplantation, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (M.R.A.)
- Department of Plastic and Reconstructive Surgery, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Shiao-Chin Liu
- Center for Vascularized Composite Allotransplantation, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (M.R.A.)
- Department of Plastic and Reconstructive Surgery, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Chih-Fan Lin
- Center for Vascularized Composite Allotransplantation, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (M.R.A.)
| | - Cheng-Hung Lin
- Center for Vascularized Composite Allotransplantation, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (M.R.A.)
- Department of Plastic and Reconstructive Surgery, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
- School of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| |
Collapse
|
7
|
Barcena AJR, Dhal K, Patel P, Ravi P, Kundu S, Tappa K. Current Biomedical Applications of 3D-Printed Hydrogels. Gels 2023; 10:8. [PMID: 38275845 PMCID: PMC10815850 DOI: 10.3390/gels10010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/12/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024] Open
Abstract
Three-dimensional (3D) printing, also known as additive manufacturing, has revolutionized the production of physical 3D objects by transforming computer-aided design models into layered structures, eliminating the need for traditional molding or machining techniques. In recent years, hydrogels have emerged as an ideal 3D printing feedstock material for the fabrication of hydrated constructs that replicate the extracellular matrix found in endogenous tissues. Hydrogels have seen significant advancements since their first use as contact lenses in the biomedical field. These advancements have led to the development of complex 3D-printed structures that include a wide variety of organic and inorganic materials, cells, and bioactive substances. The most commonly used 3D printing techniques to fabricate hydrogel scaffolds are material extrusion, material jetting, and vat photopolymerization, but novel methods that can enhance the resolution and structural complexity of printed constructs have also emerged. The biomedical applications of hydrogels can be broadly classified into four categories-tissue engineering and regenerative medicine, 3D cell culture and disease modeling, drug screening and toxicity testing, and novel devices and drug delivery systems. Despite the recent advancements in their biomedical applications, a number of challenges still need to be addressed to maximize the use of hydrogels for 3D printing. These challenges include improving resolution and structural complexity, optimizing cell viability and function, improving cost efficiency and accessibility, and addressing ethical and regulatory concerns for clinical translation.
Collapse
Affiliation(s)
- Allan John R. Barcena
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
- College of Medicine, University of the Philippines Manila, Manila 1000, Philippines
| | - Kashish Dhal
- Department of Mechanical & Aerospace Engineering, University of Texas at Arlington, Arlington, TX 76019, USA; (K.D.); (P.P.)
| | - Parimal Patel
- Department of Mechanical & Aerospace Engineering, University of Texas at Arlington, Arlington, TX 76019, USA; (K.D.); (P.P.)
| | - Prashanth Ravi
- Department of Radiology, University of Cincinnati, Cincinnati, OH 45219, USA;
| | - Suprateek Kundu
- Department of Biostatistics, Division of Basic Science Research, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Karthik Tappa
- Department of Breast Imaging, Division of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
8
|
Lee J, Lee H. Sacrificial-Rotating Rod-Based 3D Bioprinting Technique for the Development of an In Vitro Cardiovascular Model. J Funct Biomater 2023; 15:2. [PMID: 38276475 PMCID: PMC10817312 DOI: 10.3390/jfb15010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/11/2023] [Accepted: 12/16/2023] [Indexed: 01/27/2024] Open
Abstract
Several studies have attempted to develop complex cardiovascular models, but the use of multiple cell types and poor cell alignments after fabrication have limited the practical application of these models. Among various bioprinting methods, extrusion-based bioprinting is the most widely used in the bioengineering field. This method not only has the potential to construct complex 3D biological structures but it also enables the alignment of cells in the printing direction owing to the application of shear stress to the cells during the printing process. Therefore, this study developed an in vitro cardiovascular model using an extrusion-based bioprinting method that utilizes a rotating rod as a printing platform. The rotating rod was made of polyvinyl alcohol (PVA) and used as a sacrificial rod. This rotating platform approach enabled the printing of longer tubular-vascular structures of multiple shapes, including disease models, and the water-soluble properties of PVA facilitated the isolation of the printed vascular models. In addition, this method enabled the printing of the endothelial cells in the bloodstream direction and smooth muscle cells in the circumferential direction to better mimic the anatomy of real blood vessels. Consequently, a cardiovascular model was successfully printed using a gelatin methacryloyl bioink with cells. In conclusion, the proposed fabrication method can facilitate the fabrication of various cardiovascular models that mimic the alignment of real blood vessels.
Collapse
Affiliation(s)
- Jooyoung Lee
- Department of Smart Health Science and Technology, Kangwon National University (KNU), Chuncheon 24341, Republic of Korea;
| | - Hyungseok Lee
- Department of Smart Health Science and Technology, Kangwon National University (KNU), Chuncheon 24341, Republic of Korea;
- Department of Mechanical and Biomedical Engineering, Kangwon National University (KNU), Chuncheon 24341, Republic of Korea
| |
Collapse
|
9
|
Gharibshahian M, Salehi M, Beheshtizadeh N, Kamalabadi-Farahani M, Atashi A, Nourbakhsh MS, Alizadeh M. Recent advances on 3D-printed PCL-based composite scaffolds for bone tissue engineering. Front Bioeng Biotechnol 2023; 11:1168504. [PMID: 37469447 PMCID: PMC10353441 DOI: 10.3389/fbioe.2023.1168504] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 06/05/2023] [Indexed: 07/21/2023] Open
Abstract
Population ageing and various diseases have increased the demand for bone grafts in recent decades. Bone tissue engineering (BTE) using a three-dimensional (3D) scaffold helps to create a suitable microenvironment for cell proliferation and regeneration of damaged tissues or organs. The 3D printing technique is a beneficial tool in BTE scaffold fabrication with appropriate features such as spatial control of microarchitecture and scaffold composition, high efficiency, and high precision. Various biomaterials could be used in BTE applications. PCL, as a thermoplastic and linear aliphatic polyester, is one of the most widely used polymers in bone scaffold fabrication. High biocompatibility, low cost, easy processing, non-carcinogenicity, low immunogenicity, and a slow degradation rate make this semi-crystalline polymer suitable for use in load-bearing bones. Combining PCL with other biomaterials, drugs, growth factors, and cells has improved its properties and helped heal bone lesions. The integration of PCL composites with the new 3D printing method has made it a promising approach for the effective treatment of bone injuries. The purpose of this review is give a comprehensive overview of the role of printed PCL composite scaffolds in bone repair and the path ahead to enter the clinic. This study will investigate the types of 3D printing methods for making PCL composites and the optimal compounds for making PCL composites to accelerate bone healing.
Collapse
Affiliation(s)
- Maliheh Gharibshahian
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Majid Salehi
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
- Tissue Engineering and Stem Cells Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Nima Beheshtizadeh
- Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Amir Atashi
- Tissue Engineering and Stem Cells Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
| | | | - Morteza Alizadeh
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| |
Collapse
|
10
|
Maresca JA, DeMel DC, Wagner GA, Haase C, Geibel JP. Three-Dimensional Bioprinting Applications for Bone Tissue Engineering. Cells 2023; 12:cells12091230. [PMID: 37174630 PMCID: PMC10177443 DOI: 10.3390/cells12091230] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/11/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
The skeletal system is a key support structure within the body. Bones have unique abilities to grow and regenerate after injury. Some injuries or degeneration of the tissues cannot rebound and must be repaired by the implantation of foreign objects following injury or disease. This process is invasive and does not always improve the quality of life of the patient. New techniques have arisen that can improve bone replacement or repair. 3D bioprinting employs a printer capable of printing biological materials in multiple directions. 3D bioprinting potentially requires multiple steps and additional support structures, which may include the use of hydrogels for scaffolding. In this review, we discuss normal bone physiology and pathophysiology and how bioprinting can be adapted to further the field of bone tissue engineering.
Collapse
Affiliation(s)
- Jamie A Maresca
- The John B. Pierce Laboratory, University of New Haven, New Haven, CT 06519, USA
| | - Derek C DeMel
- Yale School of Engineering & Applied Science, Yale University, New Haven, CT 06519, USA
| | - Grayson A Wagner
- Yale School of Engineering & Applied Science, Yale University, New Haven, CT 06519, USA
| | - Colin Haase
- The John B. Pierce Laboratory, University of New Haven, New Haven, CT 06519, USA
| | - John P Geibel
- The John B. Pierce Laboratory, University of New Haven, New Haven, CT 06519, USA
- Yale School of Engineering & Applied Science, Yale University, New Haven, CT 06519, USA
- Department of Surgery, School of Medicine, Yale University, New Haven, CT 06519, USA
| |
Collapse
|
11
|
Sigusch B, Kranz S, von Hohenberg AC, Wehle S, Guellmar A, Steen D, Berg A, Rabe U, Heyder M, Reise M. Histological and Histomorphometric Evaluation of Implanted Photodynamic Active Biomaterials for Periodontal Bone Regeneration in an Animal Study. Int J Mol Sci 2023; 24:ijms24076200. [PMID: 37047171 PMCID: PMC10094716 DOI: 10.3390/ijms24076200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/17/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
Recently, our group developed two different polymeric biomaterials with photodynamic antimicrobial surface activity for periodontal bone regeneration. The aim of the present study was to analyze the biocompatibility and osseointegration of these materials in vivo. Two biomaterials based on urethane dimethacrylate (BioM1) and tri-armed oligoester-urethane methacrylate (BioM2) that additionally contained ß-tricalcium phosphate and the photosensitizer mTHPC (meso-tetra(hydroxyphenyl)chlorin) were implanted in non-critical size bone defects in the femur (n = 16) and tibia (n = 8) of eight female domestic sheep. Bone specimens were harvested and histomorphometrically analyzed after 12 months. BioM1 degraded to a lower extent which resulted in a mean remnant square size of 17.4 mm², while 12.2 mm² was estimated for BioM2 (p = 0.007). For BioM1, a total percentage of new formed bone by 30.3% was found which was significant higher compared to BioM2 (8.4%, p < 0.001). Furthermore, BioM1 was afflicted by significant lower soft tissue formation (3.3%) as compared to BioM2 (29.5%). Additionally, a bone-to-biomaterial ratio of 81.9% was detected for BioM1, while 8.5% was recorded for BioM2. Implantation of BioM2 caused accumulation of inflammatory cells and led to fibrous encapsulation. BioM1 (photosensitizer-armed urethane dimethacrylate) showed favorable regenerative characteristics and can be recommended for further studies.
Collapse
Affiliation(s)
- Bernd Sigusch
- Department of Conservative Dentistry and Periodontology, University Hospitals Jena, An der alten Post 4, 07743 Jena, Germany (A.C.v.H.)
| | - Stefan Kranz
- Department of Conservative Dentistry and Periodontology, University Hospitals Jena, An der alten Post 4, 07743 Jena, Germany (A.C.v.H.)
- Correspondence:
| | - Andreas Clemm von Hohenberg
- Department of Conservative Dentistry and Periodontology, University Hospitals Jena, An der alten Post 4, 07743 Jena, Germany (A.C.v.H.)
| | - Sabine Wehle
- Department of Conservative Dentistry and Periodontology, University Hospitals Jena, An der alten Post 4, 07743 Jena, Germany (A.C.v.H.)
| | - André Guellmar
- Department of Conservative Dentistry and Periodontology, University Hospitals Jena, An der alten Post 4, 07743 Jena, Germany (A.C.v.H.)
| | | | - Albrecht Berg
- Innovent Technologieentwicklung e.V., 07745 Jena, Germany
| | - Ute Rabe
- Department of Conservative Dentistry and Periodontology, University Hospitals Jena, An der alten Post 4, 07743 Jena, Germany (A.C.v.H.)
| | - Markus Heyder
- Department of Conservative Dentistry and Periodontology, University Hospitals Jena, An der alten Post 4, 07743 Jena, Germany (A.C.v.H.)
| | - Markus Reise
- Department of Conservative Dentistry and Periodontology, University Hospitals Jena, An der alten Post 4, 07743 Jena, Germany (A.C.v.H.)
| |
Collapse
|
12
|
Kang Y, Xu J, Meng L, Su Y, Fang H, Liu J, Cheng YY, Jiang D, Nie Y, Song K. 3D bioprinting of dECM/Gel/QCS/nHAp hybrid scaffolds laden with mesenchymal stem cell-derived exosomes to improve angiogenesis and osteogenesis. Biofabrication 2023; 15. [PMID: 36756934 DOI: 10.1088/1758-5090/acb6b8] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 01/27/2023] [Indexed: 02/10/2023]
Abstract
Craniofacial bone regeneration is a coupled process of angiogenesis and osteogenesis, which, associated with infection, still remains a challenge in bone defects after trauma or tumor resection. 3D tissue engineering scaffolds with multifunctional-therapeutic properties can offer many advantages for the angiogenesis and osteogenesis of infected bone defects. Hence, in the present study, a microchannel networks-enriched 3D hybrid scaffold composed of decellularized extracellular matrix (dECM), gelatin (Gel), quaterinized chitosan (QCS) and nano-hydroxyapatite (nHAp) (dGQH) was fabricated by an extrusion 3D bioprinting technology. And enlightened by the characteristics of natural bone microstructure and the demands of vascularized bone regeneration, the exosomes (Exos) isolated from human adipose derived stem cells as angiogenic and osteogenic factors were then co-loaded into the desired dGQH20hybrid scaffold based on an electrostatic interaction. The results of the hybrid scaffolds performance characterization showed that these hybrid scaffolds exhibited an interconnected pore structure and appropriate degradability (>61% after 8 weeks of treatment), and the dGQH20hybrid scaffold displayed the highest porosity (83.93 ± 7.38%) and mechanical properties (tensile modulus: 62.68 ± 10.29 MPa, compressive modulus: 16.22 ± 3.61 MPa) among the dGQH hybrid scaffolds. Moreover, the dGQH20hybrid scaffold presented good antibacterial activities (against 94.90 ± 2.44% ofEscherichia coliand 95.41 ± 2.65% ofStaphylococcus aureus, respectively) as well as excellent hemocompatibility and biocompatibility. Furthermore, the results of applying the Exos to the dGQH20hybrid scaffold showed that the Exo promoted the cell attachment and proliferation on the scaffold, and also showed a significant increase in osteogenesis and vascularity regeneration in the dGQH@Exo scaffoldsin vitroandin vivo. Overall, this novel dECM/Gel/QCS/nHAp hybrid scaffold laden with Exo has a considerable potential application in reservation of craniofacial bone defects.
Collapse
Affiliation(s)
- Yue Kang
- Department of Breast Surgery, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital and Institute, Shenyang 110042, People's Republic of China.,State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, People's Republic of China
| | - Jie Xu
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, People's Republic of China.,Zhengzhou Institute of Emerging Industrial Technology, Zhengzhou 450000, People's Republic of China
| | - Ling'ao Meng
- Department of Breast Surgery, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital and Institute, Shenyang 110042, People's Republic of China
| | - Ya Su
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, People's Republic of China
| | - Huan Fang
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, People's Republic of China.,Zhengzhou Institute of Emerging Industrial Technology, Zhengzhou 450000, People's Republic of China
| | - Jiaqi Liu
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, People's Republic of China
| | - Yuen Yee Cheng
- Institute for Biomedical Materials and Devices, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Daqing Jiang
- Department of Breast Surgery, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital and Institute, Shenyang 110042, People's Republic of China
| | - Yi Nie
- Zhengzhou Institute of Emerging Industrial Technology, Zhengzhou 450000, People's Republic of China.,Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Kedong Song
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, People's Republic of China
| |
Collapse
|
13
|
Jin W, Liu H, Li Z, Nie P, Zhao G, Cheng X, Zheng G, Yang X. Effect of Hydrogel Contact Angle on Wall Thickness of Artificial Blood Vessel. Int J Mol Sci 2022; 23:11114. [PMID: 36232417 PMCID: PMC9570380 DOI: 10.3390/ijms231911114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/16/2022] [Accepted: 09/18/2022] [Indexed: 11/21/2022] Open
Abstract
Vascular replacement is one of the most effective tools to solve cardiovascular diseases, but due to the limitations of autologous transplantation, size mismatch, etc., the blood vessels for replacement are often in short supply. The emergence of artificial blood vessels with 3D bioprinting has been expected to solve this problem. Blood vessel prosthesis plays an important role in the field of cardiovascular medical materials. However, a small-diameter blood vessel prosthesis (diameter < 6 mm) is still unable to achieve wide clinical application. In this paper, a response surface analysis was firstly utilized to obtain the relationship between the contact angle and the gelatin/sodium alginate mixed hydrogel solution at different temperatures and mass percentages. Then, the self-developed 3D bioprinter was used to obtain the optimal printing spacing under different conditions through row spacing, printing, and verifying the relationship between the contact angle and the printing thickness. Finally, the relationship between the blood vessel wall thickness and the contact angle was obtained by biofabrication with 3D bioprinting, which can also confirm the controllability of the vascular membrane thickness molding. It lays a foundation for the following study of the small caliber blood vessel printing molding experiment.
Collapse
Affiliation(s)
- Wenyu Jin
- College of Mechanical Engineering, Shandong University of Technology, Zibo 255000, China
- Shandong Provincial Key Laboratory of Precision Manufacturing and Non-Traditional Machining, Zibo 255000, China
| | - Huanbao Liu
- College of Mechanical Engineering, Shandong University of Technology, Zibo 255000, China
- Shandong Provincial Key Laboratory of Precision Manufacturing and Non-Traditional Machining, Zibo 255000, China
| | - Zihan Li
- College of Mechanical Engineering, Shandong University of Technology, Zibo 255000, China
- Shandong Provincial Key Laboratory of Precision Manufacturing and Non-Traditional Machining, Zibo 255000, China
| | - Ping Nie
- College of Mechanical Engineering, Shandong University of Technology, Zibo 255000, China
| | - Guangxi Zhao
- College of Mechanical Engineering, Shandong University of Technology, Zibo 255000, China
- Shandong Provincial Key Laboratory of Precision Manufacturing and Non-Traditional Machining, Zibo 255000, China
| | - Xiang Cheng
- College of Mechanical Engineering, Shandong University of Technology, Zibo 255000, China
- Shandong Provincial Key Laboratory of Precision Manufacturing and Non-Traditional Machining, Zibo 255000, China
| | - Guangming Zheng
- College of Mechanical Engineering, Shandong University of Technology, Zibo 255000, China
- Shandong Provincial Key Laboratory of Precision Manufacturing and Non-Traditional Machining, Zibo 255000, China
| | - Xianhai Yang
- College of Mechanical Engineering, Shandong University of Technology, Zibo 255000, China
- Shandong Provincial Key Laboratory of Precision Manufacturing and Non-Traditional Machining, Zibo 255000, China
| |
Collapse
|