1
|
Matsumura D, Kawao N, Yamada A, Okumoto K, Ohira T, Mizukami Y, Goto K, Kaji H. Tmem119 deficiency delays bone repair in mice. Bone 2024; 186:117177. [PMID: 38942344 DOI: 10.1016/j.bone.2024.117177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/12/2024] [Accepted: 06/24/2024] [Indexed: 06/30/2024]
Abstract
Tmem119 was identified as a bone anabolic factor in osteoblasts, however the roles of Tmem119 on bone repair have remained unknown. Therefore, we herein investigated the roles of Tmem119 on bone repair by examining the bone repair process after a femoral bone defect using Tmem119-deficient mice. In Tmem119-deficient mice, bone repair after a femoral bone defect was significantly delayed 10 and 14 days after bone injury in female and male mice with 3-dimensional micro-computed tomography analyses, respectively. The number of alkaline phosphatase-positive cells at the damaged sites was significantly decreased 7 days after bone injury in Tmem119-deficient mice, although the number of Osterix-positive cells was not significantly different 4 days after bone injury. The number of tartrate-resistant acid phosphatase-positive multinucleated cells as well as the number and luminal area of CD31-positive vessels at the damaged sites were not significantly different between Tmem119-deficient and wild-type mice. The present study first showed that Tmem119 deficiency delayed bone repair partly through a decrease in the osteoblastic bone formation of differentiated osteoblasts.
Collapse
Affiliation(s)
- Daichi Matsumura
- Department of Orthopaedic Surgery, Kindai University Faculty of Medicine, Osakasayama, Japan; Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, Osakasayama, Japan
| | - Naoyuki Kawao
- Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, Osakasayama, Japan
| | - Ayaka Yamada
- Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, Osakasayama, Japan
| | - Katsumi Okumoto
- Life Science Research Institute, Kindai University, Osakasayama, Japan
| | - Takashi Ohira
- Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, Osakasayama, Japan
| | - Yuya Mizukami
- Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, Osakasayama, Japan
| | - Koji Goto
- Department of Orthopaedic Surgery, Kindai University Faculty of Medicine, Osakasayama, Japan
| | - Hiroshi Kaji
- Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, Osakasayama, Japan.
| |
Collapse
|
2
|
Kawao N, Matsumura D, Yamada A, Okumoto K, Ohira T, Mizukami Y, Hashimoto D, Kaji H. Tmem119 is involved in bone anabolic effects of PTH through enhanced osteoblastic bone formation in mice. Bone 2024; 181:117040. [PMID: 38316336 DOI: 10.1016/j.bone.2024.117040] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/10/2024] [Accepted: 02/01/2024] [Indexed: 02/07/2024]
Abstract
The intermittent administration of parathyroid hormone (PTH) exerts potent bone anabolic effects, which increase bone mineral density (BMD) and reduce fracture risk in osteoporotic patients. However, the underlying mechanisms remain unclear. Tmem119 has been proposed as a factor that is closely linked to the osteoblast phenotype, and we previously reported that PTH enhanced the expression of Tmem119 in mouse osteoblastic cells. However, roles of Tmem119 in the bone anabolic effects of PTH in vivo remain unknown. We herein investigated the roles of Tmem119 in bone anabolic effects of PTH using Tmem119-deficient mice. Tmem119 deficiency significantly reduced PTH-induced increases in trabecular bone volume and cortical BMD of femurs. Effects of Tmem119 deficiency on bone mass seemed predominant in female mice. Histomorphometric analyses with calcein labeling showed that Tmem119 deficiency significantly attenuated PTH-induced increases in the rates of bone formation and mineralization as well as numbers of osteoblasts. Moreover, Tmem119 deficiency significantly blunted PTH-induced decreases in phosphorylation of β-catenin and increases in alkaline phosphatase activity in osteoblasts. In conclusion, the present results indicate that Tmem119 is involved in bone anabolic effects of PTH through osteoblastic bone formation partly related to canonical Wnt-β-catenin signaling in mice.
Collapse
Affiliation(s)
- Naoyuki Kawao
- Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, Osakasayama, Japan
| | - Daichi Matsumura
- Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, Osakasayama, Japan; Department of Orthopaedic Surgery, Kindai University Faculty of Medicine, Osakasayama, Japan
| | - Ayaka Yamada
- Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, Osakasayama, Japan
| | - Katsumi Okumoto
- Life Science Research Institute, Kindai University, Osakasayama, Japan
| | - Takashi Ohira
- Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, Osakasayama, Japan
| | - Yuya Mizukami
- Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, Osakasayama, Japan
| | - Daiki Hashimoto
- Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, Osakasayama, Japan
| | - Hiroshi Kaji
- Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, Osakasayama, Japan.
| |
Collapse
|
3
|
Zhao Z, Fan C, Wang S, Wang H, Deng H, Zeng S, Tang S, Li L, Xiong Z, Qiu X. Single-nucleus RNA and multiomics in situ pairwise sequencing reveals cellular heterogeneity of the abnormal ligamentum teres in patients with developmental dysplasia of the hip. Heliyon 2024; 10:e27803. [PMID: 38524543 PMCID: PMC10958365 DOI: 10.1016/j.heliyon.2024.e27803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 02/22/2024] [Accepted: 03/06/2024] [Indexed: 03/26/2024] Open
Abstract
Developmental dysplasia of the hip (DDH) is the most common hip deformity in pediatric orthopedics. One of the common pathological changes in DDH is the thickening and hypertrophy of the ligamentum teres. However, the underlying pathogenic mechanism responsible for these changes remains unclear. This study represents the first time that the heterogeneity of cell subsets in the abnormal ligamentum teres of patients with DDH has been resolved at the single-cell and spatial levels by snRNA-Seq and MiP-Seq. Through gene set enrichment and intercellular communication network analyses, we found that receptor-like cells and ligament stem cells may play an essential role in the pathological changes resulting in ligamentum teres thickening and hypertrophy. Eight ligand-receptor pairs related to the ECM-receptor pathway were observed to be closely associated with DDH. Further, using the Monocle R package, we predicted a differentiation trajectory of pericytes into two branches, leading to junctional ligament stem cells or fibroblasts. The expression of extracellular matrix-related genes along pseudotemporal trajectories was also investigated. Using MiP-Seq, we determined the expression distribution of marker genes specific to different cell types within the ligamentum teres, as well as differentially expressed DDH-associated genes at the spatial level.
Collapse
Affiliation(s)
- Zhenhui Zhao
- Shenzhen Children's Hospital, Shenzhen, Guangdong Province, China
- China Medical University, Shenyang, Liaoning Province, China
| | - Chuiqin Fan
- Shenzhen Children's Hospital, Shenzhen, Guangdong Province, China
- China Medical University, Shenyang, Liaoning Province, China
| | - Shiyou Wang
- Key Laboratory of Synthetic Biology Regulatory Elements, Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Suzhou Institute of Systems Medicine, Suzhou, China
| | - Haoyu Wang
- Key Laboratory of Synthetic Biology Regulatory Elements, Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Suzhou Institute of Systems Medicine, Suzhou, China
| | - Hansheng Deng
- Shenzhen Children's Hospital, Shenzhen, Guangdong Province, China
| | - Shuaidan Zeng
- Shenzhen Children's Hospital, Shenzhen, Guangdong Province, China
| | - Shengping Tang
- Shenzhen Children's Hospital, Shenzhen, Guangdong Province, China
| | - Li Li
- Shenzhen Luohu Maternity and Child Healthcare Hospital, Shenzhen, Guangdong Province, China
| | - Zhu Xiong
- Shenzhen Children's Hospital, Shenzhen, Guangdong Province, China
- China Medical University, Shenyang, Liaoning Province, China
| | - Xin Qiu
- Shenzhen Children's Hospital, Shenzhen, Guangdong Province, China
| |
Collapse
|