1
|
Roca-Ayats N, Maceda I, Bruque CD, Martínez-Gil N, Garcia-Giralt N, Cozar M, Mellibovsky L, Van Hul W, Lao O, Grinberg D, Balcells S. Evolutionary and functional analyses of LRP5 in archaic and extant modern humans. Hum Genomics 2024; 18:53. [PMID: 38802968 PMCID: PMC11131306 DOI: 10.1186/s40246-024-00616-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/07/2024] [Indexed: 05/29/2024] Open
Abstract
BACKGROUND The human lineage has undergone a postcranial skeleton gracilization (i.e. lower bone mass and strength relative to body size) compared to other primates and archaic populations such as the Neanderthals. This gracilization has been traditionally explained by differences in the mechanical load that our ancestors exercised. However, there is growing evidence that gracilization could also be genetically influenced. RESULTS We have analyzed the LRP5 gene, which is known to be associated with high bone mineral density conditions, from an evolutionary and functional point of view. Taking advantage of the published genomes of archaic Homo populations, our results suggest that this gene has a complex evolutionary history both between archaic and living humans and within living human populations. In particular, we identified the presence of different selective pressures in archaics and extant modern humans, as well as evidence of positive selection in the African and South East Asian populations from the 1000 Genomes Project. Furthermore, we observed a very limited evidence of archaic introgression in this gene (only at three haplotypes of East Asian ancestry out of the 1000 Genomes), compatible with a general erasing of the fingerprint of archaic introgression due to functional differences in archaics compared to extant modern humans. In agreement with this hypothesis, we observed private mutations in the archaic genomes that we experimentally validated as putatively increasing bone mineral density. In particular, four of five archaic missense mutations affecting the first β-propeller of LRP5 displayed enhanced Wnt pathway activation, of which two also displayed reduced negative regulation. CONCLUSIONS In summary, these data suggest a genetic component contributing to the understanding of skeletal differences between extant modern humans and archaic Homo populations.
Collapse
Affiliation(s)
- Neus Roca-Ayats
- Departament de Genètica, Microbiologia i Estadística and IBUB, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) ISCIII, Barcelona, Spain
- Institut de Recerca Sant Joan de Déu (IRSJD), Barcelona, Spain
| | - Iago Maceda
- CNAG, Centre Nacional d'Analisi Genòmic, C/ Baldiri I Reixach 4, 08028, Barcelona, Spain
- Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Carlos David Bruque
- Unidad de Conocimiento Traslacional Hospitalaria Patagónica, Hospital de Alta Complejidad El Calafate - S.A.M.I.C., Santa Cruz, Argentina
| | - Núria Martínez-Gil
- Departament de Genètica, Microbiologia i Estadística and IBUB, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) ISCIII, Barcelona, Spain
- Institut de Recerca Sant Joan de Déu (IRSJD), Barcelona, Spain
| | - Natàlia Garcia-Giralt
- Musculoskeletal Research Group, IMIM (Hospital del Mar Medical Research Institute), Centro de Investigación Biomédica en Red en Fragilidad y Envejecimiento Saludable (CIBERFES), ISCIII, Departament de Genètica, Microbiologia i Estadística, UB, Barcelona, Spain
| | - Mónica Cozar
- Departament de Genètica, Microbiologia i Estadística and IBUB, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) ISCIII, Barcelona, Spain
- Institut de Recerca Sant Joan de Déu (IRSJD), Barcelona, Spain
| | - Leonardo Mellibovsky
- Musculoskeletal Research Group, IMIM (Hospital del Mar Medical Research Institute), Centro de Investigación Biomédica en Red en Fragilidad y Envejecimiento Saludable (CIBERFES), ISCIII, Barcelona, Spain
| | - Wim Van Hul
- Center of Medical Genetics, University of Antwerp, 2650, Antwerp, Belgium
| | - Oscar Lao
- Institute of Evolutionary Biology, CSIC-Universitat Pompeu Fabra, 08003, Barcelona, Spain.
| | - Daniel Grinberg
- Departament de Genètica, Microbiologia i Estadística and IBUB, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) ISCIII, Barcelona, Spain
- Institut de Recerca Sant Joan de Déu (IRSJD), Barcelona, Spain
| | - Susanna Balcells
- Departament de Genètica, Microbiologia i Estadística and IBUB, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) ISCIII, Barcelona, Spain
- Institut de Recerca Sant Joan de Déu (IRSJD), Barcelona, Spain
| |
Collapse
|
2
|
Kantaputra P, Jatooratthawichot P, Kottege N, Anthonappa RP, Kaewgahya M, Tongsima S, Ngamphiw C, Ketudat Cairns JR, Predes D, He X. DKK1 is a strong candidate for mesiodens and taurodontism. Clin Genet 2023; 103:714-716. [PMID: 36601665 PMCID: PMC10159873 DOI: 10.1111/cge.14295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/28/2022] [Accepted: 01/02/2023] [Indexed: 01/06/2023]
Abstract
A mutation in DKK1 gene leads to inhibitory DKK1 function, over-activation of WNT/β-catenin signaling, disruptive development of dental epithelium, and subsequent mesiodens formation.
Collapse
Affiliation(s)
- Piranit Kantaputra
- Center of Excellence in Medical Genetics Research, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
- Division of Pediatric Dentistry, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| | - Peeranat Jatooratthawichot
- School of Chemistry, Institute of Science, and Center for Biomolecular Structure, Function and Application, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Naomi Kottege
- Department of Pediatric Dentistry, University of Western Australia Dental School, Nedlands, Western Australia, Australia
| | - Robert P Anthonappa
- Department of Pediatric Dentistry, University of Western Australia Dental School, Nedlands, Western Australia, Australia
| | - Massupa Kaewgahya
- Center of Excellence in Medical Genetics Research, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| | - Sissades Tongsima
- National Biobank of Thailand, National Science and Technology Development Agency,Thailand Science Park, Pathum Thani, Thailand
| | - Chumpol Ngamphiw
- National Biobank of Thailand, National Science and Technology Development Agency,Thailand Science Park, Pathum Thani, Thailand
| | - James R Ketudat Cairns
- School of Chemistry, Institute of Science, and Center for Biomolecular Structure, Function and Application, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Danilo Predes
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Xi He
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
3
|
Martínez-Gil N, Mellibovsky L, Gonzalez DML, Patiño JD, Cozar M, Rabionet R, Grinberg D, Balcells S. On the association between Chiari malformation type 1, bone mineral density and bone related genes. Bone Rep 2022; 16:101181. [PMID: 35313637 PMCID: PMC8933671 DOI: 10.1016/j.bonr.2022.101181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 03/04/2022] [Accepted: 03/08/2022] [Indexed: 11/26/2022] Open
Abstract
Background Chiari malformation type 1 (C1M) is a neurological disease characterized by herniation of the cerebellar tonsils below the foramen magnum. Cranial bone constriction is suspected to be its main cause. To date, genes related to bone development (e.g. DKK1 or COL1A2) have been associated with C1M, while some bone diseases (e.g. Paget) have been found to cosegregate with C1M. Nevertheless, the association between bone mineral density (BMD) and C1M has not been investigated, yet. Here, we systematically investigate the association between C1M and BMD, and between bone related genes and C1M. Methods We have recruited a small cohort of C1M patients (12 unrelated patients) in whom we have performed targeted sequencing of an in-house bone-related gene panel and BMD determination through non-invasive DXA. Results In the search for association between the bone related genes and C1M we have found variants in more than one C1M patient in WNT16, CRTAP, MYO7A and NOTCH2. These genes have been either associated with craniofacial development in different ways, or previously associated with C1M (MYO7A). Regarding the potential link between BMD and C1M, we have found three osteoporotic patients and one patient who had high BMD, very close to the HBM phenotype values, although most patients had normal BMD. Conclusions Variants in bone related genes have been repeatedly found in some C1M cases. The relationship of bone genes with C1M deserves further study, to get a clearer estimate of their contribution to its etiology. No direct correlation between BMD and C1M was observed. We used an in-house bone gene panel to investigate a small cohort of C1M patients. Variants in WNT16, CRTAP, MYO7A and NOTCH2 were found in more than one C1M patient. No clear relationship was found between C1M and BMD in this small C1M cohort.
Collapse
|
4
|
Martínez‐Gil N, Ovejero D, Garcia‐Giralt N, Bruque CD, Mellibovsky L, Nogués X, Rabionet R, Grinberg D, Balcells S. Genetic analysis in a familial case with high bone mineral density suggests additive effects at two
loci. JBMR Plus 2022; 6:e10602. [PMID: 35434450 PMCID: PMC9009133 DOI: 10.1002/jbm4.10602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 12/24/2021] [Accepted: 01/16/2022] [Indexed: 11/21/2022] Open
Abstract
Osteoporosis is the most common bone disease, characterized by a low bone mineral density (BMD) and increased risk of fracture. At the other end of the BMD spectrum, some individuals present strong, fracture‐resistant, bones. Both osteoporosis and high BMD are heritable and their genetic architecture encompasses polygenic inheritance of common variants and some cases of monogenic highly penetrant variants in causal genes. We have investigated the genetics of high BMD in a family segregating this trait in an apparently Mendelian dominant pattern. We searched for rare causal variants by whole‐exome sequencing in three affected and three nonaffected family members. Using this approach, we have identified 38 rare coding variants present in the proband and absent in the three individuals with normal BMD. Although we have found four variants shared by the three affected members of the family, we have not been able to relate any of these to the high‐BMD phenotype. In contrast, we have identified missense variants in two genes, VAV3 and ADGRE5, each shared by two of out of three affected members, whose loss of function fits with the phenotype of the family. In particular, the proband, a woman displaying the highest BMD (sum Z‐score = 7), carries both variants, whereas the other two affected members carry one each. VAV3 encodes a guanine‐nucleotide‐exchange factor with an important role in osteoclast activation and function. Although no previous cases of VAV3 mutations have been reported in humans, Vav3 knockout (KO) mice display dense bones, similarly to the high‐BMD phenotype present in our family. The ADGRE5 gene encodes an adhesion G protein‐coupled receptor expressed in osteoclasts whose KO mouse displays increased trabecular bone volume. Combined, these mouse and human data highlight VAV3 and ADGRE5 as novel putative high‐BMD genes with additive effects, and potential therapeutic targets for osteoporosis. © 2022 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Núria Martínez‐Gil
- Department of Genetics, Microbiology and Statistics Faculty of Biology, Universitat de Barcelona, CIBERER, IBUB, IRSJD Barcelona Spain
| | - Diana Ovejero
- Musculoskeletal Research Group, IMIM (Hospital del Mar Medical Research Institute), Centro de Investigación Biomédica en Red en Fragilidad y Envejecimiento Saludable (CIBERFES), ISCIII Barcelona Spain
| | - Natalia Garcia‐Giralt
- Musculoskeletal Research Group, IMIM (Hospital del Mar Medical Research Institute), Centro de Investigación Biomédica en Red en Fragilidad y Envejecimiento Saludable (CIBERFES), ISCIII Barcelona Spain
| | - Carlos David Bruque
- Unidad de Conocimiento Traslacional Hospitalaria Patagónica, Hospital de Alta Complejidad SAMIC El Calafate Santa Cruz Argentina
| | - Leonardo Mellibovsky
- Musculoskeletal Research Group, IMIM (Hospital del Mar Medical Research Institute), Centro de Investigación Biomédica en Red en Fragilidad y Envejecimiento Saludable (CIBERFES), ISCIII Barcelona Spain
| | - Xavier Nogués
- Musculoskeletal Research Group, IMIM (Hospital del Mar Medical Research Institute), Centro de Investigación Biomédica en Red en Fragilidad y Envejecimiento Saludable (CIBERFES), ISCIII Barcelona Spain
| | - Raquel Rabionet
- Department of Genetics, Microbiology and Statistics Faculty of Biology, Universitat de Barcelona, CIBERER, IBUB, IRSJD Barcelona Spain
| | - Daniel Grinberg
- Department of Genetics, Microbiology and Statistics Faculty of Biology, Universitat de Barcelona, CIBERER, IBUB, IRSJD Barcelona Spain
| | - Susanna Balcells
- Department of Genetics, Microbiology and Statistics Faculty of Biology, Universitat de Barcelona, CIBERER, IBUB, IRSJD Barcelona Spain
| |
Collapse
|
5
|
Martínez-Gil N, Ugartondo N, Grinberg D, Balcells S. Wnt Pathway Extracellular Components and Their Essential Roles in Bone Homeostasis. Genes (Basel) 2022; 13:genes13010138. [PMID: 35052478 PMCID: PMC8775112 DOI: 10.3390/genes13010138] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 12/11/2022] Open
Abstract
The Wnt pathway is involved in several processes essential for bone development and homeostasis. For proper functioning, the Wnt pathway is tightly regulated by numerous extracellular elements that act by both activating and inhibiting the pathway at different moments. This review aims to describe, summarize and update the findings regarding the extracellular modulators of the Wnt pathway, including co-receptors, ligands and inhibitors, in relation to bone homeostasis, with an emphasis on the animal models generated, the diseases associated with each gene and the bone processes in which each member is involved. The precise knowledge of all these elements will help us to identify possible targets that can be used as a therapeutic target for the treatment of bone diseases such as osteoporosis.
Collapse
|