Qiu P, Cao R, Li Z, Fan Z. A comprehensive biomechanical evaluation of length and diameter of dental implants using finite element analyses: A systematic review.
Heliyon 2024;
10:e26876. [PMID:
38434362 PMCID:
PMC10907775 DOI:
10.1016/j.heliyon.2024.e26876]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 03/05/2024] Open
Abstract
Background
With a wide range of dental implants currently used in clinical scenarios, evidence is limited on selecting the type of dental implant best suited to endure the biting force of missing teeth. Finite Element Analysis (FEA) is a reliable technology which has been applied in dental implantology to study the distribution of biomechanical stress within the bone and dental implants.
Purpose
This study aimed to perform a systematic review to evaluate the biomechanical properties of dental implants regarding their length and diameter using FEA.
Material and methods
A comprehensive search was performed in PubMed/MEDLINE, Scopus, Embase, and Web of Science for peer-reviewed studies published in English from October 2003 to October 2023. Data were organized based on the following topics: area, bone layers, type of bone, design of implant, implant material, diameter of implant, length of implant, stress units, type of loading, experimental validation, convergence analysis, boundary conditions, parts of Finite Element Model, stability factor, study variables, and main findings. The present study is registered in PROSPERO under number CRD42022382211.
Results
The query yielded 852 results, of which 40 studies met the inclusion criteria and were selected in this study. The diameter and length of the dental implants were found to significantly influence the stress distribution in cortical and cancellous bone, respectively. Implant diameter was identified as a key factor in minimizing peri-implant stress concentrations and avoiding crestal overloading. In terms of stress reduction, implant length becomes increasingly important as bone density decreases.
Conclusions
The diameter of dental implants is more important than implant length in reducing bone stress distribution and improving implant stability under both static and immediate loading conditions. Short implants with a larger diameter were found to generate lower stresses than longer implants with a smaller diameter. Other potential influential design factors including implant system, cantilever length, thread features, and abutment collar height should also be considered in future implant design as they may also have an impact on implant performance.
Collapse