1
|
Tasmim S, Baten A, Sivaperuman Kalairaj M, Wang S, Zimmern PE, Ware TH. Magnetoactive elastomer-based dynamic urethral support device for stress urinary incontinence. Acta Biomater 2025; 191:336-351. [PMID: 39581336 DOI: 10.1016/j.actbio.2024.11.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 11/06/2024] [Accepted: 11/21/2024] [Indexed: 11/26/2024]
Abstract
Stress urinary incontinence (SUI) is the involuntary leakage of urine in response to increased intra-abdominal pressure during episodes of exertion. A common treatment method for SUI is sling implantation underneath the urethra to provide support. Most current sling procedures, however, cannot adjust urethral tension postoperatively. To address this limitation, we designed a soft magnetoactive elastomer (MAE) device capable of changing shape in response to moderate magnetic fields. To ensure shape change after fibrotic scar tissue encapsulation, MAE devices were embedded in agar gels with different stiffnesses, and their shape change was studied in response to up to 200 mT magnetic fields. A simple in vitro model of the lower urinary tract was designed to study device performance. Flow time was measured as a function of pressure in the simulated bladder as the model system leaked before and after activating sling with a hand-held magnet. MAE devices embedded in agar gel (100 kPa) in hammock-like configuration achieved 4.7% ± 1.1% change in height. Devices with silica-coated magnetic particles showed minimal loss in mass after two weeks in accelerated oxidative (2.36% ± 1.55%) and hydrolytic (0.58% ± 0.25%) conditions. Placing a sling under the model urethra provided urethral support; thus, increasing its resistance to flow. Normalized flow time significantly reduced from 1.56 ± 0.18 to 1.11 ± 0.16 when magnetic field was applied, indicating urethral support modulation at 60 cm-H2O. This dynamic sling, powered externally with physiologically safe magnetic fields, allowed for urethral support modulation in a model of the lower urinary tract. STATEMENT OF SIGNIFICANCE: Stress urinary incontinence (SUI) affects up to half the adult women during their lifetime, and slings are commonly used to treat severe cases. While sling implantation is minimally invasive and offers moderate to high cure rates, long-term sling complications, such as urine retention, remain a significant concern. Available adjustable SUI devices often require invasive surgeries, implantable electronics, and multiple mechanical components, increasing the overall invasiveness. Here, we report a proof of concept for using shape-morphing biomaterials to fabricate a dynamic device that can provide continence support and be triggered to change shape, enabling complete voiding. Such a dynamic device may prevent many complications associated with traditional slings and improve quality of life for women suffering from severe SUI.
Collapse
Affiliation(s)
- Seelay Tasmim
- Texas A&M University, Department of Biomedical Engineering, College Station, TX, United States
| | - Asha Baten
- Texas A&M University, Department of Biomedical Engineering, College Station, TX, United States
| | | | - Suitu Wang
- Texas A&M University, Department of Materials Science and Engineering, College Station, TX, United States
| | - Philippe E Zimmern
- The University of Texas Southwestern Medical Center, Department of Urology, Dallas, TX, United States
| | - Taylor H Ware
- Texas A&M University, Department of Biomedical Engineering, College Station, TX, United States; Texas A&M University, Department of Materials Science and Engineering, College Station, TX, United States.
| |
Collapse
|
2
|
Farr NTH, Gregory DA, Workman VL, Rauert C, Roman S, Knight AJ, Bullock AJ, Tartakovskii AI, Thomas KV, Chapple CR, Deprest J, MacNeil S, Rodenburg C. Evidence of time dependent degradation of polypropylene surgical mesh explanted from the abdomen and vagina of sheep. J Mech Behav Biomed Mater 2024; 160:106722. [PMID: 39317096 DOI: 10.1016/j.jmbbm.2024.106722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/26/2024] [Accepted: 09/03/2024] [Indexed: 09/26/2024]
Abstract
The failure of polypropylene mesh is marked by significant side effects and debilitation, arising from a complex interplay of factors. One key contributor is the pronounced physico-mechanical mismatch between the polypropylene (PP) fibres and surrounding tissues, resulting in substantial physical damage, inflammation, and persistent pain. However, the primary cause of sustained inflammation due to polypropylene itself remains incompletely understood. This study comprises a comprehensive, multi-pronged investigation to unravel the effects of implantation on a presumed inert PP mesh in sheep. Employing both advanced and conventional techniques to discern the physical and chemical transformations of the implanted PP. Our analyses reveal a surface degradation and oxidation of polypropylene fibres after 60 days implantation, persisting and intensifying at the 180-day mark. The emergence and accumulation of PP debris in the tissue surrounding the implant also increased with implantation time. We demonstrate observable physical and mechanical alterations in the fibre surface and stiffness. Our study shows surface alterations which indicate that PP is evidently less chemically inert than was initially presumed. These findings underscore the need for a re-evaluation of the biocompatibility and long-term consequences of using PP mesh implants.
Collapse
Affiliation(s)
- Nicholas T H Farr
- School of Chemical, Materials and Biological Engineering, University of Sheffield, Sheffield, UK; Insigneo Institute for in silico Medicine, University of Sheffield, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield Children's NHS Foundation Trust and Doncaster and Bassetlaw Teaching Hospitals NHS Foundation Trust, Sheffield, UK.
| | - David A Gregory
- School of Chemical, Materials and Biological Engineering, University of Sheffield, Sheffield, UK; Insigneo Institute for in silico Medicine, University of Sheffield, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield Children's NHS Foundation Trust and Doncaster and Bassetlaw Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Victoria L Workman
- School of Chemical, Materials and Biological Engineering, University of Sheffield, Sheffield, UK; Insigneo Institute for in silico Medicine, University of Sheffield, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield Children's NHS Foundation Trust and Doncaster and Bassetlaw Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Cassandra Rauert
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Woolloongabba, Australia
| | - Sabiniano Roman
- School of Chemical, Materials and Biological Engineering, University of Sheffield, Sheffield, UK
| | - Alexander J Knight
- Department of Physics and Astronomy, University of Sheffield, Sheffield, UK
| | - Anthony J Bullock
- School of Chemical, Materials and Biological Engineering, University of Sheffield, Sheffield, UK
| | | | - Kevin V Thomas
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Woolloongabba, Australia
| | | | - Jan Deprest
- Centre for Surgical Technologies, Group Biomedical Sciences, KU Leuven, Leuven, Belgium; Department of Development and Regeneration, Woman and Child, Group Biomedical Sciences, KU Leuven, Leuven, Belgium; Pelvic Floor Unit, University Hospitals KU Leuven, Leuven, Belgium
| | - Sheila MacNeil
- School of Chemical, Materials and Biological Engineering, University of Sheffield, Sheffield, UK
| | - Cornelia Rodenburg
- School of Chemical, Materials and Biological Engineering, University of Sheffield, Sheffield, UK; Insigneo Institute for in silico Medicine, University of Sheffield, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield Children's NHS Foundation Trust and Doncaster and Bassetlaw Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| |
Collapse
|
3
|
Jain T, Danesi H, Lucas A, Dair B, Vorvolakos K. Accelerated In Vitro Oxidative Degradation Testing of Ultra-High Molecular Weight Polyethylene (UHMWPE). J Biomed Mater Res B Appl Biomater 2024; 112:e35495. [PMID: 39431436 DOI: 10.1002/jbm.b.35495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/09/2024] [Accepted: 10/08/2024] [Indexed: 10/22/2024]
Abstract
Nonabsorbable polymers used in biomedical applications are assumed to be permanently stable based on short-term testing, but some may be susceptible to oxidative degradation over several years of implantation. Traditional in vitro oxidative degradation screenings employ hydrogen peroxide (H2O2) solutions. However, the inherent instability of H2O2 can compromise the consistency of oxidative conditions, especially over extended periods and at elevated temperatures used for accelerated testing. In this study, an automated reactive accelerated aging (aRAA) system, which integrates an electrochemical detection method and a feedback loop, was utilized to ensure precise control of H2O2 concentrations during polymer oxidative degradation testing. The reproducibility of the aRAA system was evaluated by comparing four identical setups. Its efficacy as an oxidation challenge was demonstrated on (i) medical-grade vitamin E (VE) blended ultra-high molecular weight polyethylene (UHMWPE) and (ii) highly crosslinked (HXL) UHMWPE as model materials. The aRAA-aged VE-UHMWPE and HXL-UHMWPE samples were also compared against samples aged via an existing accelerated aging standard, ASTM F2003-02(2022). Samples were analyzed using attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy to calculate their oxidation index per ASTM F2102-17. We observed that the aRAA system was more effective in oxidizing VE-UHMWPE and HXL-UHMWPE than the traditional ASTM F2003-02(2022) method. By providing a standardized and reliable approach to assess polymer oxidative degradation, the aRAA system could enhance the accuracy of long-term stability predictions for nonresorbable polymers in medical devices.
Collapse
Affiliation(s)
- Tanmay Jain
- Office of Science and Engineering Laboratories (OSEL), Division of Biology, Chemistry and Materials Science (DBCMS), U.S. Food and Drug Administration, Center for Devices and Radiological Health (CDRH), Silver Spring, Maryland, USA
| | - Hunter Danesi
- Office of Science and Engineering Laboratories (OSEL), Division of Biology, Chemistry and Materials Science (DBCMS), U.S. Food and Drug Administration, Center for Devices and Radiological Health (CDRH), Silver Spring, Maryland, USA
| | - Anne Lucas
- Office of Science and Engineering Laboratories (OSEL), Division of Biology, Chemistry and Materials Science (DBCMS), U.S. Food and Drug Administration, Center for Devices and Radiological Health (CDRH), Silver Spring, Maryland, USA
| | - Benita Dair
- Office of Science and Engineering Laboratories (OSEL), Division of Biology, Chemistry and Materials Science (DBCMS), U.S. Food and Drug Administration, Center for Devices and Radiological Health (CDRH), Silver Spring, Maryland, USA
| | - Katherine Vorvolakos
- Office of Science and Engineering Laboratories (OSEL), Division of Biology, Chemistry and Materials Science (DBCMS), U.S. Food and Drug Administration, Center for Devices and Radiological Health (CDRH), Silver Spring, Maryland, USA
| |
Collapse
|
4
|
Farr NTH, Workman VL, Chapple CR, MacNeil S, Rodenburg C. Strengthening preclinical testing to increase safety in surgical mesh. Nat Rev Urol 2024; 21:515-516. [PMID: 38693244 DOI: 10.1038/s41585-024-00889-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Affiliation(s)
- Nicholas T H Farr
- Department of Materials Science and Engineering, University of Sheffield, Sheffield, UK.
- Insigneo Institute for in silico Medicine, University of Sheffield, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield Children's NHS Foundation Trust and Doncaster and Bassetlaw Teaching Hospitals NHS Foundation Trust, Sheffield, UK.
| | - Victoria L Workman
- Department of Materials Science and Engineering, University of Sheffield, Sheffield, UK
- Insigneo Institute for in silico Medicine, University of Sheffield, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield Children's NHS Foundation Trust and Doncaster and Bassetlaw Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | | | - Sheila MacNeil
- Department of Materials Science and Engineering, University of Sheffield, Sheffield, UK
| | - Cornelia Rodenburg
- Department of Materials Science and Engineering, University of Sheffield, Sheffield, UK
- Insigneo Institute for in silico Medicine, University of Sheffield, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield Children's NHS Foundation Trust and Doncaster and Bassetlaw Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| |
Collapse
|
5
|
Farr NTH, Workman VL, Saad S, Roman S, Hearnden V, Chapple CR, Murdoch C, Rodenburg C, MacNeil S. Uncovering the relationship between macrophages and polypropylene surgical mesh. BIOMATERIALS ADVANCES 2024; 159:213800. [PMID: 38377947 DOI: 10.1016/j.bioadv.2024.213800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 02/06/2024] [Accepted: 02/11/2024] [Indexed: 02/22/2024]
Abstract
Currently, in vitro testing examines the cytotoxicity of biomaterials but fails to consider how materials respond to mechanical forces and the immune response to them; both are crucial for successful long-term implantation. A notable example of this failure is polypropylene mid-urethral mesh used in the treatment of stress urinary incontinence (SUI). The mesh was largely successful in abdominal hernia repair but produced significant complications when repurposed to treat SUI. Developing more physiologically relevant in vitro test models would allow more physiologically relevant data to be collected about how biomaterials will interact with the body. This study investigates the effects of mechanochemical distress (a combination of oxidation and mechanical distention) on polypropylene mesh surfaces and the effect this has on macrophage gene expression. Surface topology of the mesh was characterised using SEM and AFM; ATR-FTIR, EDX and Raman spectroscopy was applied to detect surface oxidation and structural molecular alterations. Uniaxial mechanical testing was performed to reveal any bulk mechanical changes. RT-qPCR of selected pro-fibrotic and pro-inflammatory genes was carried out on macrophages cultured on control and mechanochemically distressed PP mesh. Following exposure to mechanochemical distress the mesh surface was observed to crack and craze and helical defects were detected in the polymer backbone. Surface oxidation of the mesh was seen after macrophage attachment for 7 days. These changes in mesh surface triggered modified gene expression in macrophages. Pro-fibrotic and pro-inflammatory genes were upregulated after macrophages were cultured on mechanochemically distressed mesh, whereas the same genes were down-regulated in macrophages exposed to control mesh. This study highlights the relationship between macrophages and polypropylene surgical mesh, thus offering more insight into the fate of an implanted material than existing in vitro testing.
Collapse
Affiliation(s)
- Nicholas T H Farr
- Department of Materials Science and Engineering, University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield, UK; Insigneo Institute for in silico Medicine, The Pam Liversidge Building, Sir Robert Hadfield Building, Mappin Street, Sheffield, UK.
| | - Victoria L Workman
- Department of Materials Science and Engineering, University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield, UK; Insigneo Institute for in silico Medicine, The Pam Liversidge Building, Sir Robert Hadfield Building, Mappin Street, Sheffield, UK
| | - Sanad Saad
- Department of Materials Science and Engineering, University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield, UK; Department of Urology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Sabiniano Roman
- Department of Materials Science and Engineering, University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield, UK
| | - Vanessa Hearnden
- Department of Materials Science and Engineering, University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield, UK; Insigneo Institute for in silico Medicine, The Pam Liversidge Building, Sir Robert Hadfield Building, Mappin Street, Sheffield, UK
| | | | - Craig Murdoch
- School of Clinical Dentistry, 19 Claremont Crescent, University of Sheffield, Sheffield, UK
| | - Cornelia Rodenburg
- Department of Materials Science and Engineering, University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield, UK; Insigneo Institute for in silico Medicine, The Pam Liversidge Building, Sir Robert Hadfield Building, Mappin Street, Sheffield, UK
| | - Sheila MacNeil
- Department of Materials Science and Engineering, University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield, UK
| |
Collapse
|