1
|
Pieles O, Morsczeck C. The Role of Protein Kinase C During the Differentiation of Stem and Precursor Cells into Tissue Cells. Biomedicines 2024; 12:2735. [PMID: 39767642 PMCID: PMC11726769 DOI: 10.3390/biomedicines12122735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 01/05/2025] Open
Abstract
Protein kinase C (PKC) plays an essential role during many biological processes including development from early embryonic stages until the terminal differentiation of specialized cells. This review summarizes the current knowledge about the involvement of PKC in molecular processes during the differentiation of stem/precursor cells into tissue cells with a particular focus on osteogenic, adipogenic, chondrogenic and neuronal differentiation by using a comprehensive approach. Interestingly, studies examining the overall role of PKC, or one of its three isoform groups (classical, novel and atypical PKCs), often showed controversial results. A discrete observation of distinct isoforms demonstrated that the impact on differentiation differs highly between the isoforms, and that during a certain process, the influence of only some isoforms is crucial, while others are less important. In particular, PKCβ inhibits, and PKCδ strongly supports osteogenesis, whereas it is the other way around for adipogenesis. PKCε is another isoform that overwhelmingly supports adipogenic differentiation. In addition, PKCα plays an important role in chondrogenesis, while neuronal differentiation has been positively associated with numerous isoforms including classical, novel and atypical PKCs. In a cellular context, various upstream mediators, like the canonical and non-canonical Wnt pathways, endogenously control PKC activity and thus, their activity interferes with the influence of PKC on differentiation. Downstream of PKC, several proteins and pathways build the molecular bridge between the enzyme and the control of differentiation, of which only a few have been well characterized so far. In this context, PKC also cooperates with other kinases like Akt or protein kinase A (PKA). Furthermore, PKC is capable of directly phosphorylating transcription factors with pivotal function for a certain developmental process. Ultimately, profound knowledge about the role of distinct PKC isoforms and the involved signaling pathways during differentiation constitutes a promising tool to improve the use of stem cells in regenerative therapies by precisely manipulating the activity of PKC or downstream effectors.
Collapse
Affiliation(s)
| | - Christian Morsczeck
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany;
| |
Collapse
|
2
|
Zheng YY, Hu ZN, Zhou GH. A review: analysis of technical challenges in cultured meat production and its commercialization. Crit Rev Food Sci Nutr 2024:1-18. [PMID: 38384235 DOI: 10.1080/10408398.2024.2315447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
The cultured meat technology has developed rapidly in recent years, but there are still many technical challenges that hinder the large-scale production and commercialization of cultured meat. Firstly, it is necessary to lay the foundation for cultured meat production by obtaining seed cells and maintaining stable cell functions. Next, technologies such as bioreactors are used to expand the scale of cell culture, and three-dimensional culture technologies such as scaffold culture or 3D printing are used to construct the three-dimensional structure of cultured meat. At the same time, it can reduce production costs by developing serum-free medium suitable for cultured meat. Finally, the edible quality of cultured meat is improved by evaluating food safety and sensory flavor, and combining ethical and consumer acceptability issues. Therefore, this review fully demonstrates the current development status and existing technical challenges of the cultured meat production technology with regard to the key points described above, in order to provide research ideas for the industrial production of cultured meat.
Collapse
Affiliation(s)
- Yan-Yan Zheng
- College of Food Science and Technology, Nanjing Agricultural University, National Center of Meat Quality and Safety Nanjing, MOST, Key Laboratory of Meat Processing and Quality Control, MOE, Key Laboratory of Meat Processing, MOA, Nanjing, P.R. China
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Ze-Nan Hu
- College of Food Science and Technology, Nanjing Agricultural University, National Center of Meat Quality and Safety Nanjing, MOST, Key Laboratory of Meat Processing and Quality Control, MOE, Key Laboratory of Meat Processing, MOA, Nanjing, P.R. China
| | - Guang-Hong Zhou
- College of Food Science and Technology, Nanjing Agricultural University, National Center of Meat Quality and Safety Nanjing, MOST, Key Laboratory of Meat Processing and Quality Control, MOE, Key Laboratory of Meat Processing, MOA, Nanjing, P.R. China
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
3
|
Jiang J, Zhao C, Han T, Shan H, Cui G, Li S, Xie Z, Wang J. Advanced Glycation End Products, Bone Health, and Diabetes
Mellitus. Exp Clin Endocrinol Diabetes 2022; 130:671-677. [DOI: 10.1055/a-1861-2388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
AbstractAdvanced glycation end products (AGEs), the compounds resulting from the
non-enzymatic glycosylation between reducing sugars and proteins, are derived
from food or produced de novo. Over time, more and more endogenous and
exogenous AGEs accumulate in various organs such as the liver, kidneys, muscle,
and bone, threatening human health. Among these organs, bone is most widely
reported. AGEs accumulating in bone reduce bone strength by participating in
bone structure formation and breaking bone homeostasis by binding their
receptors to alter the proliferation, differentiation, and apoptosis of cells
involved in bone remodeling. In this review, we summarize the research about the
effects of AGEs on bone health and highlight their associations with bone health
in diabetes patients to provide some clues toward the discovery of new treatment
and prevention strategies for bone-related diseases caused by AGEs.
Collapse
Affiliation(s)
- Jingjing Jiang
- School of Tourism and Cuisine, Yangzhou University, 196 Huayang West
Road, Yangzhou, 225127, Jiangsu, P. R. China
| | - Changyu Zhao
- School of Tourism and Cuisine, Yangzhou University, 196 Huayang West
Road, Yangzhou, 225127, Jiangsu, P. R. China
| | - Tingting Han
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui
Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, P. R.
China
| | - Hongyan Shan
- School of Tourism and Cuisine, Yangzhou University, 196 Huayang West
Road, Yangzhou, 225127, Jiangsu, P. R. China
| | - Guiyou Cui
- School of Tourism and Cuisine, Yangzhou University, 196 Huayang West
Road, Yangzhou, 225127, Jiangsu, P. R. China
| | - Songnan Li
- Joint International Research Laboratory of Agriculture and Agri-Product
Safety, the Ministry of Education of China, Institutes of Agricultural Science
and Technology Development, Yangzhou University, 48 Wenhui East Road, Yangzhou,
225009, Jiangsu, P. R. China
| | - Zhongwen Xie
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui
Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, P. R.
China
| | - Jun Wang
- School of Tourism and Cuisine, Yangzhou University, 196 Huayang West
Road, Yangzhou, 225127, Jiangsu, P. R. China
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui
Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, P. R.
China
| |
Collapse
|
4
|
Vlashi R, Zhang X, Wu M, Chen G. Wnt signaling: essential roles in osteoblast differentiation, bone metabolism and therapeutic implications for bone and skeletal disorders. Genes Dis 2022. [DOI: 10.1016/j.gendis.2022.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022] Open
|
5
|
Zhu G, Zhang T, Chen M, Yao K, Huang X, Zhang B, Li Y, Liu J, Wang Y, Zhao Z. Bone physiological microenvironment and healing mechanism: Basis for future bone-tissue engineering scaffolds. Bioact Mater 2021; 6:4110-4140. [PMID: 33997497 PMCID: PMC8091181 DOI: 10.1016/j.bioactmat.2021.03.043] [Citation(s) in RCA: 182] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/19/2021] [Accepted: 03/28/2021] [Indexed: 02/06/2023] Open
Abstract
Bone-tissue defects affect millions of people worldwide. Despite being common treatment approaches, autologous and allogeneic bone grafting have not achieved the ideal therapeutic effect. This has prompted researchers to explore novel bone-regeneration methods. In recent decades, the development of bone tissue engineering (BTE) scaffolds has been leading the forefront of this field. As researchers have provided deep insights into bone physiology and the bone-healing mechanism, various biomimicking and bioinspired BTE scaffolds have been reported. Now it is necessary to review the progress of natural bone physiology and bone healing mechanism, which will provide more valuable enlightenments for researchers in this field. This work details the physiological microenvironment of the natural bone tissue, bone-healing process, and various biomolecules involved therein. Next, according to the bone physiological microenvironment and the delivery of bioactive factors based on the bone-healing mechanism, it elaborates the biomimetic design of a scaffold, highlighting the designing of BTE scaffolds according to bone biology and providing the rationale for designing next-generation BTE scaffolds that conform to natural bone healing and regeneration.
Collapse
Affiliation(s)
- Guanyin Zhu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China
| | - Tianxu Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China
| | - Miao Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China
| | - Ke Yao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China
| | - Xinqi Huang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China
| | - Bo Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China
| | - Yazhen Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China
| | - Jun Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610041, PR China
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China
| |
Collapse
|
6
|
Overcoming barriers confronting application of protein therapeutics in bone fracture healing. Drug Deliv Transl Res 2020; 11:842-865. [PMID: 32783153 DOI: 10.1007/s13346-020-00829-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Bone fracture is a major contributor to debilitation and death among patients with bone diseases. Thus, osteogenic protein therapeutics and their delivery to bone have been extensively researched as strategies to accelerate fracture healing. To prevent morbidity and mortality of fractures, which occur frequently in the aging population, there is a critical need for development of first-line therapeutics. Bone morphogenic protein-2 (BMP-2) has been at the forefront of bone regeneration research for its potent osteoinduction, despite safety concerns and biophysiological obstacles of delivery to bone. However, continued pursuit of osteoinductive proteins as a therapeutic option is largely aided by drug delivery systems, playing an imperative role in enhancing safety and efficacy. In this work, we highlighted several types of drug delivery platforms and their biomaterials, to evaluate the suitability in overcoming challenges of therapeutic protein delivery for bone regeneration. To showcase the clinical considerations for each type of platform, we have assessed the most common route of administration strategies for bone regeneration, classifying the platforms as implantable or injectable. Additionally, we have analyzed the commonly utilized models and methodology for safety and efficacy evaluation of these osteogenic protein-loaded systems, to present clinical opinions for future directions of research in this field. It is hoped that this review will promote research and development of clinically translatable osteogenic protein therapeutics, while targeting first-line treatment status for achieving desired outcomes of fracture healing. Graphical abstract.
Collapse
|
7
|
Mo W, Wu J, Qiu Q, Zhang F, Luo H, Xu N, Zhu W, Liang M. Platelet-rich plasma inhibits osteoblast apoptosis and actin cytoskeleton disruption induced by gingipains through upregulating integrin β1. Cell Biol Int 2020; 44:2120-2130. [PMID: 32662922 DOI: 10.1002/cbin.11420] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 07/02/2020] [Accepted: 07/12/2020] [Indexed: 12/24/2022]
Abstract
The aim of this study was to explore the effects of platelet-rich plasma on gingipain-caused changes in cell morphology and apoptosis of osteoblasts. Mouse osteoblasts MC3T3-E1 cells were treated with gingipain extracts from Porphyromonas gingivalis in the presence or absence of platelet-rich plasma. Apoptosis was detected with terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling staining. F-actin was determined by phalloidin-fluorescent staining and observed under confocal microscopy. Western blot analysis was used to detect integrin β1, F-actin, and G-actin protein expressions. A knocking down approach was used to determine the role of integrin β1. The platelet-rich plasma protected osteoblasts from gingipain-induced apoptosis in a dose-dependent manner, accompanied by upregulation of integrin β1. Platelet-rich plasma reversed the loss of F-actin integrity and decrease of F-actin/G-actin ratio in osteoblasts in the presence of gingipains. By contrast, the effects of platelet-rich plasma were abrogated by knockdown of integrin β1. The platelet-rich plasma failed to reduce cell apoptosis and reorganize the cytoskeleton after knockdown of integrin β1. In conclusion, platelet-rich plasma inhibits gingipain-induced osteoblast apoptosis and actin cytoskeleton disruption by upregulating integrin β1 expression.
Collapse
Affiliation(s)
- Weiyan Mo
- Department of Periodontology, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China.,The Stomatology Medical Center, The First People's Hospital of Foshan, Foshan, China
| | - Juan Wu
- Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Qihong Qiu
- Department of Periodontology, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Fuping Zhang
- Department of Periodontology, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Haoyuan Luo
- Department of Periodontology, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Na Xu
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Wenjun Zhu
- Department of Periodontology, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Min Liang
- Department of Periodontology, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| |
Collapse
|
8
|
Mammoto T, Muyleart M, Mammoto A. Endothelial YAP1 in Regenerative Lung Growth through the Angiopoietin-Tie2 Pathway. Am J Respir Cell Mol Biol 2019; 60:117-127. [PMID: 30156429 DOI: 10.1165/rcmb.2018-0105oc] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Angiogenesis, the formation of new blood capillaries, plays a key role in organ development and regeneration. Inhibition of lung angiogenesis through the blockade of angiogenic signaling pathways impairs compensatory and regenerative lung growth after unilateral pneumonectomy (PNX). The Hippo signaling transducer, Yes-associated protein (YAP) 1 binds to TEA domain transcription factor (TEAD) and controls organ size and regeneration. However, the role of endothelial YAP1 in lung vascular and alveolar morphogenesis remains unclear. In this report, we demonstrate that knockdown of YAP1 in endothelial cells (ECs) decreases angiogenic factor receptor Tie2 expression, and inhibits EC sprouting and epithelial cell budding in vitro and vascular and alveolar morphogenesis in the gel implanted on the mouse lung. The expression levels of YAP1, TEAD1, and Tie2 increase in ECs isolated from the remaining mouse lungs after unilateral PNX and vascular formation is stimulated in the post-PNX mouse lungs. Knockdown of endothelial YAP1 inhibits compensatory lung growth and vascular and alveolar morphogenesis after unilateral PNX. These findings suggest that endothelial YAP1 is required for lung vascular and alveolar regeneration and modulation of YAP1 in ECs may be novel interventions for the improvement of lung regeneration.
Collapse
Affiliation(s)
| | - Megan Muyleart
- 1 Department of Radiology and.,2 Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Akiko Mammoto
- 2 Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
9
|
Zhang J, Ma Z, Yan K, Wang Y, Yang Y, Wu X. Matrix Gla Protein Promotes the Bone Formation by Up-Regulating Wnt/β-Catenin Signaling Pathway. Front Endocrinol (Lausanne) 2019; 10:891. [PMID: 31920993 PMCID: PMC6933527 DOI: 10.3389/fendo.2019.00891] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 12/05/2019] [Indexed: 01/07/2023] Open
Abstract
Objective: Studies suggest that matrix Gla protein (MGP) is associated with osteoporosis. However, the precise mechanism through which MGP regulates bone metabolism is not fully understood. The purpose of this study was to clarify the role of MGP in bone metabolism. Methods: The MGP gene in MG63 cell line was knocked down using shRNA. Cell Counting Kit-8 assay was used to detect the proliferation of MG63 cells. Moreover, the differentiation and mineralization of MG63 cells were measured through alkaline phosphatase staining and Alizarin Red S staining. Western blotting and quantitative reverse transcription-polymerase chain reaction were conducted to detect the protein and mRNA levels of components of the Wnt/β-catenin signaling pathway, such as Wnt3a, β-catenin, and Runx2. Transgenic (MGP+) mice were used to detect the effects of MGP in vivo. Results: The Cell Counting Kit-8 assay suggested that upregulated MGP could promote the proliferation of MG63 cells, whereas its downregulation inhibited proliferation. The alkaline phosphatase assay and Alizarin Red S staining showed that overexpressed MGP led to prominently upregulated differentiation and mineralization of MG63 cells. Conversely, knockdown of MGP decreased the levels of differentiation and mineralization. Western blotting and quantitative reverse transcription-polymerase chain reaction showed that overexpression of MGP upregulated Wnt3a, β-catenin, and Runx2. In contrast, knocking down MGP reduced their transcriptional levels. In vivo, overexpression of MGP inhibited the decrease in bone mineral density induced via ovariectomy in the femur, and significantly prevented bone volume fraction, trabecular number, BV/TV, and TbTh to decrease. In addition, it increased the levels of estradiol in sera. Conclusion: The findings of this study suggest that the promotion of osteoblast proliferation, differentiation, and mineralization by MGP may be a mechanism to prevent osteoporosis. Furthermore, the results show that MGP promoted the osteogenic effects via the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Endocrinology and Metabolism, The Second Attached Hospital of Nanchang University, Nanchang, China
- Department of Endocrinology and Metabolism, Heyuan People's Hospital, Heyuan, China
| | - Zhenrong Ma
- Department of Parasitology, School of Basic Medical Science, Central South University, Changsha, China
| | - Kang Yan
- Department of Parasitology, School of Basic Medical Science, Central South University, Changsha, China
| | - Yong Wang
- Department of Forensic Medicine, School of Basic Medical Science, Central South University, Changsha, China
| | - Ya Yang
- Department of Endocrinology and Metabolism, The Second Attached Hospital of Nanchang University, Nanchang, China
- *Correspondence: Ya Yang
| | - Xiang Wu
- Department of Parasitology, School of Basic Medical Science, Central South University, Changsha, China
- Xiang Wu
| |
Collapse
|
10
|
Thouverey C, Ferrari S, Caverzasio J. Selective inhibition of Src family kinases by SU6656 increases bone mass by uncoupling bone formation from resorption in mice. Bone 2018; 113:95-104. [PMID: 29751129 DOI: 10.1016/j.bone.2018.05.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 04/25/2018] [Accepted: 05/07/2018] [Indexed: 01/08/2023]
Abstract
Mice deficient in the non-receptor tyrosine kinase Src exhibit high bone mass due to impaired bone resorption and increased bone formation. Although several Src family kinase inhibitors inhibit bone resorption in vivo, they display variable effects on bone formation. SU6656 is a selective Src family kinase inhibitor with weaker activity towards the non-receptor tyrosine kinase Abl and receptor tyrosine kinases which are required for appropriate osteoblast proliferation, differentiation and function. Therefore, we sought to determine whether SU6656 could increase bone mass by inhibiting bone resorption and by stimulating bone formation, and to explore its mechanisms of action. Four-month-old female C57Bl/6J mice received intraperitoneal injections of either 25 mg/kg SU6656 or its vehicle every other day for 12 weeks. SU6656-treated mice exhibited increased bone mineral density, cortical thickness, cancellous bone volume and trabecular thickness. SU6656 inhibited bone resorption in mice as shown by reduced osteoclast number, and diminished expressions of Oscar, Trap5b and CtsK. SU6656 did not affect Rankl or Opg expressions. However, it blocked c-fms signaling, osteoclastogenesis and matrix resorption, and induced osteoclast apoptosis in vitro. In addition, SU6656 stimulated bone formation rates at trabecular, endosteal and periosteal bone envelopes, and increased osteoblast number in trabecular bone. SU6656 did not affect expressions of clastokines favoring bone formation in mice. However, it stimulated osteoblast differentiation and matrix mineralization by specifically facilitating BMP-SMAD signaling pathway in vitro. Knockdown of Src and Yes mimicked the stimulatory effect of SU6656 on osteoblast differentiation. In conclusion, SU6656 uncouples bone formation from resorption by inhibiting osteoclast development, function and survival, and by enhancing BMP-mediated osteoblast differentiation.
Collapse
Affiliation(s)
- Cyril Thouverey
- Service of Bone Diseases, Department of Internal Medicine Specialties, University Hospital of Geneva, 1205 Geneva, Switzerland.
| | - Serge Ferrari
- Service of Bone Diseases, Department of Internal Medicine Specialties, University Hospital of Geneva, 1205 Geneva, Switzerland
| | - Joseph Caverzasio
- Service of Bone Diseases, Department of Internal Medicine Specialties, University Hospital of Geneva, 1205 Geneva, Switzerland
| |
Collapse
|
11
|
Costa-Rodrigues J, Fernandes MH, Pinho O, Monteiro PRR. Modulation of human osteoclastogenesis and osteoblastogenesis by lycopene. J Nutr Biochem 2018; 57:26-34. [PMID: 29655028 DOI: 10.1016/j.jnutbio.2018.03.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 01/20/2018] [Accepted: 03/01/2018] [Indexed: 01/21/2023]
Abstract
Lycopene is a lipid-soluble pigment that is mainly found in tomato. It is the carotenoid that presents the highest antioxidant potential, and due to that, it has been implicated in a decrease of the risk of several oxidative-stress-related disorders, such as cancer, inflammatory diseases and osteoporosis. Nevertheless, at the present, there is no detailed information about how lycopene affects bone metabolism. The aim of the present work was to characterize the cellular and molecular effects of lycopene on human osteoclast and osteoblast differentiation and function. It was observed that lycopene, at levels found in plasma after the ingestion of lycopene-containing products, decreased osteoclast differentiation but did not affect cell density/survival; calcium-phosphate resorbing ability was also decreased. On the other hand, osteoblast proliferation (via a decrease on apoptosis) and differentiation were increased in the presence of lycopene. The observed effects in both cell types appeared to be related to significant changes in MEK signaling pathway, but also in protein kinase C pathway in osteoclasts and NFkB signaling in osteoblasts. In conclusion, lycopene appears to promote an anabolic state of bone metabolism, stimulating osteoblastogenesis and inhibiting osteoclastogenesis, which may contribute to the promotion of a proper health status of bone tissue. This information might be relevant for the prevention and delay in the progression of osteolytic bone conditions.
Collapse
Affiliation(s)
- João Costa-Rodrigues
- Faculdade de Ciências da Nutrição e Alimentação, U. Porto, Portugal; ESS-Escola Superior de Saúde, P. Porto, Portugal; Faculdade de Medicina Dentária, U. Porto, Portugal; Instituto Politécnico de Viana do Castelo, Escola Superior de Saúde, Portugal.
| | | | - Olívia Pinho
- Faculdade de Ciências da Nutrição e Alimentação, U. Porto, Portugal; REQUIMTE/LAQV-U. Porto, Portugal
| | | |
Collapse
|
12
|
Sebastian A, Hum NR, Murugesh DK, Hatsell S, Economides AN, Loots GG. Wnt co-receptors Lrp5 and Lrp6 differentially mediate Wnt3a signaling in osteoblasts. PLoS One 2017; 12:e0188264. [PMID: 29176883 PMCID: PMC5703471 DOI: 10.1371/journal.pone.0188264] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 11/05/2017] [Indexed: 01/10/2023] Open
Abstract
Wnt3a is a major regulator of bone metabolism however, very few of its target genes are known in bone. Wnt3a preferentially signals through transmembrane receptors Frizzled and co-receptors Lrp5/6 to activate the canonical signaling pathway. Previous studies have shown that the canonical Wnt co-receptors Lrp5 and Lrp6 also play an essential role in normal postnatal bone homeostasis, yet, very little is known about specific contributions by these co-receptors in Wnt3a-dependent signaling. We used high-throughput sequencing technology to identify target genes regulated by Wnt3a in osteoblasts and to elucidate the role of Lrp5 and Lrp6 in mediating Wnt3a signaling. Our study identified 782 genes regulated by Wnt3a in primary calvarial osteoblasts. Wnt3a up-regulated the expression of several key regulators of osteoblast proliferation/ early stages of differentiation while inhibiting genes expressed in later stages of osteoblastogenesis. We also found that Lrp6 is the key mediator of Wnt3a signaling in osteoblasts and Lrp5 played a less significant role in mediating Wnt3a signaling.
Collapse
Affiliation(s)
- Aimy Sebastian
- Lawrence Livermore National Laboratories, Physical and Life Sciences Directorate, Livermore, CA, United States of America
- UC Merced, School of Natural Sciences, Merced, CA, United States of America
| | - Nicholas R. Hum
- Lawrence Livermore National Laboratories, Physical and Life Sciences Directorate, Livermore, CA, United States of America
- UC Merced, School of Natural Sciences, Merced, CA, United States of America
| | - Deepa K. Murugesh
- Lawrence Livermore National Laboratories, Physical and Life Sciences Directorate, Livermore, CA, United States of America
| | - Sarah Hatsell
- Regeneron Pharmaceuticals, Tarrytown, NY, United States of America
| | | | - Gabriela G. Loots
- Lawrence Livermore National Laboratories, Physical and Life Sciences Directorate, Livermore, CA, United States of America
- UC Merced, School of Natural Sciences, Merced, CA, United States of America
- * E-mail:
| |
Collapse
|
13
|
Huang W, Wang P, Shen T, Hu C, Han Y, Song M, Bian Y, Li Y, Zhu Y. Aluminum Trichloride Inhibited Osteoblastic Proliferation and Downregulated the Wnt/β-Catenin Pathway. Biol Trace Elem Res 2017; 177:323-330. [PMID: 27830450 DOI: 10.1007/s12011-016-0880-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 10/18/2016] [Indexed: 12/28/2022]
Abstract
Aluminum (Al) exposure inhibits bone formation. Osteoblastic proliferation promotes bone formation. Therefore, we inferred that Al may inhibit bone formation by the inhibition of osteoblastic proliferation. However, the effects and molecular mechanisms of Al on osteoblastic proliferation are still under investigation. Osteoblastic proliferation can be regulated by Wnt/β-catenin signaling pathway. To investigate the effects of Al on osteoblastic proliferation and whether Wnt/β-catenin signaling pathway is involved in it, osteoblasts from neonatal rats were cultured and exposed to 0, 0.4 mM (1/20 IC50), 0.8 mM (1/10 IC50), and 1.6 mM (1/5 IC50) of aluminum trichloride (AlCl3) for 24 h, respectively. The osteoblastic proliferation rates; Wnt3a, lipoprotein receptor-related protein 5 (LRP-5), T cell factor 1 (TCF-1), cyclin D1, and c-Myc messenger RNA (mRNA) expressions; and p-glycogen synthase kinase 3β (GSK3β), GSK3β, and β-catenin protein expressions indicated that AlCl3 inhibited osteoblastic proliferation and downregulated Wnt/β-catenin signaling pathway. In addition, the AlCl3 concentration was negatively correlated with osteoblastic proliferation rates and the mRNA expressions of Wnt3a, c-Myc, and cyclin D1, while the osteoblastic proliferation rates were positively correlated with mRNA expressions of Wnt3a, c-Myc, and cyclin D1. Taken together, these findings indicated that AlCl3 inhibits osteoblastic proliferation may be associated with the inactivation of Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Wanyue Huang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Peiyan Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Tongtong Shen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Chongwei Hu
- College of Animal Science, Fujian Agricultural and Forestry University, Fuzhou, 350002, China
| | - Yanfei Han
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Miao Song
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Yu Bian
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Yanfei Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China.
| | - Yanzhu Zhu
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China.
| |
Collapse
|
14
|
PS1/ γ-Secretase-Mediated Cadherin Cleavage Induces β-Catenin Nuclear Translocation and Osteogenic Differentiation of Human Bone Marrow Stromal Cells. Stem Cells Int 2016; 2016:3865315. [PMID: 28053606 PMCID: PMC5178376 DOI: 10.1155/2016/3865315] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 11/01/2016] [Indexed: 01/21/2023] Open
Abstract
Bone marrow stromal cells (BMSCs) are considered a promising tool for bone bioengineering. However, the mechanisms controlling osteoblastic commitment are still unclear. Osteogenic differentiation of BMSCs requires the activation of β-catenin signaling, classically known to be regulated by the canonical Wnt pathway. However, BMSCs treatment with canonical Wnts in vitro does not always result in osteogenic differentiation and evidence indicates that a more complex signaling pathway, involving cadherins, would be required to induce β-catenin signaling in these cells. Here we showed that Wnt3a alone did not induce TCF activation in BMSCs, maintaining the cells at a proliferative state. On the other hand, we verified that, upon BMSCs osteoinduction with dexamethasone, cadherins were cleaved by the PS1/γ-secretase complex at the plasma membrane, and this event was associated with an enhanced β-catenin translocation to the nucleus and signaling. When PS1/γ-secretase activity was inhibited, the osteogenic process was impaired. Altogether, we provide evidence that PS1/γ-secretase-mediated cadherin cleavage has as an important role in controlling β-catenin signaling during the onset of BMSCs osteogenic differentiation, as part of a complex signaling pathway responsible for cell fate decision. A comprehensive map of these pathways might contribute to the development of strategies to improve bone repair.
Collapse
|
15
|
Lee Y, Bae KJ, Chon HJ, Kim SH, Kim SA, Kim J. A Receptor Tyrosine Kinase Inhibitor, Dovitinib (TKI-258), Enhances BMP-2-Induced Osteoblast Differentiation In Vitro. Mol Cells 2016; 39:389-94. [PMID: 27025387 PMCID: PMC4870186 DOI: 10.14348/molcells.2016.2300] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 02/16/2016] [Accepted: 02/25/2016] [Indexed: 02/07/2023] Open
Abstract
Dovitinib (TKI258) is a small molecule multi-kinase inhibitor currently in clinical phase I/II/III development for the treatment of various types of cancers. This drug has a safe and effective pharmacokinetic/pharmacodynamic profile. Although dovitinib can bind several kinases at nanomolar concentrations, there are no reports relating to osteoporosis or osteoblast differentiation. Herein, we investigated the effect of dovitinib on human recombinant bone morphogenetic protein (BMP)-2-induced osteoblast differentiation in a cell culture model. Dovitinib enhanced the BMP-2-induced alkaline phosphatase (ALP) induction, which is a representative marker of osteoblast differentiation. Dovitinib also stimulated the translocation of phosphorylated Smad1/5/8 into the nucleus and phosphorylation of mitogen-activated protein kinases, including ERK1/2 and p38. In addition, the mRNA expression of BMP-4, BMP-7, ALP, and OCN increased with dovitinib treatment. Our results suggest that dovitinib has a potent stimulating effect on BMP-2-induced osteoblast differentiation and this existing drug has potential for repositioning in the treatment of bone-related disorders.
Collapse
Affiliation(s)
- Yura Lee
- Department of Biomedical Laboratory Science, School of Medicine, Eulji University, Daejeon 34824,
Korea
| | - Kyoung Jun Bae
- Department of Biomedical Laboratory Science, School of Medicine, Eulji University, Daejeon 34824,
Korea
| | - Hae Jung Chon
- Department of Biomedical Laboratory Science, School of Medicine, Eulji University, Daejeon 34824,
Korea
| | - Seong Hwan Kim
- Laboratory of Translational Therapeutics, Korea Research Institute of Chemical Technology, Eulji University, Daejeon 34824,
Korea
| | - Soon Ae Kim
- Department of Pharmacology, School of Medicine, Eulji University, Daejeon 34824,
Korea
| | - Jiyeon Kim
- Department of Biomedical Laboratory Science, School of Medicine, Eulji University, Daejeon 34824,
Korea
| |
Collapse
|
16
|
P2X7 nucleotide receptor signaling potentiates the Wnt/β-catenin pathway in cells of the osteoblast lineage. Purinergic Signal 2016; 12:509-20. [PMID: 27206526 DOI: 10.1007/s11302-016-9517-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Accepted: 05/06/2016] [Indexed: 12/12/2022] Open
Abstract
The P2X7 and Wnt/β-catenin signaling pathways regulate osteoblast differentiation and are critical for the anabolic responses of bone to mechanical loading. However, whether these pathways interact to control osteoblast activity is unknown. The purpose of this study was to investigate the effects of P2X7 activation on Wnt/β-catenin signaling in osteoblasts. Using MC3T3-E1 cells, we found that combined treatment with Wnt3a and the P2X7 agonist 2'(3')-O-(4-benzoylbenzoyl)adenosine 5'-triphosphate (BzATP) elicited more sustained β-catenin nuclear localization than that induced by Wnt3a alone. Wnt3a-induced increases in β-catenin transcriptional activity were also potentiated by treatment with BzATP. Consistent with involvement of P2X7, a high ATP concentration (1 mM) potentiated Wnt3a-induced β-catenin transcriptional activity, whereas a low concentration (10 μM) of ATP, adenosine 5'-diphosphate (ADP), or uridine 5'-triphosphate (UTP) failed to elicit a response. The potentiation of β-catenin transcriptional activity elicited by BzATP was also inhibited by two distinct P2X7 antagonists: A 438079 and A 740003. Furthermore, responses to Wnt3a in calvarial cells isolated from P2rx7 knockout mice were significantly less than in cells from wild-type controls. In MC3T3-E1 cells, BzATP increased inhibitory phosphorylation of glycogen synthase kinase 3β (GSK3β), a process that was blocked by A 438079 and diminished by inhibition of protein kinase C. Thus, P2X7 signaling may potentiate the canonical Wnt pathway through GSK3β inhibition. Taken together, we show that P2X7 activation prolongs and potentiates Wnt/β-catenin signaling. Consequently, cross-talk between P2X7 and Wnt/β-catenin pathways may modulate osteoblast activity in response to mechanical loading.
Collapse
|
17
|
Thouverey C, Caverzasio J. Sclerostin inhibits osteoblast differentiation without affecting BMP2/SMAD1/5 or Wnt3a/β-catenin signaling but through activation of platelet-derived growth factor receptor signaling in vitro. BONEKEY REPORTS 2015; 4:757. [PMID: 26587226 DOI: 10.1038/bonekey.2015.126] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 09/29/2015] [Indexed: 01/18/2023]
Abstract
Sclerostin inhibits bone formation mostly by antagonizing LRP5/6, thus inhibiting Wnt signaling. However, experiments with genetically modified mouse models suggest that a significant part of sclerostin-mediated inhibition of bone formation is due to interactions with other binding partners. The objective of the present work was to identify signaling pathways affected by sclerostin in relation with its inhibitory action on osteogenic differentiation of C3H10T1/2 cells, MC3T3-E1 cells and primary osteoblasts. Sclerostin inhibited BMP2-induced osteoblast differentiation without altering SMAD1/5 phosphorylation and transcriptional activity. Moreover, sclerostin prevented Wnt3a-mediated osteoblastogenesis without affecting LRP5/6 phosphorylation or β-catenin transcriptional activity. In addition, sclerostin inhibited mineralization promoted by GSK3 inhibition, which mimics canonical Wnt signaling without activation of LRP5/6, suggesting that sclerostin can prevent osteoblast differentiation without antagonizing LRP5/6. Finally, we found that sclerostin could activate platelet-derived growth factor receptor (PDGFR) and its downstream signaling pathways PLCγ, PKC, Akt and ERK1/2. PDGFR inhibition could reverse sclerostin-mediated inhibitory activity on BMP2-induced osteoblast differentiation. Therefore, our data suggest that sclerostin can activate PDGFR signaling by itself, and this functional interaction may be involved in the negative effect of sclerostin on osteoblast differentiation.
Collapse
Affiliation(s)
- Cyril Thouverey
- Service of Bone Diseases, Department of Internal Medicine Specialties, University Hospital of Geneva , Geneva, Switzerland
| | - Joseph Caverzasio
- Service of Bone Diseases, Department of Internal Medicine Specialties, University Hospital of Geneva , Geneva, Switzerland
| |
Collapse
|
18
|
Extracellular signaling molecules to promote fracture healing and bone regeneration. Adv Drug Deliv Rev 2015; 94:3-12. [PMID: 26428617 DOI: 10.1016/j.addr.2015.09.008] [Citation(s) in RCA: 198] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 09/12/2015] [Accepted: 09/16/2015] [Indexed: 12/31/2022]
Abstract
To date, the delivery of signaling molecules for bone regeneration has focused primarily on factors that directly affect the bone formation pathways (osteoinduction) or that serve to increase the number of bone forming progenitor cells. The first commercialized growth factors approved for bone regeneration, Bone Morphogenetic Protein 2 and 7 (BMP2 and BMP7), are direct inducers of osteoblast differentiation. As well, newer generations of potential therapeutics that target the Wnt signaling pathway are also direct osteoinducers. On the other hand, some signaling molecules may play a role as mitogens and serve to increase the number of bone producing cells or may increase vascularization. This is true for factors such as Platelet Derived Growth Factor (PDGF) or Fibroblast Growth Factor (FGF). Vascular Endothelial Growth Factor (VEGF) likely has a special role. Not only does it induce new blood vessel formation, it also has direct effects on osteoblasts through endothelial cell-based BMP production. In addition to these pathways that classically have targeted bone production, there are also opportunities to target other aspects of the bone healing process such as inflammation, vascularization, and cell ingress to the fracture site. Bone regeneration is highly complex with defined, yet overlapping stages of healing. We will review established and novel extracellular signaling factors associated with various stages of fracture healing that could be targeted to promote enhanced bone regeneration. Importantly, multiple potential cell and tissues could be targeted to enhance healing in addition to focusing solely on osteoinductive therapeutics.
Collapse
|
19
|
Su CM, Chiang YC, Huang CY, Hsu CJ, Fong YC, Tang CH. Osteopontin Promotes Oncostatin M Production in Human Osteoblasts: Implication of Rheumatoid Arthritis Therapy. THE JOURNAL OF IMMUNOLOGY 2015; 195:3355-64. [PMID: 26304992 DOI: 10.4049/jimmunol.1403191] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 07/23/2015] [Indexed: 12/21/2022]
Abstract
Accumulating evidence indicates that subchondral bone might play an essential role in rheumatoid arthritis (RA). Osteopontin (OPN) induces the production of an important proinflammatory cytokine involved in the pathogenesis of RA. This study evaluated the activation of oncostatin M (OSM) by OPN in human primary osteoblasts to understand RA pathogenesis and characterized the intracellular signaling pathways involved in this activation. Quantitative PCR, ELISA, and Western blot results indicated that stimulation of human primary osteoblasts with OPN induces OSM expression through αvβ3 integrin/c-Src/platelet-derived growth factor receptor transactivation/MEK/ERK. Treatment of osteoblasts with OPN also increased c-Jun phosphorylation, AP-1 luciferase activity, and c-Jun binding to the AP-1 element on the OSM promoter, as demonstrated using chromatin immunoprecipitation assay. Moreover, inhibition of OPN expression using lentiviral-OPN short hairpin RNA resulted in the amelioration of articular swelling, cartilage erosion, and OSM expression in the ankle joint of mice with collagen-induced arthritis as shown using microcomputed tomography and immunohistochemistry staining. Our results imply that OSM expression in osteoblasts increases in response to OPN-induced inflammation in vitro. Finally, lentiviral-OPN short hairpin RNA ameliorates the inflammatory response and bone destruction in mice with collagen-induced arthritis. Therefore, OPN may be a potential therapeutic target for RA.
Collapse
Affiliation(s)
- Chen-Ming Su
- Department of Biomedical Sciences Laboratory, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, Zhejiang, China 322100; Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan 40466
| | - Yi-Chun Chiang
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan 40466
| | - Chun-Yin Huang
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan 40466; Department of Orthopedic Surgery, China Medical University Beigang Hospital, Yun-Lin County, Taiwan 65142
| | - Chin-Jung Hsu
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan 40466; Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan 40466
| | - Yi-Chin Fong
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan 40466; Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan 40466
| | - Chih-Hsin Tang
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan 40466; Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan 40466; and Department of Biotechnology, College of Health Science, Asia University, Taichung, Taiwan 40466
| |
Collapse
|
20
|
Li A, Xia X, Yeh J, Kua H, Liu H, Mishina Y, Hao A, Li B. PDGF-AA promotes osteogenic differentiation and migration of mesenchymal stem cell by down-regulating PDGFRα and derepressing BMP-Smad1/5/8 signaling. PLoS One 2014; 9:e113785. [PMID: 25470749 PMCID: PMC4254917 DOI: 10.1371/journal.pone.0113785] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 10/29/2014] [Indexed: 12/21/2022] Open
Abstract
Platelet-derived growth factors (PDGFs) play important roles in skeletal development and bone fracture healing, yet how PDGFs execute their functions remains incompletely understood. Here we show that PDGF-AA, but not -AB or -BB, could activate the BMP-Smad1/5/8 pathway in mesenchymal stem cells (MSCs), which requires BMPRIA as well as PDGFRα. PDGF-AA promotes MSC osteogenic differentiation through the BMP-Smad1/5/8-Runx2/Osx axis and MSC migration via the BMP-Smad1/5/8-Twist1/Atf4 axis. Mechanistic studies show that PDGF-AA activates BMP-Smad1/5/8 signaling by feedback down-regulating PDGFRα, which frees BMPRI and allows for BMPRI-BMPRII complex formation to activate smad1/5/8, using BMP molecules in the microenvironment. This study unravels a physical and functional interaction between PDGFRα and BMPRI, which plays an important role in MSC differentiation and migration, and establishes a link between PDGF-AA and BMPs pathways, two essential regulators of embryonic development and tissue homeostasis.
Collapse
Affiliation(s)
- Anna Li
- Department of Histology and Embryology, Shandong University School of Medicine, 44 Wenhua Xi Road, Jinan, Shandong, 250012 P.R. China
- The Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Xuechun Xia
- The Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200030, China
| | - James Yeh
- The Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Huiyi Kua
- The Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research, Singapore 138632, Singapore
| | - Huijuan Liu
- The Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Yuji Mishina
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Aijun Hao
- Department of Histology and Embryology, Shandong University School of Medicine, 44 Wenhua Xi Road, Jinan, Shandong, 250012 P.R. China
- * E-mail: (BL); (AH)
| | - Baojie Li
- The Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200030, China
- * E-mail: (BL); (AH)
| |
Collapse
|
21
|
Aino M, Nishida E, Fujieda Y, Orimoto A, Mitani A, Noguchi T, Makino H, Murakami S, Umezawa A, Yoneda T, Saito M. Isolation and characterization of the human immature osteoblast culture system from the alveolar bones of aged donors for bone regeneration therapy. Expert Opin Biol Ther 2014; 14:1731-44. [PMID: 25241883 DOI: 10.1517/14712598.2014.960387] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Establishment of human osteoblast cultures that retain bone-forming capacity is one of the prerequisites for successful bone regeneration therapy. Because osteoblasts harvested from adults exhibit limited growth, the use of immature osteoblasts that can expand ex vivo should greatly facilitate bone regeneration therapy. In this study, we developed immature human osteoblasts isolated from aged alveolar bone (HAOBs). METHODS HAOBs obtained after the collagenase digestion of alveolar bones from elderly donors. Then, we assessed osteogenic ability of HAOB after treatment with recombinant human bone morphogenic protein-2 or transplantation into immunodeficient mice. In addition, we performed global gene expression analysis to identify functional marker for HAOB. RESULTS HAOBs, which can differentiate into osteoblasts and have a robust bone-forming ability, were successfully extracted from donors who were > 60 years of age. We found that the HAOBs exhibited a higher osteogenic ability compared with those of human mesenchymal stem cells and highly expressed NEBULETTE (NEBL) with osteogenic abilities. CONCLUSIONS HAOBs have properties similar to those of human immature osteoblasts and appear to be a novel material for cell-based bone regeneration therapy. Additionally, the expression level of NEBL may serve as a marker for the osteogenic ability of these cells.
Collapse
Affiliation(s)
- Makoto Aino
- Aichi-gakuin University, School of Dentistry, Department of Periodontology , Nagoya, Aichi , Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|