1
|
Guo J, Wang F, Hu Y, Luo Y, Wei Y, Xu K, Zhang H, Liu H, Bo L, Lv S, Sheng S, Zhuang X, Zhang T, Xu C, Chen X, Su J. Exosome-based bone-targeting drug delivery alleviates impaired osteoblastic bone formation and bone loss in inflammatory bowel diseases. Cell Rep Med 2023; 4:100881. [PMID: 36603578 PMCID: PMC9873828 DOI: 10.1016/j.xcrm.2022.100881] [Citation(s) in RCA: 52] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 11/12/2022] [Accepted: 12/12/2022] [Indexed: 01/06/2023]
Abstract
Systematic bone loss is commonly complicated with inflammatory bowel diseases (IBDs) with unclear pathogenesis and uncertain treatment. In experimental colitis mouse models established by dextran sulfate sodium and IL-10 knockout induced with piroxicam, bone mass and quality are significantly decreased. Colitis mice demonstrate a lower bone formation rate and fewer osteoblasts in femur. Bone marrow mesenchymal stem/stromal cells (BMSCs) from colitis mice tend to differentiate into adipocytes rather than osteoblasts. Serum from patients with IBD promotes adipogenesis of human BMSCs. RNA sequencing reveals that colitis downregulates Wnt signaling in BMSCs. For treatment, exosomes with Golgi glycoprotein 1 inserted could carry Wnt agonist 1 and accumulate in bone via intravenous administration. They could alleviate bone loss, promote bone formation, and accelerate fracture healing in colitis mice. Collectively, BMSC commitment in inflammatory microenvironment contributes to lower bone quantity and quality and could be rescued by redirecting differentiation toward osteoblasts through bone-targeted drug delivery.
Collapse
Affiliation(s)
- Jiawei Guo
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; Department of Orthopedics Trauma, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Fuxiao Wang
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
| | - Yan Hu
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
| | - Ying Luo
- Department of Orthopedics Trauma, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Yan Wei
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
| | - Ke Xu
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
| | - Hao Zhang
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
| | - Han Liu
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
| | - Lumin Bo
- Department of Gastroenterology, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Shunli Lv
- Department of Gastroenterology, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Shihao Sheng
- Department of Orthopedics Trauma, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Xinchen Zhuang
- Department of Orthopedics Trauma, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Tao Zhang
- Department of Orthopedics Trauma, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Can Xu
- Department of Gastroenterology, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China.
| | - Xiao Chen
- Department of Orthopedics Trauma, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China.
| | - Jiacan Su
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; Department of Orthopedics Trauma, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China; Organoid Research Center, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
2
|
Suico MA, Shuto T, Kai H. Roles and regulations of the ETS transcription factor ELF4/MEF. J Mol Cell Biol 2018; 9:168-177. [PMID: 27932483 PMCID: PMC5907832 DOI: 10.1093/jmcb/mjw051] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 12/21/2016] [Indexed: 12/12/2022] Open
Abstract
Most E26 transformation-specific (ETS) transcription factors are involved in the pathogenesis and progression of cancer. This is in part due to the roles of ETS transcription factors in basic biological processes such as growth, proliferation, and differentiation, and also because of their regulatory functions that have physiological relevance in tumorigenesis, immunity, and basal cellular homoeostasis. A member of the E74-like factor (ELF) subfamily of the ETS transcription factor family—myeloid elf-1-like factor (MEF), designated as ELF4—has been shown to be critically involved in immune response and signalling, osteogenesis, adipogenesis, cancer, and stem cell quiescence. ELF4 carries out these functions as a transcriptional activator or through interactions with its partner proteins. Mutations in ELF4 cause aberrant interactions and induce downstream processes that may lead to diseased cells. Knowing how ELF4 impinges on certain cellular processes and how it is regulated in the cells can lead to a better understanding of the physiological and pathological consequences of modulated ELF4 activity.
Collapse
Affiliation(s)
- Mary Ann Suico
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Kumamoto 862-0973, Japan
| | - Tsuyoshi Shuto
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Kumamoto 862-0973, Japan
| | - Hirofumi Kai
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Kumamoto 862-0973, Japan
| |
Collapse
|
3
|
Ho MH, Yao CJ, Liao MH, Lin PI, Liu SH, Chen RM. Chitosan nanofiber scaffold improves bone healing via stimulating trabecular bone production due to upregulation of the Runx2/osteocalcin/alkaline phosphatase signaling pathway. Int J Nanomedicine 2015; 10:5941-54. [PMID: 26451104 PMCID: PMC4590342 DOI: 10.2147/ijn.s90669] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Osteoblasts play critical roles in bone formation. Our previous study showed that chitosan nanofibers can stimulate osteoblast proliferation and maturation. This translational study used an animal model of bone defects to evaluate the effects of chitosan nanofiber scaffolds on bone healing and the possible mechanisms. In this study, we produced uniform chitosan nanofibers with fiber diameters of approximately 200 nm. A bone defect was surgically created in the proximal femurs of male C57LB/6 mice, and then the left femur was implanted with chitosan nanofiber scaffolds for 21 days and compared with the right femur, which served as a control. Histological analyses revealed that implantation of chitosan nanofiber scaffolds did not lead to hepatotoxicity or nephrotoxicity. Instead, imaging analyses by X-ray transmission and microcomputed tomography showed that implantation of chitosan nanofiber scaffolds improved bone healing compared with the control group. In parallel, microcomputed tomography and bone histomorphometric assays further demonstrated augmentation of the production of new trabecular bone in the chitosan nanofiber-treated group. Furthermore, implantation of chitosan nanofiber scaffolds led to a significant increase in the trabecular bone thickness but a reduction in the trabecular parameter factor. As to the mechanisms, analysis by confocal microscopy showed that implantation of chitosan nanofiber scaffolds increased levels of Runt-related transcription factor 2 (Runx2), a key transcription factor that regulates osteogenesis, in the bone defect sites. Successively, amounts of alkaline phosphatase and osteocalcin, two typical biomarkers that can simulate bone maturation, were augmented following implantation of chitosan nanofiber scaffolds. Taken together, this translational study showed a beneficial effect of chitosan nanofiber scaffolds on bone healing through stimulating trabecular bone production due to upregulation of Runx2-mediated alkaline phosphatase and osteocalcin gene expressions. Our results suggest the potential of chitosan nanofiber scaffolds for therapy of bone diseases, including bone defects and bone fractures.
Collapse
Affiliation(s)
- Ming-Hua Ho
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan ; Cell Physiology and Molecular Image Research Center, Taipei Medical University-Wan Fang Hospital, Taipei, Taiwan
| | - Chih-Jung Yao
- Department of Internal Medicine, School of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Mei-Hsiu Liao
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Pei-I Lin
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Shing-Hwa Liu
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ruei-Ming Chen
- Cell Physiology and Molecular Image Research Center, Taipei Medical University-Wan Fang Hospital, Taipei, Taiwan ; Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan ; Anesthetics and Toxicology Research Center, Taipei Medical University Hospital, Taipei, Taiwan
| |
Collapse
|
4
|
Baek K, Baek JH. The transcription factors myeloid elf-1-like factor (MEF) and distal-less homeobox 5 (Dlx5) inversely regulate the differentiation of osteoblasts and adipocytes in bone marrow. Adipocyte 2013; 2:50-54. [PMID: 23700553 PMCID: PMC3661131 DOI: 10.4161/adip.22019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
In bone marrow, the differentiation of osteoblasts and adipocytes is reciprocally regulated. This inverse regulation occurs mainly through complex signaling crosstalk between transcriptional factors such as peroxisome proliferator-activated receptor-γ (PPARγ) and runt-related transcription factor 2 (Runx2). This commentary addresses the role of myeloid elf-1 like factor (MEF) and distal-less homeobox 5 (Dlx5) in the lineage commitment of bone marrow mesenchymal stem cells into adipocytes and osteoblasts, respectively. MEF suppresses osteoblastogenesis by preventing Runx2 from binding to the promoters of target genes and enhancing adipogenesis via transactivation of PPARγ expression. Conversely, Dlx5 enhances osteoblastogenesis through upregulation of the expression of Runx2 and osteoblast marker genes while suppressing adipogenesis through the downregulation of PPARγ expression by sequestering the cAMP response element binding protein and CCAAT/enhancer-binding protein α. Studies designed to examine the effects of physiological and pathologic signals on the expression of MEF and Dlx5 will provide further insight to the function of these transcription factors in vivo.
Collapse
|
5
|
Baek K, Cho JY, Hwang HR, Kwon A, Lee HL, Park HJ, Qadir AS, Ryoo HM, Woo KM, Baek JH. Myeloid Elf-1-like factor stimulates adipogenic differentiation through the induction of peroxisome proliferator-activated receptor γ expression in bone marrow. J Cell Physiol 2012; 227:3603-12. [PMID: 22307523 DOI: 10.1002/jcp.24064] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Myeloid Elf-1 like factor (MEF) is one of the Ets transcription factors known to regulate cell proliferation and differentiation. A previous report has shown that osteoblast-specific MEF transgenic mice (Col1a1-MEF TG mice) have low bone mass but high bone marrow adiposity. In the present study, we explored a previously unappreciated mechanism whereby MEF promotes adipogenesis in bone marrow. An adipogenic colony-forming unit assay showed that bone marrow cells derived from Col1a1-MEF TG mice had a higher adipogenic differentiation potential compared to those from wild-type. The levels of adipogenic marker genes expression in 3T3L1 cells were higher when co-cultured with Col1a1-MEF TG bone marrow cells than with wild-type cells. MC3T3-E1 preosteoblasts transfected with MEF secreted higher levels of 15-deoxy-delta (12, 14)-prostaglandin J(2), a potent endogenous ligand of peroxisome proliferator-activated receptor γ (PPARγ), under adipogenic conditions. MEF overexpression increased the adipogenic marker genes expression including PPARγ and lipid droplet accumulation in MC3T3-E1 preosteoblasts and 3T3L1 preadipocytes. Endogenous MEF expression levels increased as adipocyte differentiation proceeded. Knockdown of MEF by siRNA suppressed expression levels of adipogenic marker genes including PPARγ. MEF directly bound to the MEF binding element on the mouse PPARγ promoter, transactivating promoter activity. Immunohistochemical staining of tibia sections demonstrated that bone lining cells and bone marrow cells express higher levels of PPARγ protein in Col1a1-MEF TG mice than in wild-type mice. These results suggest that MEF transactivates PPARγ expression, which, in turn, enhances adipogenic differentiation. Furthermore, MEF overexpressing osteoblasts secrete higher levels of adipogenic factors, creating a marrow microenvironment that favors adipogenesis.
Collapse
Affiliation(s)
- Kyunghwa Baek
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Choi YJ, Heo SH, Lee JM, Cho JY. Identification of azurocidin as a potential periodontitis biomarker by a proteomic analysis of gingival crevicular fluid. Proteome Sci 2011; 9:42. [PMID: 21794177 PMCID: PMC3162872 DOI: 10.1186/1477-5956-9-42] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Accepted: 07/28/2011] [Indexed: 11/18/2022] Open
Abstract
Background The inflammatory disease periodontitis results in tooth loss and can even lead to diseases of the whole body if not treated. Gingival crevicular fluid (GCF) reflects the condition of the gingiva and contains proteins transuded from serum or cells at inflamed sites. In this study, we aimed to discover potential protein biomarkers for periodontitis in GCF proteome using LC-MS/MS. Results We identified 305 proteins from GCF of healthy individuals and periodontitis patients collected using a sterile gel loading tip by ESI-MS/MS coupled to nano-LC. Among these proteins, about 45 proteins were differentially expressed in the GCF proteome of moderate periodontitis patients when compared to the healthy individuals. We first identified azurocidin in the GCF, but not the saliva, as an upregulated protein in the periodontitis patients and verified its increased expression during periodontitis by ELISA using the GCF of the classified periodontitis patients compared to the healthy individuals. In addition, we found that azurocidin inhibited the differentiation of bone marrow-derived macrophages to osteoclasts. Conclusions Our results show that GCF collection using a gel loading tip and subsequent LC-MS/MS analysis following 1D-PAGE proteomic separation are effective for the analysis of the GCF proteome. Our current results also suggest that azurocidin could be a potential biomarker candidate for the early detection of inflammatory periodontal destruction by gingivitis and some chronic periodontitis. Our data also suggest that azurocidin may have an inhibitory role in osteoclast differentiation and, thus, a protective role in alveolar bone loss during the early stages of periodontitis.
Collapse
Affiliation(s)
- Young-Jin Choi
- Department of Biochemistry, School of Dentistry, Kyungpook National University, Daegu, Korea.
| | | | | | | |
Collapse
|
7
|
Kim BG, Park YJ, Libermann TA, Cho JY. PTH regulates myleoid ELF-1-like factor (MEF)-induced MAB-21-like-1 (MAB21L1) expression through the JNK1 pathway. J Cell Biochem 2011; 112:2051-61. [DOI: 10.1002/jcb.23124] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|