1
|
Whittier DE, Walle M, Schenk D, Atkins PR, Collins CJ, Zysset P, Lippuner K, Müller R. A multi-stack registration technique to improve measurement accuracy and precision across longitudinal HR-pQCT scans. Bone 2023; 176:116893. [PMID: 37666441 DOI: 10.1016/j.bone.2023.116893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/14/2023] [Accepted: 09/01/2023] [Indexed: 09/06/2023]
Abstract
BACKGROUND Recent applications of high-resolution peripheral quantitative computed tomography (HR-pQCT) have demonstrated that changes in local bone remodelling can be quantified in vivo using longitudinal three-dimensional image registration. However, certain emerging applications, such as fracture healing and joint analysis, require larger multi-stack scan regions that can result in stack shift image artifacts. These artifacts can be detrimental to the accurate alignment of the bone structure across multiple timepoints. The purpose of this study was to establish a multi-stack registration protocol for evaluating longitudinal HR-pQCT images and to assess the accuracy and precision error in comparison with measures obtained using previously established three-dimensional longitudinal registration. METHODS Three same day multi-stack HR-pQCT scans of the radius (2 stacks in length) and tibia (3 stacks in length) were obtained from 39 healthy individuals who participated in a previous reproducibility study. A fully automated multi-stack registration algorithm was developed to re-align stacks within a scan by leveraging slight offsets between longitudinal scans. Stack shift severity before and after registration was quantified using a newly proposed stack-shift severity score. The false discovery rate for bone remodelling events and precision error of bone morphology and micro-finite element analysis parameters were compared between longitudinally registered scans with and without the addition of multi-stack registration. RESULTS Most scans (82 %) improved in stack alignment or maintained the lowest stack shift severity score when multi-stack registration was implemented. The false discovery rate of bone remodelling events significantly decreased after multi-stack registration, resulting in median false detection of bone formation and resorption fractions between 3.2 to 7.5 % at the radius and 3.4 to 5.3 % at the tibia. Further, precision error was significantly reduced or remained unchanged in all standard bone morphology and micro-finite element analysis parameters, except for total and trabecular cross-sectional areas. CONCLUSION Multi-stack registration is an effective strategy for accurately aligning multi-stack HR-pQCT scans without modification of the image acquisition protocol. The algorithm presented here is a viable approach for performing accurate morphological analysis on multi-stack HR-pQCT scans, particularly for advanced application investigating local bone remodelling in vivo.
Collapse
Affiliation(s)
- Danielle E Whittier
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland; Department of Osteoporosis, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Matthias Walle
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - Denis Schenk
- ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
| | - Penny R Atkins
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland; Department of Osteoporosis, Inselspital, Bern University Hospital, University of Bern, Switzerland; Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, United States
| | - Caitlyn J Collins
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland; Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, United States
| | - Philippe Zysset
- ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
| | - Kurt Lippuner
- Department of Osteoporosis, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Ralph Müller
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
2
|
Surowiec RK, Swallow EA, Warden SJ, Allen MR. Tracking changes of individual cortical pores over 1 year via HR-pQCT in a small cohort of 60-year-old females. Bone Rep 2022; 17:101633. [PMID: 36337684 PMCID: PMC9634666 DOI: 10.1016/j.bonr.2022.101633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
Introduction High-resolution peripheral quantitative computed tomography (HR-pQCT) is a powerful tool that has revolutionized 3D longitudinal assessment of bone microarchitecture. However, cortical porosity, a common characteristic of cortical bone loss, is still often determined by static evaluation of overall porosity at one timepoint. Therefore, we sought to 1) describe a technique to evaluate individual cortical pore dynamics in aging females over one year using HR-pQCT imaging and 2) determine whether formation and expansion of pores would exceed contraction and infilling of pores. Methods HR-pQCT (60.7 μm resolution) images were acquired one year apart at the distal tibia and distal radius in seven female volunteers (60-72 years of age). Baseline and one-year images were registered at each bone site and a custom software was used to quantify dynamic activity of individual cortical pores using the following categories: developed, infilled, expanded, contracted, and static. Results Over the one-year period, cortical pores actively developed, contracted, expanded, and infilled. More pores expanded and developed vs. infilled or contracted leading to increased pore area in both tibial and radial sites (p = 0.0034 and p = 0.0474, respectively). Closed pores in the tibia, those that were not connected to the endosteal or periosteal surfaces, were the most dynamic of any pores type (open/closed) at either bone site. Conclusion This study demonstrates an approach to longitudinally track individual cortical pore activity in tibial and radial sites. These data expand conventional parameters for assessing cortical porosity and show increased porosity in one year of aging is caused by newly developed pores and expansion of existing pores.
Collapse
Affiliation(s)
- Rachel K. Surowiec
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Biomedical Engineering, Indiana University–Purdue University Indianapolis, Indianapolis, IN, United States
| | - Elizabeth A. Swallow
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Stuart J. Warden
- Department of Physical Therapy, School of Health & Human Sciences, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Matthew R. Allen
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, United States
- Roudebush Veterans Administration Medical Center, Indianapolis, IN, United States
| |
Collapse
|
3
|
Sadoughi S, Pasco C, Joseph GB, Wu PH, Schafer AL, Kazakia GJ. Cortical Bone Loss Following Gastric Bypass Surgery Is Not Primarily Endocortical. J Bone Miner Res 2022; 37:753-763. [PMID: 35067981 PMCID: PMC9071182 DOI: 10.1002/jbmr.4512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 12/28/2021] [Accepted: 01/11/2022] [Indexed: 11/09/2022]
Abstract
Roux-en Y gastric bypass (RYGB) surgery is an effective treatment for obesity; however, it may negatively impact skeletal health by increasing fracture risk. This increase may be the result not only of decreased bone mineral density but also of changes in bone microstructure, for example, increased cortical porosity. Increased tibial and radial cortical porosity of patients undergoing RYGB surgery has been observed as early as 6 months postoperatively; however, local microstructural changes and associated biological mechanisms driving this increase remain unclear. To provide insight, we studied the spatial distribution of cortical porosity in 42 women and men (aged 46 ± 12 years) after RYGB surgery. Distal tibias and radii were evaluated with high-resolution peripheral quantitative computed tomography (HR-pQCT) preoperatively and at 12 months postoperatively. Laminar analysis was used to determine cortical pore number and size within the endosteal, midcortical, and periosteal layers of the cortex. Paired t tests were used to compare baseline versus follow-up porosity parameters in each layer. Mixed models were used to compare longitudinal changes in laminar analysis outcomes between layers. We found that the midcortical (0.927 ± 0.607 mm-2 to 1.069 ± 0.654 mm-2 , p = 0.004; 0.439 ± 0.293 mm-2 to 0.509 ± 0.343 mm-2 , p = 0.03) and periosteal (0.642 ± 0.412 mm-2 to 0.843 ± 0.452 mm-2 , p < 0.0001; 0.171 ± 0.101 mm-2 to 0.230 ± 0.160 mm-2 , p = 0.003) layers underwent the greatest increases in porosity over the 12-month period at the distal tibia and radius, respectively. The endosteal layer, which had the greatest porosity at baseline, did not undergo significant porosity increase over the same period (1.234 ± 0.402 mm-2 to 1.259 ± 0.413 mm-2 , p = 0.49; 0.584 ± 0.290 mm-2 to 0.620 ± 0.299 mm-2 , p = 0.35) at the distal tibia and radius, respectively. An alternative baseline-mapping approach for endosteal boundary definition confirmed that cortical bone loss was not primarily endosteal. These findings indicate that increases in cortical porosity happen in regions distant from the endosteal surface, suggesting that the underlying mechanism driving the increase in cortical porosity is not merely endosteal trabecularization. © 2022 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Saghi Sadoughi
- Musculoskeletal Quantitative Imaging Research Group, Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Courtney Pasco
- Musculoskeletal Quantitative Imaging Research Group, Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Gabby B Joseph
- Musculoskeletal Quantitative Imaging Research Group, Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Po-Hung Wu
- Musculoskeletal Quantitative Imaging Research Group, Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Anne L Schafer
- Department of Medicine, University of California, San Francisco, CA, USA
- Endocrine Research Unit, San Francisco VA Health Care System, San Francisco, CA, USA
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
| | - Galateia J Kazakia
- Musculoskeletal Quantitative Imaging Research Group, Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| |
Collapse
|
4
|
Ebeling PR, Nguyen HH, Aleksova J, Vincent AJ, Wong P, Milat F. Secondary Osteoporosis. Endocr Rev 2022; 43:240-313. [PMID: 34476488 DOI: 10.1210/endrev/bnab028] [Citation(s) in RCA: 100] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Indexed: 02/07/2023]
Abstract
Osteoporosis is a global public health problem, with fractures contributing to significant morbidity and mortality. Although postmenopausal osteoporosis is most common, up to 30% of postmenopausal women, > 50% of premenopausal women, and between 50% and 80% of men have secondary osteoporosis. Exclusion of secondary causes is important, as treatment of such patients often commences by treating the underlying condition. These are varied but often neglected, ranging from endocrine to chronic inflammatory and genetic conditions. General screening is recommended for all patients with osteoporosis, with advanced investigations reserved for premenopausal women and men aged < 50 years, for older patients in whom classical risk factors for osteoporosis are absent, and for all patients with the lowest bone mass (Z-score ≤ -2). The response of secondary osteoporosis to conventional anti-osteoporosis therapy may be inadequate if the underlying condition is unrecognized and untreated. Bone densitometry, using dual-energy x-ray absorptiometry, may underestimate fracture risk in some chronic diseases, including glucocorticoid-induced osteoporosis, type 2 diabetes, and obesity, and may overestimate fracture risk in others (eg, Turner syndrome). FRAX and trabecular bone score may provide additional information regarding fracture risk in secondary osteoporosis, but their use is limited to adults aged ≥ 40 years and ≥ 50 years, respectively. In addition, FRAX requires adjustment in some chronic conditions, such as glucocorticoid use, type 2 diabetes, and HIV. In most conditions, evidence for antiresorptive or anabolic therapy is limited to increases in bone mass. Current osteoporosis management guidelines also neglect secondary osteoporosis and these existing evidence gaps are discussed.
Collapse
Affiliation(s)
- Peter R Ebeling
- Department of Medicine, School of Clinical Sciences, Monash University, Clayton, Victoria 3168, Australia.,Department of Endocrinology, Monash Health, Clayton, Victoria 3168, Australia
| | - Hanh H Nguyen
- Department of Medicine, School of Clinical Sciences, Monash University, Clayton, Victoria 3168, Australia.,Department of Endocrinology, Monash Health, Clayton, Victoria 3168, Australia.,Department of Endocrinology and Diabetes, Western Health, Victoria 3011, Australia
| | - Jasna Aleksova
- Department of Endocrinology, Monash Health, Clayton, Victoria 3168, Australia.,Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia
| | - Amanda J Vincent
- Department of Endocrinology, Monash Health, Clayton, Victoria 3168, Australia.,Monash Centre for Health Research and Implementation, School of Public Health and Preventative Medicine, Monash University, Clayton, Victoria 3168, Australia
| | - Phillip Wong
- Department of Medicine, School of Clinical Sciences, Monash University, Clayton, Victoria 3168, Australia.,Department of Endocrinology, Monash Health, Clayton, Victoria 3168, Australia.,Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia
| | - Frances Milat
- Department of Medicine, School of Clinical Sciences, Monash University, Clayton, Victoria 3168, Australia.,Department of Endocrinology, Monash Health, Clayton, Victoria 3168, Australia.,Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia
| |
Collapse
|
5
|
Meng C, Jørgensen HS, Verlinden L, Bravenboer N, de Loor H, D'Haese PC, Carmeliet G, Evenepoel P. Contemporary kidney transplantation has a limited impact on bone microarchitecture. Bone Rep 2022; 16:101172. [PMID: 35198658 PMCID: PMC8851083 DOI: 10.1016/j.bonr.2022.101172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 02/03/2022] [Indexed: 11/10/2022] Open
Abstract
Bone microarchitecture is an important component of bone quality and disturbances may reduce bone strength and resistance to trauma. Kidney transplant recipients have an excess risk of fractures, and bone loss affecting both trabecular and cortical bone compartments have been demonstrated after kidney transplantation. The primary aim of this study was to investigate the impact of kidney transplantation on trabecular and cortical bone microarchitecture, assessed by histomorphometry and micro computed tomography (μCT). Iliac crest bone biopsies, analyzed by bone histomorphometry and μCT, were performed at time of kidney transplantation and 12 months post-transplantation in an unselected cohort of 30 patients. Biochemical markers of mineral metabolism and bone turnover were measured at both time-points. At 12 months post-transplantation, bone turnover was low in 5 (17%) and normal in 25 (83%) patients. By histomorphometry, bone remodeling normalized, with decreases in eroded perimeters (4.0 to 2.1%, p = 0.02) and number of patients with marrow fibrosis (41 to 0%, p < 0.001). By μCT, trabecular thickness (134 to 125 μM, p = 0.003) decreased slightly. Other parameters of bone volume and microarchitecture, including cortical thickness (729 to 713 μm, p = 0.73) and porosity (10.2 to 9.5%, p = 0.15), remained stable. We conclude that kidney transplantation with current immunosuppressive protocols has a limited impact on bone microarchitecture. Bone structure after kidney transplantation was explored using biopsy, μCT, and DXA. Modest trabecular bone loss was detected in the first post-transplant year. Cortical thickness and porosity were overall stable post-transplant. Contemporary kidney transplantation has minimal impact on bone microarchitecture.
Collapse
|
6
|
Ghasem-Zadeh A, Bui M, Seeman E, Boyd SK, Iuliano S, Jaipurwala R, Mount PF, Toussaint ND, Chiang C. Bone microarchitecture and estimated failure load are deteriorated whether patients with chronic kidney disease have normal bone mineral density, osteopenia or osteoporosis. Bone 2022; 154:116260. [PMID: 34801763 DOI: 10.1016/j.bone.2021.116260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/28/2021] [Accepted: 11/15/2021] [Indexed: 11/02/2022]
Abstract
INTRODUCTION Measurement of bone mineral density (BMD) is recommended in patients with chronic kidney disease (CKD). However, most persons in the community and most patients with CKD have osteopenia, suggesting fracture risk is low. Bone loss compromises bone microarchitecture which increases fragility disproportionate to modest deficits in BMD. We therefore hypothesized that patients with CKD have reduced estimated failure load due to deterioration in microarchitecture irrespective of whether they have normal femoral neck (FN) BMD, osteopenia or osteoporosis. METHODS We measured distal tibial and distal radial microarchitecture in 128 patients with CKD and 275 age- and sex-matched controls using high resolution peripheral quantitative computed tomography, FN-BMD using bone densitometry and estimated failure load at the distal appendicular sites using finite element analysis. RESULTS Patients versus controls respectively had: lower tibial cortical area 219 (40.7) vs. 237 (35.3) mm2, p = 0.002, lower cortical volumetric BMD 543 (80.7) vs. 642 (81.7) mgHA/cm3 due to higher porosity 69.6 (6.19) vs. 61.9 (6.48)% and lower matrix mineral density 64.2 (0.62) vs. 65.1 (1.28)%, lower trabecular vBMD 92.2 (41.1) vs. 149 (43.0) mgHA/cm3 due to fewer and spatially disrupted trabeculae, lower FN-BMD 0.78 (0.12) vs. 0.94 (0.14) g/cm2 and reduced estimated failure load 3825 (1152) vs. 5778 (1467) N, all p < 0.001. Deterioration in microarchitecture and estimated failure load was most severe in patients and controls with osteoporosis. Patients with CKD with osteopenia and normal FN-BMD had more deteriorated tibial microarchitecture and estimated failure load than controls with BMD in the same category. In univariate analyses, microarchitecture and FN-BMD were both associated with estimated failure load. In multivariable analyses, only microarchitecture was independently associated with estimated failure load and accounted for 87% of the variance. CONCLUSIONS Bone fragility is likely to be present in patients with CKD despite them having osteopenia or normal BMD. Measuring microarchitecture may assist in targeting therapy to those at risk of fracture.
Collapse
Affiliation(s)
- Ali Ghasem-Zadeh
- Dept of Medicine, Austin Health, The University of Melbourne, Melbourne, Australia; Depts of Medicine and Endocrinology, Austin Health, The University of Melbourne, Melbourne, Australia.
| | - Minh Bui
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia
| | - Ego Seeman
- Dept of Medicine, Austin Health, The University of Melbourne, Melbourne, Australia; Depts of Medicine and Endocrinology, Austin Health, The University of Melbourne, Melbourne, Australia
| | - Steven K Boyd
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada
| | - Sandra Iuliano
- Dept of Medicine, Austin Health, The University of Melbourne, Melbourne, Australia; Depts of Medicine and Endocrinology, Austin Health, The University of Melbourne, Melbourne, Australia
| | - Rizwan Jaipurwala
- Dept of Medicine, Austin Health, The University of Melbourne, Melbourne, Australia; Depts of Medicine and Endocrinology, Austin Health, The University of Melbourne, Melbourne, Australia
| | - Peter F Mount
- Dept of Medicine, Austin Health, The University of Melbourne, Melbourne, Australia; Dept of Nephrology, Austin Health, The University of Melbourne, Melbourne, Australia
| | - Nigel D Toussaint
- Dept of Nephrology, The Royal Melbourne Hospital, The University of Melbourne, Melbourne, Australia
| | - Cherie Chiang
- Dept of Medicine, Austin Health, The University of Melbourne, Melbourne, Australia; Depts of Medicine and Endocrinology, Austin Health, The University of Melbourne, Melbourne, Australia
| |
Collapse
|
7
|
Neves CL, Marques IDB, Custódio MR. Mineral and bone disorder after kidney transplantation (KTx). J Bras Nefrol 2021; 43:674-679. [PMID: 34910805 PMCID: PMC8823922 DOI: 10.1590/2175-8239-jbn-2021-s113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 06/03/2021] [Indexed: 11/22/2022] Open
Affiliation(s)
- Carolina Lara Neves
- Universidade Federal da Bahia, Hospital das Clínicas, Salvador, BA, Brazil.,Hospital Ana Nery, Salvador, BA, Brazil
| | | | | |
Collapse
|
8
|
Ruderman I, Rajapakse CS, Xu W, Tang S, Robertson PL, Toussaint ND. Changes in bone microarchitecture following parathyroidectomy in patients with secondary hyperparathyroidism. Bone Rep 2021; 15:101120. [PMID: 34485631 PMCID: PMC8406147 DOI: 10.1016/j.bonr.2021.101120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 08/04/2021] [Accepted: 08/18/2021] [Indexed: 11/16/2022] Open
Abstract
Background Secondary hyperparathyroidism (SHPT) in patients with chronic kidney disease (CKD) has a significant effect on bone, affecting both trabecular and cortical compartments. Although parathyroidectomy results in biochemical improvement in mineral metabolism, changes in bone microarchitecture as evaluated by high-resolution imaging modalities are not known. Magnetic resonance imaging (MRI) provides in-depth three-dimensional assessment of bone microarchitecture, as well as determination of mechanical bone strength determined by finite element analysis (FEA). Methods We conducted a single-centre longitudinal study to evaluate changes in bone microarchitecture with MRI in patients with SHPT undergoing parathyroidectomy. MRI was performed at the distal tibia at baseline (time of parathyroidectomy) and at least 12 months following surgery. Trabecular and cortical topological parameters as well as bone mechanical competence using FEA were assessed. Results Fifteen patients with CKD (12 male, 3 female) underwent both MRI scans at the time of surgery and at least 12 months post-surgery. At baseline, 13 patients were on dialysis, one had a functioning kidney transplant, and one was pre-dialysis with stage 5 CKD. Seven patients received a kidney transplant following parathyroidectomy prior to follow-up MRI. MRI parameters in patients at follow up were consistent with loss in trabecular and cortical bone thickness (p = 0.006 and 0.03 respectively). Patients who underwent a kidney transplant in the follow-up period had reduction in trabecular thickness (p = 0.05), whereas those who continued on dialysis had reduction in cortical thickness (p = 0.04) and mechanical bone strength on FEA (p = 0.03). Conclusion Patients with severe SHPT requiring parathyroidectomy have persistent changes in bone microarchitecture at least 12 months following surgery with evidence of ongoing decline in trabecular and cortical thickness.
Collapse
Affiliation(s)
- Irene Ruderman
- Department of Nephrology, The Royal Melbourne Hospital, Parkville, Victoria, Australia.,Department of Medicine (RMH), The University of Melbourne, Parkville, Victoria, Australia
| | - Chamith S Rajapakse
- Departments of Radiology and Orthopaedic Surgery, University of Pennsylvania, PA, USA
| | - Winnie Xu
- Departments of Radiology and Orthopaedic Surgery, University of Pennsylvania, PA, USA
| | - Sisi Tang
- Departments of Radiology and Orthopaedic Surgery, University of Pennsylvania, PA, USA
| | - Patricia L Robertson
- Department of Radiology, The Royal Melbourne Hospital and The University of Melbourne, Parkville, Victoria, Australia
| | - Nigel D Toussaint
- Department of Nephrology, The Royal Melbourne Hospital, Parkville, Victoria, Australia.,Department of Medicine (RMH), The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
9
|
Ohs N, Collins CJ, Tourolle DC, Atkins PR, Schroeder BJ, Blauth M, Christen P, Müller R. Automated segmentation of fractured distal radii by 3D geodesic active contouring of in vivo HR-pQCT images. Bone 2021; 147:115930. [PMID: 33753277 DOI: 10.1016/j.bone.2021.115930] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 02/28/2021] [Accepted: 03/15/2021] [Indexed: 12/13/2022]
Abstract
Radius fractures are among the most common fracture types; however, there is limited consensus on the standard of care. A better understanding of the fracture healing process could help to shape future treatment protocols and thus improve functional outcomes of patients. High-resolution peripheral quantitative computed tomography (HR-pQCT) allows monitoring and evaluation of the radius on the micro-structural level, which is crucial to our understanding of fracture healing. However, current radius fracture studies using HR-pQCT are limited by the lack of automated contouring routines, hence only including small number of patients due to the prohibitively time-consuming task of manually contouring HR-pQCT images. In the present study, a new method to automatically contour images of distal radius fractures based on 3D morphological geodesic active contours (3D-GAC) is presented. Contours of 60 HR-pQCT images of fractured and conservatively treated radii spanning the healing process up to one year post-fracture are compared to the current gold standard, hand-drawn 2D contours, to assess the accuracy of the algorithm. Furthermore, robustness was established by applying the algorithm to HR-pQCT images of intact radii of 73 patients and comparing the resulting morphometric indices to the gold standard patient evaluation including a threshold- and dilation-based contouring approach. Reproducibility was evaluated using repeat scans of intact radii of 19 patients. The new 3D-GAC approach offers contours within inter-operator variability for images of fractured distal radii (mean Dice score of 0.992 ± 0.005 versus median operator Dice score of 0.992 ± 0.006). The generated contours for images of intact radii yielded morphometric indices within the in vivo reproducibility limits compared to the current gold standard. Additionally, the 3D-GAC approach shows an improved robustness against failure (n = 5) when dealing with cortical interruptions, fracture fragments, etc. compared with the automatic, default manufacturer pipeline (n = 40). Using the 3D-GAC approach assures consistent results, while reducing the need for time-consuming hand-contouring.
Collapse
Affiliation(s)
- Nicholas Ohs
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | | | | | - Penny R Atkins
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | | | - Michael Blauth
- Department for Trauma Surgery, Innsbruck University Hospital, Innsbruck, Austria
| | - Patrik Christen
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland; Institute for Information Systems, FHNW University of Applied Sciences and Arts Northwestern Switzerland, Olten, Switzerland
| | - Ralph Müller
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
10
|
Ng CA, McMillan LB, Humbert L, Ebeling PR, Scott D. Feasibility, safety and effectiveness of a pilot 16-week home-based, impact exercise intervention in postmenopausal women with low bone mineral density. Osteoporos Int 2021; 32:893-905. [PMID: 33159533 DOI: 10.1007/s00198-020-05723-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 10/29/2020] [Indexed: 12/01/2022]
Abstract
UNLABELLED The feasibility and efficacy of home-based, impact exercise are unclear. This pilot impact exercise intervention was feasible and safe, and improved bone health and physical function in postmenopausal women with low bone density. Appropriately designed randomised controlled trials are now required to determine whether such interventions can reduce fracture risk. INTRODUCTION The feasibility and efficacy of impact exercise in postmenopausal women with low bone mineral density (BMD) are unclear. We aimed to determine adherence, safety and changes in BMD, bone microarchitecture and physical function following a pilot home-based, impact exercise intervention in postmenopausal women with low BMD. METHODS Fifty community-dwelling postmenopausal women with BMD T-scores < - 1.0 participated in 16 weeks of home-based impact exercise progressively increasing to 50 multi-directional unilateral hops on each leg daily. Bone density and structure were assessed by lumbar spine and hip dual-energy X-ray absorptiometry (DXA), 3D modelling (3D-SHAPER) of hip DXA scans and distal tibial high-resolution peripheral quantitative computed tomography scans. Physical performance was assessed by repeated chair stand time and stair climb time. RESULTS Forty-four women (mean ± SD age 64.5 ± 7.5 years) completed the intervention, with adherence of 85.3 ± 17.3%. Reasons for withdrawal were related soreness (n = 2), unrelated injury (n = 1) and loss of interest (n = 3). Femoral neck areal BMD increased by 1.13 ± 3.76% (p = 0.048). Trabecular volumetric BMD (vBMD) increased at the total hip (2.27 ± 7.03%; p = 0.038) and femoral neck increased (3.20 ± 5.39%; p < 0.001). Distal tibia total vBMD increased by 0.32 ± 0.88% (p = 0.032) and cortical cross-sectional area increased by 0.55 ± 1.54% (p = 0.034). Chair stand and stair climb time improved by 2.34 ± 1.88 s (p < 0.001) and 0.27 ± 0.49 s (p < 0.001), respectively. CONCLUSION A 16-week home-based, impact exercise was feasible and may be effective in improving femoral neck areal BMD, total hip and distal tibial vBMD and physical function in postmenopausal women. Appropriately designed randomised controlled trials are now required to determine whether such interventions can reduce fracture risk in older populations.
Collapse
Affiliation(s)
- C-A Ng
- Department of Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia.
| | - L B McMillan
- Department of Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
| | - L Humbert
- Musculoskeletal Unit, Galgo Medical, Barcelona, Spain
| | - P R Ebeling
- Department of Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
| | - D Scott
- Department of Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Burwood, Victoria, Australia
- Department of Medicine at Western Health, The University of Melbourne, Sunshine, Victoria, Australia
| |
Collapse
|
11
|
Heilmeier U, Joseph GB, Pasco C, Dinh N, Torabi S, Darakananda K, Youm J, Carballido-Gamio J, Burghardt AJ, Link TM, Kazakia GJ. Longitudinal Evolution of Bone Microarchitecture and Bone Strength in Type 2 Diabetic Postmenopausal Women With and Without History of Fragility Fractures-A 5-Year Follow-Up Study Using High Resolution Peripheral Quantitative Computed Tomography. Front Endocrinol (Lausanne) 2021; 12:599316. [PMID: 33796067 PMCID: PMC8008748 DOI: 10.3389/fendo.2021.599316] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 01/11/2021] [Indexed: 11/13/2022] Open
Abstract
Introduction Diabetic bone disease is characterized by an increased fracture risk which may be partly attributed to deficits in cortical bone quality such as higher cortical porosity. However, the temporal evolution of bone microarchitecture, strength, and particularly of cortical porosity in diabetic bone disease is still unknown. Here, we aimed to prospectively characterize the 5-year changes in bone microarchitecture, strength, and cortical porosity in type 2 diabetic (T2D) postmenopausal women with (DMFx) and without history of fragility fractures (DM) and to compare those to nondiabetic fracture free controls (Co) using high resolution peripheral quantitative computed tomography (HR-pQCT). Methods Thirty-two women underwent baseline HR-pQCT scanning of the ultradistal tibia and radius and a FU-scan 5 years later. Bone microarchitectural parameters, including cortical porosity, and bone strength estimates via µFEA were calculated for each timepoint and annualized. Linear regression models (adjusted for race and change in BMI) were used to compare the annualized percent changes in microarchitectural parameters between groups. Results At baseline at the tibia, DMFx subjects exhibited the highest porosity of the three groups (66.3% greater Ct.Po, 71.9% higher Ct.Po.Volume than DM subjects, p < 0.022). Longitudinally, porosity increased significantly over time in all three groups and at similar annual rates, while DMFx exhibited the greatest annual decreases in bone strength indices (compared to DM 4.7× and 6.7× greater decreases in failure load [F] and stiffness [K], p < 0.025; compared to Co 14.1× and 22.2× greater decreases in F and K, p < 0.020). Conclusion Our data suggest that despite different baseline levels in cortical porosity, T2D women with and without fractures experienced long-term porosity increases at a rate similar to non-diabetics. However, the annual loss in bone strength was greatest in T2D women with a history of a fragility fractures. This suggests a potentially non-linear course of cortical porosity development in T2D bone disease: major porosity may develop early in the course of disease, followed by a smaller steady annual increase in porosity which in turn can still have a detrimental effect on bone strength-depending on the amount of early cortical pre-damage.
Collapse
Affiliation(s)
- Ursula Heilmeier
- Musculoskeletal Quantitative Imaging Research Group, Department of Radiology & Biomedical Imaging, University of California San Francisco, San Francisco, CA, United States
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Gabby B. Joseph
- Musculoskeletal Quantitative Imaging Research Group, Department of Radiology & Biomedical Imaging, University of California San Francisco, San Francisco, CA, United States
| | - Courtney Pasco
- Department of Bioengineering, University of California Berkeley, Berkeley, CA, United States
| | - Nhan Dinh
- Musculoskeletal Quantitative Imaging Research Group, Department of Radiology & Biomedical Imaging, University of California San Francisco, San Francisco, CA, United States
| | - Soheyla Torabi
- Musculoskeletal Quantitative Imaging Research Group, Department of Radiology & Biomedical Imaging, University of California San Francisco, San Francisco, CA, United States
| | - Karin Darakananda
- Musculoskeletal Quantitative Imaging Research Group, Department of Radiology & Biomedical Imaging, University of California San Francisco, San Francisco, CA, United States
| | - Jiwon Youm
- Musculoskeletal Quantitative Imaging Research Group, Department of Radiology & Biomedical Imaging, University of California San Francisco, San Francisco, CA, United States
| | - Julio Carballido-Gamio
- Department of Radiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Andrew J. Burghardt
- Musculoskeletal Quantitative Imaging Research Group, Department of Radiology & Biomedical Imaging, University of California San Francisco, San Francisco, CA, United States
| | - Thomas M. Link
- Musculoskeletal Quantitative Imaging Research Group, Department of Radiology & Biomedical Imaging, University of California San Francisco, San Francisco, CA, United States
| | - Galateia J. Kazakia
- Musculoskeletal Quantitative Imaging Research Group, Department of Radiology & Biomedical Imaging, University of California San Francisco, San Francisco, CA, United States
| |
Collapse
|
12
|
Xiong Y, He T, Wang Y, Liu WV, Hu S, Zhang Y, Wen D, Hou B, Li Y, Zhang P, Liu J, He F, Li X. CKD Stages, Bone Metabolism Markers, and Cortical Porosity Index: Associations and Mediation Effects Analysis. Front Endocrinol (Lausanne) 2021; 12:775066. [PMID: 34803931 PMCID: PMC8602844 DOI: 10.3389/fendo.2021.775066] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/20/2021] [Indexed: 01/02/2023] Open
Abstract
Chronic kidney disease (CKD) has a significant negative impact on bone health. However, the mechanisms of cortical bone deterioration and cortical porosity enlargement caused by CKD have not been fully described. We therefore examined the association of CKD stages with cortical porosity index (PI), and explored potential mediators of this association. Double-echo ultrashort echo-time magnetic resonance imaging (UTE MRI) provides the possibility of quantifying cortical porosity in vivo. A total of 95 patients with CKD stages 2-5 underwent 3D double-echo UTE-Cones MRI (3.0T) of the midshaft tibia to obtain the PI. PI was defined as the ratio of the image signal intensity of a sufficiently long echo time (TE) to the shortest achievable TE. Parathyroid hormone (PTH), β-CrossLaps (β-CTX), total procollagen type I amino-terminal propeptide (T-P1NP), osteocalcin (OC), 25-hydroxyvitamin D (25OHD), and lumbar bone mineral density (BMD) were measured within one week of the MRI. Partial correlation analysis was performed to address associations between PI, eGFR and potential mediators (PTH, β-CTX, T-P1NP, OC, 25OHD, BMD, and T-score). Multiple linear regression models were used to assess the association between CKD stages and PI value. Then, a separate exploratory mediation analysis was carried out to explore the impact of CKD stages and mediators on the PI value. The increasing CKD stages were associated with a higher PI value (Ptrend < 0.001). The association of CKD stages and PI mediated 34.4% and 30.8% of the total effect by increased PTH and β-CTX, respectively. Our study provides a new idea to monitor bone health in patients with CKD, and reveals the internal mechanism of bone deterioration caused by CKD to some extent.
Collapse
Affiliation(s)
- Yan Xiong
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tongxiang He
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanan Wang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | - Shuang Hu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yao Zhang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Donglin Wen
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bowen Hou
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yitong Li
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peisen Zhang
- Department of Rehabilitation Medicine, School of Medicine, Guangzhou First People’s Hospital, South China University of Technology, Guangzhou, China
| | | | - Fan He
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Fan He, ; Xiaoming Li,
| | - Xiaoming Li
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Fan He, ; Xiaoming Li,
| |
Collapse
|
13
|
Tse JJ, Brunet SC, Salat P, Hazlewood GS, Barnabe C, Manske SL. Multi-Modal Imaging to Assess the Interaction Between Inflammation and Bone Damage Progression in Inflammatory Arthritis. Front Med (Lausanne) 2020; 7:545097. [PMID: 33102498 PMCID: PMC7544988 DOI: 10.3389/fmed.2020.545097] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 08/26/2020] [Indexed: 12/12/2022] Open
Abstract
Combining results from multiple imaging techniques (i.e., multi-modal imaging) through image registration can result in the better characterization of joint tissue characteristics. In the context of inflammatory arthritis conditions, high-resolution peripheral quantitative computed tomography (HR-pQCT) provides excellent bone contrast while magnetic resonance imaging (MRI) provides superior contrast and resolution of soft tissue and inflammatory characteristics. Superimposing these imaging results upon each other provides a robust characterization of the joint. In a preliminary study of nine rheumatoid arthritis (RA) participants in clinical remission, we acquired HR-pQCT and MR images of their 2nd and 3rd metacarpophalangeal (MCP) joints at two timepoints 6 months apart. We present the benefits of a multi-modal imaging approach, in which we demonstrate the ability to localize regions of inflammation with subtle changes in bone erosion volume. Using HR-pQCT and MRI to visualize bone damage and inflammation, respectively, will improve our understanding of the impact that subclinical inflammation has on bone damage progression, and demonstrating if bone repair occurs where inflammation is resolved. The presented multi-modal imaging technique has the potential to study the progression of bone damage in relation to inflammation that otherwise would not be possible with either imaging technique alone. The multi-modal image registration technique will be helpful to understanding the development and pathogenesis of RA-associated bone erosions. Additionally, multi-modal imaging may provide a technique to probe the tissue-level changes that occur as a result of treatment regimes.
Collapse
Affiliation(s)
- Justin J. Tse
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Cumming School of Medicine, McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada
| | - Scott C. Brunet
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Cumming School of Medicine, McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada
- Biomedical Engineering Graduate Program, Schulich School of Engineering, University of Calgary, Calgary, AB, Canada
| | - Peter Salat
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Cumming School of Medicine, McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada
| | - Glen S. Hazlewood
- Cumming School of Medicine, McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada
- Division of Rheumatology, Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Cheryl Barnabe
- Cumming School of Medicine, McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada
- Division of Rheumatology, Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Sarah L. Manske
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Cumming School of Medicine, McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada
- Biomedical Engineering Graduate Program, Schulich School of Engineering, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
14
|
Whittier DE, Boyd SK, Burghardt AJ, Paccou J, Ghasem-Zadeh A, Chapurlat R, Engelke K, Bouxsein ML. Guidelines for the assessment of bone density and microarchitecture in vivo using high-resolution peripheral quantitative computed tomography. Osteoporos Int 2020; 31:1607-1627. [PMID: 32458029 PMCID: PMC7429313 DOI: 10.1007/s00198-020-05438-5] [Citation(s) in RCA: 182] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 04/23/2020] [Indexed: 12/29/2022]
Abstract
INTRODUCTION The application of high-resolution peripheral quantitative computed tomography (HR-pQCT) to assess bone microarchitecture has grown rapidly since its introduction in 2005. As the use of HR-pQCT for clinical research continues to grow, there is an urgent need to form a consensus on imaging and analysis methodologies so that studies can be appropriately compared. In addition, with the recent introduction of the second-generation HrpQCT, which differs from the first-generation HR-pQCT in scan region, resolution, and morphological measurement techniques, there is a need for guidelines on appropriate reporting of results and considerations as the field adopts newer systems. METHODS A joint working group between the International Osteoporosis Foundation, American Society of Bone and Mineral Research, and European Calcified Tissue Society convened in person and by teleconference over several years to produce the guidelines and recommendations presented in this document. RESULTS An overview and discussion is provided for (1) standardized protocol for imaging distal radius and tibia sites using HR-pQCT, with the importance of quality control and operator training discussed; (2) standardized terminology and recommendations on reporting results; (3) factors influencing accuracy and precision error, with considerations for longitudinal and multi-center study designs; and finally (4) comparison between scanner generations and other high-resolution CT systems. CONCLUSION This article addresses the need for standardization of HR-pQCT imaging techniques and terminology, provides guidance on interpretation and reporting of results, and discusses unresolved issues in the field.
Collapse
Affiliation(s)
- D E Whittier
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - S K Boyd
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - A J Burghardt
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - J Paccou
- Department of Rheumatology, MABlab UR 4490, CHU Lille, Univ. Lille, 59000, Lille, France
| | - A Ghasem-Zadeh
- Departments of Endocrinology and Medicine, Austin Health, The University of Melbourne, Melbourne, Australia
| | - R Chapurlat
- INSERM UMR 1033, Université de Lyon, Lyon, France
- Hôpital Edouard Herriot, Hospice Civils de Lyon, Lyon, France
| | - K Engelke
- Department of Medicine 3, FAU University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Bioclinica, Inc., Hamburg, Germany
| | - M L Bouxsein
- Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
15
|
Kovvuru K, Kanduri SR, Vaitla P, Marathi R, Gosi S, Anton DFG, Rivera FHC, Garla V. Risk Factors and Management of Osteoporosis Post-Transplant. MEDICINA (KAUNAS, LITHUANIA) 2020; 56:E302. [PMID: 32575603 PMCID: PMC7353876 DOI: 10.3390/medicina56060302] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/11/2020] [Accepted: 06/17/2020] [Indexed: 02/06/2023]
Abstract
Bone and mineral disorders are common after organ transplantation. Osteoporosis post transplantation is associated with increased morbidity and mortality. Pathogenesis of bone disorders in this particular sub set of the population is complicated by multiple co-existing factors like preexisting bone disease, Vitamin D deficiency and parathyroid dysfunction. Risk factors include post-transplant immobilization, steroid usage, diabetes mellitus, low body mass index, older age, female sex, smoking, alcohol consumption and a sedentary lifestyle. Immunosuppressive medications post-transplant have a negative impact on outcomes, and further aggravate osteoporotic risk. Management is complex and challenging due to the sub-optimal sensitivity and specificity of non-invasive diagnostic tests, and the underutilization of bone biopsy. In this review, we summarize the prevalence, pathophysiology, diagnostic tests and management of osteoporosis in solid organ and hematopoietic stem cell transplant recipients.
Collapse
Affiliation(s)
- Karthik Kovvuru
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS 39156, USA
| | - Swetha Rani Kanduri
- Division of Nephrology, Department of Medicine, University of Mississippi Medical Center, Jackson, MS 39156, USA; (S.R.K.); (P.V.); (D.F.G.A.); (F.H.C.R.)
| | - Pradeep Vaitla
- Division of Nephrology, Department of Medicine, University of Mississippi Medical Center, Jackson, MS 39156, USA; (S.R.K.); (P.V.); (D.F.G.A.); (F.H.C.R.)
| | - Rachana Marathi
- Division of Hospital Medicine, Department of Medicine, University of Mississippi Medical Center, Jackson, MS 39156, USA;
| | - Shiva Gosi
- Department of Hospital Medicine, Banner Thunderbird Medical Center, Glenadale, AZ 85306, USA;
| | - Desiree F. Garcia Anton
- Division of Nephrology, Department of Medicine, University of Mississippi Medical Center, Jackson, MS 39156, USA; (S.R.K.); (P.V.); (D.F.G.A.); (F.H.C.R.)
| | - Franco H. Cabeza Rivera
- Division of Nephrology, Department of Medicine, University of Mississippi Medical Center, Jackson, MS 39156, USA; (S.R.K.); (P.V.); (D.F.G.A.); (F.H.C.R.)
| | - Vishnu Garla
- Department of Internal Medicine and Mississippi Center for Clinical and Translational Research, University of Mississippi Medical Center, Jackson, MS 39156, USA;
| |
Collapse
|
16
|
Abstract
PURPOSE OF REVIEW Kidney disease imparts profound skeletal changes, and unlike many other skeletal diseases, cortical bone is predominantly impacted. Significant advances in medical imaging have led to our ability to now obtain high-resolution three-dimensional views of cortical bone. This paper overviews recent work focused on cortical bone imaging, specifically cortical porosity, in kidney disease. RECENT FINDINGS Although a number of clinical papers have used high-resolution imaging to assess cortical bone porosity, the most impactful work involves longitudinal study designs that have assessed cortical porosity changes over time. These latter studies demonstrate dramatic increases in cortical porosity in untreated individuals and a lack of clear efficacy in reversing porosity with treatment (although data are limited). Those papers providing longitudinal assessment, both clinical and pre-clinical, reveal powerful data about cortical porosity and provide a foundation upon which future studies can build.
Collapse
Affiliation(s)
- Matthew R Allen
- Department of Anatomy and Cell Biology, MS 5035, Indiana University School of Medicine, 635 Barnhill Dr, Indianapolis, IN, 46202, USA.
- Department of Medicine - Division of Nephrology, Indiana University School of Medicine, Indianapolis, IN, USA.
- Department of Biomedical Engineering, Indiana University Purdue University of Indianapolis, Indianapolis, IN, USA.
- Roudebush Veterans Administration Medical Center, Indianapolis, IN, USA.
| | - Elizabeth A Swallow
- Department of Anatomy and Cell Biology, MS 5035, Indiana University School of Medicine, 635 Barnhill Dr, Indianapolis, IN, 46202, USA
| | - Corinne E Metzger
- Department of Anatomy and Cell Biology, MS 5035, Indiana University School of Medicine, 635 Barnhill Dr, Indianapolis, IN, 46202, USA
| |
Collapse
|
17
|
Wong AKO, Manske SL. A Comparison of Peripheral Imaging Technologies for Bone and Muscle Quantification: A Review of Segmentation Techniques. J Clin Densitom 2020; 23:92-107. [PMID: 29785933 DOI: 10.1016/j.jocd.2018.04.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 04/11/2018] [Indexed: 12/17/2022]
Abstract
Musculoskeletal science has developed many overlapping branches, necessitating specialists from 1 area of focus to often require the expertise in others. In terms of imaging, this means obtaining a comprehensive illustration of bone, muscle, and fat tissues. There is currently a lack of a reliable resource for end users to learn about these tissues' imaging and quantification techniques together. An improved understanding of these tissues has been an important progression toward better prediction of disease outcomes and better elucidation of their interaction with frailty, aging, and metabolic disorders. Over the last decade, there have been major advances into the image acquisition and segmentation of bone, muscle, and fat features using computed tomography (CT), magnetic resonance imaging (MRI), and peripheral modules of these systems. Dedicated peripheral quantitative musculoskeletal imaging systems have paved the way for mobile research units, lower cost clinical research facilities, and improved resolution per unit cost paid. The purpose of this review was to detail the segmentation techniques available for each of these peripheral CT and MRI modalities and to describe advances in segmentation methods as applied to study longitudinal changes and treatment-related dynamics. Although the peripheral CT units described herein have established feasible standardized protocols that users have adopted globally, there remain challenges in standardizing MRI protocols for bone and muscle imaging.
Collapse
Affiliation(s)
- Andy Kin On Wong
- Joint Department of Medical Imaging, Toronto General Research Institute, University Health Network, Toronto, ON, Canada; McMaster University, Department of Medicine, Faculty of Health Sciences, Hamilton, ON, Canada.
| | - Sarah Lynn Manske
- Department of Radiology, McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
18
|
Wu D, Griffith JF, Lam SHM, Wong PCH, Shi L, Li EK, Cheng IT, Li TK, Hung VW, Qin L, Tam LS. Progressive structural bone changes and their relationship with treatment in patients with psoriatic arthritis: a longitudinal HR-pQCT study. Arthritis Res Ther 2019; 21:265. [PMID: 31801610 PMCID: PMC6894233 DOI: 10.1186/s13075-019-2043-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 10/28/2019] [Indexed: 12/17/2022] Open
Abstract
Background Although the short-term effects of tumor necrosis factor alpha (TNF-α) and interleukin-17A (IL-17A) inhibition on the structural changes in psoriatic arthritis (PsA) using high-resolution peripheral quantitative computed tomography (HR-pQCT) have been reported, no studies have investigated the long-term structural changes in PsA patients receiving routine care. We reported longitudinal changes of erosions and enthesiophytes using HR-pQCT and their relationship with treatments in PsA patients over a 5-year period. Methods HR-pQCT examination at the second and third metacarpal heads (MCH2 and MCH3) was performed in 60 PsA patients at baseline and after 5 years. The size of each individual lesion was quantified. Erosion and enthesiophyte progression were defined as change exceeding the smallest detectable change (SDC). Results A total of 108 bone erosions and 99 enthesiophytes were detected at baseline. Three new bone erosions but no new enthesiophytes were evident at 5 years. A significant increase in mean (±SD) erosion (0.58 ± 1.50 mm3, P < 0.001) and enthesiophyte (0.47 ± 0.76 mm3, P < 0.001) volume was observed. Erosion and enthesiophyte progression were found in 37/111 (33.3%) and 50/99 (50.5%) lesions, respectively. During this 5-year period, 26 (43%) out of the 60 patients achieved sustained Disease Activity index for PSoriatic Arthritis (DAPSA) low disease activity (LDA) (SDL group, defined as achieving DAPSA-LDA at both baseline and 5 years). Fourteen (23%) out of 60 patients received a TNF inhibitor throughout the 5-year period (TNFi group). Fewer erosions progressed (12/51 [23.5%] vs 25/60 [41.7%], P = 0.047) and the increased in enthesiophyte volume was significantly less (0.28 ± 0.67 vs 0.61 ± 0.80 mm3, P = 0.048) in the SDL group than in the non-SDL group. However, no significant difference between the TNFi and non-TNFi groups was detected in terms of the change in volume or progression of bone erosion and enthesiophyte. Conclusion Damage accrual in terms of bone erosion and enthesiophyte was observed in PsA patients over a period of 5 years despite receiving routine clinical care. Nonetheless, sustained control of disease activity may be able to prevent these bony damages.
Collapse
Affiliation(s)
- Dongze Wu
- Department of Medicine & Therapeutics, The Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - James F Griffith
- Department of Imaging and Interventional Radiology, The Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Steven H M Lam
- Department of Medicine & Therapeutics, The Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Priscilla C H Wong
- Department of Medicine & Therapeutics, The Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Lin Shi
- Research Centre for Medical Image Computing, Department of Imaging and Interventional Radiology, The Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Edmund K Li
- Department of Medicine & Therapeutics, The Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Isaac T Cheng
- Department of Medicine & Therapeutics, The Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Tena K Li
- Department of Medicine & Therapeutics, The Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Vivian W Hung
- Bone Quality and Health Centre, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China
| | - Ling Qin
- Bone Quality and Health Centre, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China
| | - Lai-Shan Tam
- Department of Medicine & Therapeutics, The Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
19
|
Bone biomarkers in de novo renal transplant recipients. Clin Chim Acta 2019; 501:179-185. [PMID: 31734147 DOI: 10.1016/j.cca.2019.10.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 10/24/2019] [Indexed: 12/30/2022]
Abstract
Successful kidney transplantation (partly) corrects the physiologic and metabolic abnormalities driving chronic kidney disease - mineral and bone disorders. At the same time, renal transplant recipients are exposed to immunosuppressive agents that may affect bone metabolism. Bone biomarkers have been suggested as surrogates of or adjuncts to bone biopsy and imaging techniques to assess bone health and to classify risk of bone loss and fractures. Bone biomarkers may be classified as circulating factors that affect bone metabolism (commonly referred to as bone metabolism markers) or that reflect bone cell number and/or activity (commonly referred to as bone turnover markers). A growing body of evidence shows that successful renal transplantation has a major impact on both bone metabolism and bone turnover. Analytical issues, including the cross-reactivity with fragments, complicate the interpretation of bone biomarkers, especially in the setting of a rapid changing kidney function, as is the case after successful renal transplantation. Overall, bone turnover seems to decline following renal transplantation, but inter-individual variability is substantial. Preliminary evidence indicates that bone biomarkers may be useful in guiding mineral and bone therapy in renal transplant recipients.
Collapse
|
20
|
Prasad B, Ferguson T, Tangri N, Ng CY, Nickolas TL. Association of Bone Mineral Density With Fractures Across the Spectrum of Chronic Kidney Disease: The Regina CKD-MBD Study. Can J Kidney Health Dis 2019; 6:2054358119870539. [PMID: 31467681 PMCID: PMC6704416 DOI: 10.1177/2054358119870539] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 07/01/2019] [Indexed: 12/12/2022] Open
Abstract
Background: Recent studies have demonstrated that measurement of areal bone mineral density by dual-energy x-ray absorptiometry (DXA) predicts fractures in patients with chronic kidney disease (CKD). However, whether fracture risk prediction through bone mineral density (BMD) is enhanced due to the assessment of biochemical markers of chronic kidney disease and mineral and bone disease (CKD-MBD) or clinical risk factors is not clear. We hypothesized that in a select cohort of patients managed in a CKD clinic, that combining T-Scores with biochemical markers would optimize fracture discrimination than using DXA alone. Objective: To examine the relationships among BMD, biochemical markers of CKD-MBD, and fracture risk across Kidney Disease Improving Global Outcomes (KDIGO) glomerular filtration rate (GFR) categories G3a to G5. Design: Retrospective study. Setting: Patients were recruited from the multidisciplinary CKD clinic, Regina General Hospital, Canada. Patients: A total of 374 patients who received a DXA scan upon initial referral to Regina Multidisciplinary CKD Program from January 31, 2001 to January 31, 2010, were included in this study. The patients were followed for a total of 5 years. Methods: We conducted a retrospective review of 374 consecutive patients who underwent DXA imaging at the point of entry into our multidisciplinary CKD program. Areal BMD, T- and Z-Scores were obtained at the lumbar spine, total hip, mean of left and right femoral neck, and the one-third radius. We collected data on demographic, cross-sectional biochemical markers of mineral metabolism and fractures (identified through self-reported questionnaires, hospital electronic medical records, and physician billing records). We were able to gather data on 8/11 variables of Fracture Risk Assessment (FRAX) tool. Results: In our cohort, 14.3% of GFR categories G3a and G3b, 15.7% of GFR category G4, and 19.7% of GFR category G5 experienced a clinical fracture during the study period. On multivariate analysis, each decline of 1.0 SD in total hip BMD T-Score was associated with a significant increase in the risk of fracture (OR = 1.46, 95% confidence interval [CI], 1.12-1.89). Adding CKD-MBD markers and clinical risk factors did not further contribute to the model. Low BMD was the only independent risk factor for fracture in patients with CKD. Limitations: Self-reporting by patients and administrative records were used to identify fractures. We did not perform spine imaging to ascertain morphometric vertebral fractures. We were unable to gather all 11 variables of FRAX score and information on ethnicity. We were unable to capture site of fracture (hips, spine, etc) from billing records. Albumin excretion rates were not collected at baseline. Treatment of the underlying bone disease with pharmacotherapeutic agents may have attenuated patients’ fracture risk and thus underestimated the association between BMD and future fracture. Conclusions: Our findings confirm that BMD predicts fracture. The addition of cross-sectional CKD-MBD parameters and clinical risk factors to BMD did not add to fracture prediction. Prospective studies should investigate the utility of longitudinal biochemical markers on improving fracture risk assessment.
Collapse
Affiliation(s)
- Bhanu Prasad
- Section of Nephrology, Department of Medicine, Regina Qu'Appelle Health Region, SK, Canada
| | | | | | - Chee Yong Ng
- Department of Renal Medicine, Changi General Hospital, Singapore
| | | |
Collapse
|
21
|
Chandran M, Hao Y, Kwee AK, Swee DS, Ng DCE, Kee TYS, Bharadwaj P. Addressing bone quality and bone density after renal transplantation: A prospective evaluation of the evolution of trabecular bone score and bone mineral density over the first 5 years following renal transplantation in Asian patients. Clin Transplant 2019; 33:e13671. [PMID: 31332844 DOI: 10.1111/ctr.13671] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 06/24/2019] [Accepted: 07/15/2019] [Indexed: 02/06/2023]
Abstract
The evolution of trabecular bone score (TBS) and bone mineral density (BMD) over the first 5 years after renal transplantation was prospectively evaluated in 164 patients. Dual energy X-ray absorptiometry (DXA) scans were performed at 0, 6, 12, 24, and 60 months. Cumulative steroid dose, serum 25(OH)D, calcium, parathyroid hormone, and total ALP levels at these time points were checked. Incident fractures were identified from X-rays/vertebral fracture assessments. Mean (SD) age, TBS, and lumbar spine BMD at baseline were 47.11 (9.53), 1.424 (0.097), and 0.935 (0.183) gm/cm2 , respectively. Baseline TBS was lower in tertiary 1.38 (0.07) vs secondary hyperparathyroidism 1.43 (0.01) vs post-parathyroidectomy 1.46 (0.11); P = .035. Trabecular bone score and BMD significantly decreased from baseline->6 months, changes after that at consecutive time points were non-significant. 11% had incident fractures during the follow-up period, majority being metatarsal with no vertebral or hip fractures noted. This first prospective evaluation of TBS and BMD evolution at multiple time points over 5 years suggest that microarchitectural and bone density deteriorations post-renal transplantation stabilize after 6 months. Stabilization of these parameters could partially account for the absence of major fractures noted in this Asian population. Possible genetic and ethnic differences in fracture risk between Asian and Caucasian renal transplant patients have to be explored through large population-based studies.
Collapse
Affiliation(s)
- Manju Chandran
- Osteoporosis and Bone Metabolism Unit, Department of Endocrinology, Renal Transplant Osteoporosis Clinic, Singapore General Hospital, Singapore City, Singapore
| | - Ying Hao
- Division of Medicine, Health Services Research Unit (HSRU), Singapore General Hospital, Singapore City, Singapore
| | - Ann Kerwen Kwee
- Department of Endocrinology, Singapore General Hospital, Singapore City, Singapore
| | - Du Soon Swee
- Department of Endocrinology, Singapore General Hospital, Singapore City, Singapore
| | - David Chee Eng Ng
- Department of Nuclear Medicine and Molecular Imaging, Singapore General Hospital, Singapore City, Singapore
| | - Terence Yi Shern Kee
- Department of Renal Medicine, Singapore General Hospital, Singapore City, Singapore
| | - Pushan Bharadwaj
- Department of Nuclear Medicine and Molecular Imaging, Singapore General Hospital, Singapore City, Singapore
| |
Collapse
|
22
|
Caksa S, Yuan A, Rudolph SE, Yu EW, Popp KL, Bouxsein ML. Influence of soft tissue on bone density and microarchitecture measurements by high-resolution peripheral quantitative computed tomography. Bone 2019; 124:47-52. [PMID: 30998999 DOI: 10.1016/j.bone.2019.04.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/11/2019] [Accepted: 04/13/2019] [Indexed: 10/27/2022]
Abstract
High-resolution peripheral quantitative computed tomography (HR-pQCT) is a non-invasive method of measuring volumetric bone mineral density (vBMD) and microarchitecture at the distal radius and tibia. With increasing use of this technology, it is crucial to understand the potential impact of overlying soft tissue on the accuracy of HR-pQCT measures. Thus, we examined the effects of a simulated increase in adiposity (via 6- and 12-mm thick layers of overlying circumferential fat) on HR-pQCT measures of a hydroxyapatite (HA) phantom and in women (n = 20, aged 18-75 years). In the phantom, increasing the amount of overlying fat tissue led to a corresponding decrease in the mean measured density for each HA rod. In women, fat-layering led to a decrease in total vBMD (-2.9 to -3.7%, p < 0.001), cortical vBMD (-1.4% to -5.5%, p < 0.001), and estimated failure load (-1.4 to -5.7%, p = 0.002) at the radius, with similar changes in the tibia. Trabecular microarchitectural measurements were also impacted by simulated adiposity, with fat-layering leading to decreased trabecular thickness and separation and increased trabecular number at the radius (Δ's = 5 to 12%) with more pronounced differences at the tibia (Δ's = 14 to 40%). At the tibia, fat-layering also led to decreased cortical thickness and increased cortical porosity. Altogether, these results demonstrate that overlying adipose tissue can lead to artifacts in bone measurements by HR-pQCT, resulting in an underestimation of vBMD and generally, an overestimation of bone microarchitecture impairment. Therefore, soft tissue artifact should be considered when interpreting HR-pQCT results, particularly in those with high BMI and/or marked changes in adiposity.
Collapse
Affiliation(s)
- Signe Caksa
- Endocrine Unit, Massachusetts General Hospital, 50 Blossom Street, THR-1051 Boston, MA, USA
| | - Amy Yuan
- Endocrine Unit, Massachusetts General Hospital, 50 Blossom Street, THR-1051 Boston, MA, USA
| | - Sara E Rudolph
- Endocrine Unit, Massachusetts General Hospital, 50 Blossom Street, THR-1051 Boston, MA, USA
| | - Elaine W Yu
- Endocrine Unit, Massachusetts General Hospital, 50 Blossom Street, THR-1051 Boston, MA, USA; Harvard Medical School, 25 Shattuck St., Boston, MA, USA
| | - Kristin L Popp
- Endocrine Unit, Massachusetts General Hospital, 50 Blossom Street, THR-1051 Boston, MA, USA; United States Army Research Institute of Environmental Medicine, 10 General Greene Ave, Natick, MA, USA; Harvard Medical School, 25 Shattuck St., Boston, MA, USA.
| | - Mary L Bouxsein
- Endocrine Unit, Massachusetts General Hospital, 50 Blossom Street, THR-1051 Boston, MA, USA; Harvard Medical School, 25 Shattuck St., Boston, MA, USA; Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center, One Overland Street, Boston, MA, USA
| |
Collapse
|
23
|
Keronen S, Martola L, Finne P, Burton IS, Kröger H, Honkanen E. Changes in Bone Histomorphometry after Kidney Transplantation. Clin J Am Soc Nephrol 2019; 14:894-903. [PMID: 31088851 PMCID: PMC6556726 DOI: 10.2215/cjn.09950818] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Accepted: 04/02/2019] [Indexed: 11/23/2022]
Abstract
BACKGROUND AND OBJECTIVES Over the past decade, the management of CKD-mineral and bone disorder has changed substantially, altering the pattern of bone disease in CKD. We aimed to evaluate the natural history of kidney bone disease in contemporary kidney transplant recipients and patients on dialysis. DESIGN, SETTINGS, PARTICIPANTS, & MEASUREMENTS Sixty one patients on dialysis who were referred to kidney transplantation participated in this prospective cohort study during November 2009 and December 2010. We performed baseline bone biopsies while the patients were on dialysis and repeated the procedure in 56 patients at 2 years after kidney transplantation or 2 years after baseline if transplantation was not performed. Measurements of mineral metabolism and bone turnover, as well as dual energy x-ray absorptiometry scans, were obtained concurrently. RESULTS A total of 37 out of 56 participants received a kidney transplant, of which 27 underwent successful repeat bone biopsy. The proportion of patients with high bone turnover declined from 63% at baseline to 19% at 2 years after kidney transplantation, whereas the proportion of those with low bone turnover increased from 26% to 52%. Of 19 participants remaining on dialysis after 2 years, 13 underwent successful repeat biopsy. The proportion of patients remaining on dialysis with high bone turnover decreased from 69% to 31%, and low bone turnover increased from 8% to 38%. Abnormal bone mineralization increased in transplant recipients from 33% to 44%, but decreased in patients remaining on dialysis from 46% to 15%. Trabecular bone volume showed little change after transplantation, but low bone volume increased in patients remaining on dialysis. Bone mineral density did not correlate with histomorphometric findings. CONCLUSIONS Bone turnover decreased over time both in patients remaining on dialysis and in kidney transplant recipients. Bone mineral density and bone biomarkers were not associated with bone metabolism changes detected in bone biopsy specimens.
Collapse
Affiliation(s)
- Satu Keronen
- Abdominal Center, Department of Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland;
| | - Leena Martola
- Abdominal Center, Department of Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Patrik Finne
- Abdominal Center, Department of Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Inari S Burton
- Kuopio Musculoskeletal Research Unit, University of Eastern Finland, Kuopio, Finland; and
| | - Heikki Kröger
- Kuopio Musculoskeletal Research Unit, University of Eastern Finland, Kuopio, Finland; and.,Department of Orthopedics, Traumatology and Hand Surgery, Kuopio University Hospital, Kuopio, Finland
| | - Eero Honkanen
- Abdominal Center, Department of Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
24
|
Marques IDB, Araújo MJCLN, Graciolli FG, Dos Reis LM, Pereira RMR, Alvarenga JC, Custódio MR, Jorgetti V, Elias RM, Moysés RMA, David-Neto E. A Randomized Trial of Zoledronic Acid to Prevent Bone Loss in the First Year after Kidney Transplantation. J Am Soc Nephrol 2019; 30:355-365. [PMID: 30606784 DOI: 10.1681/asn.2018060656] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 11/25/2018] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Bone and mineral disorders commonly affect kidney transplant (KTx) recipients and have been associated with a high risk of fracture. Bisphosphonates may prevent or treat bone loss in such patients, but there is concern that these drugs might induce adynamic bone disease (ABD). METHODS In an open label, randomized trial to assess the safety and efficacy of zoledronate for preventing bone loss in the first year after kidney transplant, we randomized 34 patients before transplant to receive zoledronate or no treatment. We used dual-energy x-ray absorptiometry (DXA), high-resolution peripheral quantitative computed tomography (HR-pQCT), and bone biopsies to evaluate changes in bone in the 32 evaluable participants between the time of KTx and 12 months post-transplant. RESULTS Both groups of patients experienced decreased bone turnover after KTx, but zoledronate itself did not affect this outcome. Unlike previous studies, DXA showed no post-transplant bone loss in either group; we instead observed an increase of bone mineral density in both lumbar spine and total hip sites, with a significant positive effect of zoledronate. However, bone biopsies showed post-transplant impairment of trabecular connectivity (and no benefit from zoledronate); HR-pQCT detected trabecular bone loss at the peripheral skeleton, which zoledronate partially attenuated. CONCLUSIONS Current immunosuppressive regimens do not contribute to post-transplant central skeleton trabecular bone loss, and zoledronate does not induce ABD. Because fractures in transplant recipients are most commonly peripheral fractures, clinicians should consider bisphosphonate use in patients at high fracture risk who have evidence of significantly low bone mass at these sites at the time of KTx.
Collapse
Affiliation(s)
| | | | | | | | - Rosa Maria R Pereira
- Rheumatology Divisions, Hospital das Clínicas da Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Jackeline C Alvarenga
- Rheumatology Divisions, Hospital das Clínicas da Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
25
|
Damasiewicz MJ, Nickolas TL. Rethinking Bone Disease in Kidney Disease. JBMR Plus 2018; 2:309-322. [PMID: 30460334 PMCID: PMC6237213 DOI: 10.1002/jbm4.10117] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 09/05/2018] [Accepted: 10/03/2018] [Indexed: 12/17/2022] Open
Abstract
Renal osteodystrophy (ROD) is the bone component of chronic kidney disease mineral and bone disorder (CKD-MBD). ROD affects bone quality and strength through the numerous hormonal and metabolic disturbances that occur in patients with kidney disease. Collectively these disorders in bone quality increase fracture risk in CKD patients compared with the general population. Fractures are a serious complication of kidney disease and are associated with higher morbidity and mortality compared with the general population. Furthermore, at a population level, fractures are at historically high levels in patients with end-stage kidney disease (ESKD), whereas in contrast the general population has experienced a steady decline in fracture incidence rates. Based on these findings, it is clear that a paradigm shift is needed in our approach to diagnosing and managing ROD. In clinical practice, our ability to diagnose ROD and initiate antifracture treatments is impeded by the lack of accurate noninvasive methods that identify ROD type. The past decade has seen advances in the noninvasive measurement of bone quality and strength that have been studied in kidney disease patients. Below we review the current literature pertaining to the epidemiology, pathology, diagnosis, and management of ROD. We aim to highlight the pressing need for a greater awareness of this condition and the need for the implementation of strategies that prevent fractures in kidney disease patients. Research is needed for more accurate noninvasive assessment of ROD type, clinical studies of existing osteoporosis therapies in patients across the spectrum of kidney disease, and the development of CKD-specific treatments. © 2018 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of the American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Matthew J Damasiewicz
- Department of NephrologyMonash HealthClaytonAustralia
- Department of MedicineMonash UniversityClaytonAustralia
| | - Thomas L Nickolas
- Columbia University Medical CenterDepartment of MedicineDivision of NephrologyNew YorkNYUSA
| |
Collapse
|
26
|
Sharma AK, Toussaint ND, Elder GJ, Rajapakse CS, Holt SG, Baldock P, Robertson PL, Ebeling PR, Sorci OR, Masterson R. Changes in bone microarchitecture following kidney transplantation-Beyond bone mineral density. Clin Transplant 2018; 32:e13347. [PMID: 29984421 DOI: 10.1111/ctr.13347] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 07/03/2018] [Indexed: 11/30/2022]
Abstract
Bone disease in kidney transplant recipients (KTRs) is characterized by bone mineral density (BMD) loss but bone microarchitecture changes are poorly defined. In this prospective cohort study, we evaluated bone microarchitecture using non-invasive imaging modalities; high-resolution magnetic resonance imaging (MRI), peripheral quantitative computed tomography (pQCT), dual energy X-ray absorptiometry (DXA), and the trabecular bone score (TBS) following kidney transplantation. Eleven KTRs (48.3 ± 11.2 years) underwent MRI (tibia), pQCT (radius) and DXA at baseline and 12 months post-transplantation. Transiliac bone biopsies, performed at transplantation, showed 70% of patients with high/normal bone turnover. Compared with baseline, 12-month MRI showed deterioration in indices of trabecular network integrity-surface to curve ratio (S/C; -15%, P = 0.03) and erosion index (EI; +19%, P = 0.01). However, cortical area increased (+10.3%, P = 0.04), with a non-significant increase in cortical thickness (CtTh; +7.8%, P = 0.06). At 12 months, parathyroid hormone values (median 10.7 pmol/L) correlated with improved S/C (r = 0.75, P = 0.009) and EI (r = -0.71, P = 0.01) while osteocalcin correlated with CtTh (r = 0.72, P = 0.02) and area (r = 0.70, P = 0.02). TBS decreased from baseline (-5.1%, P = 0.01) with no significant changes in BMD or pQCT. These findings highlight a post-transplant deterioration in trabecular bone quality detected by MRI and TBS, independent of changes in BMD, underlining the potential utility of these modalities in evaluating bone microarchitecture in KTRs.
Collapse
Affiliation(s)
- Ashish K Sharma
- Department of Nephrology, The Royal Melbourne Hospital, Parkville, Victoria, Australia.,Department of Medicine (RMH), University of Melbourne, Parkville, Victoria, Australia
| | - Nigel D Toussaint
- Department of Nephrology, The Royal Melbourne Hospital, Parkville, Victoria, Australia.,Department of Medicine (RMH), University of Melbourne, Parkville, Victoria, Australia
| | - Grahame J Elder
- Department of Renal Medicine, Westmead Hospital, Westmead, Sydney, Australia.,Osteoporosis and Bone Biology Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Chamith S Rajapakse
- Departments of Radiology and Orthopaedic Surgery, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Stephen G Holt
- Department of Nephrology, The Royal Melbourne Hospital, Parkville, Victoria, Australia.,Department of Medicine (RMH), University of Melbourne, Parkville, Victoria, Australia
| | - Paul Baldock
- Osteoporosis and Bone Biology Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Patricia L Robertson
- Department of Medicine (RMH), University of Melbourne, Parkville, Victoria, Australia.,Department of Radiology, The Royal Melbourne Hospital, Parkville, Victoria, Australia
| | | | - Olivia R Sorci
- Departments of Radiology and Orthopaedic Surgery, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Rosemary Masterson
- Department of Nephrology, The Royal Melbourne Hospital, Parkville, Victoria, Australia.,Department of Medicine (RMH), University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
27
|
Vangala C, Pan J, Cotton RT, Ramanathan V. Mineral and Bone Disorders After Kidney Transplantation. Front Med (Lausanne) 2018; 5:211. [PMID: 30109232 PMCID: PMC6079303 DOI: 10.3389/fmed.2018.00211] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 07/09/2018] [Indexed: 12/16/2022] Open
Abstract
The risk of mineral and bone disorders among patients with chronic kidney disease is substantially elevated, owing largely to alterations in calcium, phosphorus, vitamin D, parathyroid hormone, and fibroblast growth factor 23. The interwoven relationship among these minerals and hormones results in maladaptive responses that are differentially affected by the process of kidney transplantation. Interpretation of conventional labs, imaging, and other fracture risk assessment tools are not standardized in the post-transplant setting. Post-transplant bone disease is not uniformly improved and considerable variation exists in monitoring and treatment practices. A spectrum of abnormalities such as hypophosphatemia, hypercalcemia, hyperparathyroidism, osteomalacia, osteopenia, and osteoporosis are commonly encountered in the post-transplant period. Thus, reducing fracture risk and other bone-related complications requires recognition of these abnormalities along with the risk incurred by concomitant immunosuppression use. As kidney transplant recipients continue to age, the drivers of bone disease vary throughout the post-transplant period among persistent hyperparathyroidism, de novo hyperparathyroidism, and osteoporosis. The use of anti-resorptive therapies require understanding of different options and the clinical scenarios that warrant their use. With limited studies underscoring clinical events such as fractures, expert understanding of MBD physiology, and surrogate marker interpretation is needed to determine ideal and individualized therapy.
Collapse
Affiliation(s)
- Chandan Vangala
- Division of Nephrology and Solid-Organ Transplantation, Michael E. DeBakey VA Medical Center, Houston, TX, United States
| | - Jenny Pan
- Division of Nephrology and Solid-Organ Transplantation, Michael E. DeBakey VA Medical Center, Houston, TX, United States
| | - Ronald T Cotton
- Division of Abdominal Transplantation, Department of Surgery, Baylor College of Medicine, Houston, TX, United States
| | - Venkat Ramanathan
- Division of Nephrology and Solid-Organ Transplantation, Michael E. DeBakey VA Medical Center, Houston, TX, United States
| |
Collapse
|
28
|
Walder A, Müller M, Dahdal S, Sidler D, Devetzis V, Leichtle AB, Fiedler MG, Popp AW, Lippuner K, Vogt B, Uehlinger D, Huynh-Do U, Arampatzis S. The effect of a previous created distal arteriovenous-fistula on radial bone DXA measurements in prevalent renal transplant recipients. PLoS One 2018; 13:e0200708. [PMID: 30048464 PMCID: PMC6061984 DOI: 10.1371/journal.pone.0200708] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 07/02/2018] [Indexed: 11/18/2022] Open
Abstract
Background Accelerated bone loss occurs rapidly following renal transplantation due to intensive immunosuppression and persistent hyperparathyroidism. In renal transplant recipients (RTRs) due to the hyperparathyroidism the non-dominant forearm is often utilized as a peripheral measurement site for dual-energy x-ray absorptiometry (DXA) measurements. The forearm is also the site of previous created distal arteriovenous fistulas (AVF). Although AVF remain patent long after successful transplantation, there are no data available concerning their impact on radial bone DXA measurements. Methods In this cross-sectional study we performed DXA in 40 RTRs with preexisting distal AVF (RTRs-AVF) to assess areal bone mineral density (aBMD) differences between both forearms (three areas) and compared our findings to patients with chronic kidney disease (CKD, n = 40), pre-emptive RTRs (RTRs-pre, n = 15) and healthy volunteers (n = 20). In addition, we assessed relevant demographic, biochemical and clinical aspects. Results We found a marked radial asymmetry between the forearms in RTRs with preexisting AVF. The radial aBMD at the distal AVF forearm was lower compared to the contralateral forearm, resulting in significant differences for all three areas analyzed: the Rad-1/3: median (interquartile range) in g/cm2, Rad-1/3: 0.760 (0.641–0.804) vs. 0.742 (0.642, 0.794), p = 0.016; ultradistal radius, Rad-UD: 0.433 (0.392–0.507) vs. 0.420 (0.356, 0.475), p = 0.004; and total radius, Rad-total: 0.603 (0.518, 0.655) vs. 0.599 (0.504, 0.642), p = 0.001). No such asymmetries were observed in any other groups. Lower aBMD in AVF forearm subregions resulted in misclassification of osteoporosis. Conclusions In renal transplant recipients, a previously created distal fistula may exert a negative impact on the radial bone leading to significant site-to-site aBMD differences, which can result in diagnostic misclassifications.
Collapse
Affiliation(s)
- Anna Walder
- Department of Nephrology and Hypertension, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Martin Müller
- Department of Emergency Medicine, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Suzan Dahdal
- Department of Nephrology and Hypertension, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Daniel Sidler
- Department of Nephrology and Hypertension, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Vasilios Devetzis
- Department of Nephrology and Hypertension, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Alexander B. Leichtle
- Center of Laboratory Medicine, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Martin G. Fiedler
- Center of Laboratory Medicine, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Albrecht W. Popp
- Department of Osteoporosis, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Kurt Lippuner
- Department of Osteoporosis, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Bruno Vogt
- Department of Nephrology and Hypertension, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Dominik Uehlinger
- Department of Nephrology and Hypertension, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Uyen Huynh-Do
- Department of Nephrology and Hypertension, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Spyridon Arampatzis
- Department of Nephrology and Hypertension, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland
- * E-mail:
| |
Collapse
|
29
|
Sharma AK, Toussaint ND, Masterson R, Holt SG, Rajapakse CS, Ebeling PR, Mohanty ST, Baldock P, Elder GJ. Deterioration of Cortical Bone Microarchitecture: Critical Component of Renal Osteodystrophy Evaluation. Am J Nephrol 2018; 47:376-384. [PMID: 29791896 DOI: 10.1159/000489671] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 03/27/2018] [Indexed: 01/23/2023]
Abstract
BACKGROUND Cortical bone is a significant determinant of bone strength and its deterioration contributes to bone fragility. Thin cortices and increased cortical porosity have been noted in patients with chronic kidney disease (CKD), but the "Turnover Mineralization Volume" classification of renal osteodystrophy does not emphasize cortical bone as a key parameter. We aimed to assess trabecular and cortical bone microarchitecture by histomorphometry and micro-CT in patients with CKD G5 and 5D (dialysis). METHODS Transiliac bone biopsies were performed in 14 patients undergoing kidney transplantation (n = 12) and parathyroidectomy (n = 2). Structural parameters were analysed by histomorphometry and micro-CT including trabecular bone volume, thickness (TbTh), number (TbN) and separation and cortical thickness (CtTh) and porosity (CtPo). Indices of bone remodelling and mineralisation were obtained and relationships to bone biomarkers examined. Associations were determined by Spearman's or Pearson's rank correlation coefficients. RESULTS By micro-CT, trabecular parameters were within normal ranges in most patients, but all patients showed very low CtTh (127 ± 44 µm) and high CtPo (60.3 ± 22.5%). CtPo was inversely related to TbN (r = -0.56; p = 0.03) by micro-CT and to TbTh (r = -0.60; p = 0.024) by histomorphometry and correlated to parathyroid hormone values (r = 0.62; p = 0.021). By histomorphometry, bone turnover was high in 50%, low in 21% and normal in 29%, while 36% showed abnormal patterns of mineralization. Significant positive associations were observed between osteoblast surface, osteoclast surface, mineralization surface and bone turnover markers. CONCLUSIONS Deterioration of cortical -microarchitecture despite predominantly normal trabecular parameters reinforces the importance of comprehensive cortical evaluation in patients with CKD.
Collapse
Affiliation(s)
- Ashish K Sharma
- Department of Nephrology, The Royal Melbourne Hospital, Parkville, Victoria, Australia
- Department of Medicine (RMH), University of Melbourne, Parkville, Victoria, Australia
| | - Nigel D Toussaint
- Department of Nephrology, The Royal Melbourne Hospital, Parkville, Victoria, Australia
- Department of Medicine (RMH), University of Melbourne, Parkville, Victoria, Australia
| | - Rosemary Masterson
- Department of Nephrology, The Royal Melbourne Hospital, Parkville, Victoria, Australia
- Department of Medicine (RMH), University of Melbourne, Parkville, Victoria, Australia
| | - Stephen G Holt
- Department of Nephrology, The Royal Melbourne Hospital, Parkville, Victoria, Australia
- Department of Medicine (RMH), University of Melbourne, Parkville, Victoria, Australia
| | - Chamith S Rajapakse
- Departments of Radiology and Orthopaedic Surgery, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | - Sindhu T Mohanty
- Osteoporosis and Bone Biology Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Paul Baldock
- Osteoporosis and Bone Biology Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Grahame J Elder
- Osteoporosis and Bone Biology Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
- Department of Renal Medicine, Westmead Hospital, Westmead, New South Wales, Australia
| |
Collapse
|
30
|
Sharma AK, Toussaint ND. Is there a practical role for a virtual bone biopsy using high-resolution imaging of bone in patients with chronic kidney disease? Nephrology (Carlton) 2018; 22 Suppl 2:27-30. [PMID: 28429549 DOI: 10.1111/nep.13018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Renal osteodystrophy (ROD) refers to alterations in bone turnover, mineralisation, mass and microarchitecture in patients with chronic kidney disease (CKD) and represents the skeletal component of 'CKD-mineral and bone disorder'. Changes in bone structure lead to impaired bone quality, compromised bone strength and increased susceptibility to fractures with associated significant morbidity, mortality and financial cost. Diagnosis and management of ROD is hindered by the inadequacy of currently available diagnostic methods to interpret the complex pathophysiology. Bone biopsy, the perceived gold standard test to assess ROD, is invasive and suboptimal for disease screening and management in routine clinical practice. High-resolution imaging, such as high-resolution peripheral quantitative computed tomography and high-resolution magnetic resonance imaging provide accurate non-invasive quantification of bone microarchitecture and facilitate assessment of mechanical competence of bone, correlating with skeletal fragility. We discuss the potential for these imaging techniques in patients with CKD to provide quantification and assessment of bone structure and strength. When used in conjunction with serum biomarkers, these investigative tools may provide a non-invasive diagnostic virtual bone biopsy.
Collapse
Affiliation(s)
- Ashish K Sharma
- Department of Nephrology, The Royal Melbourne Hospital, Parkville, Victoria, Australia.,Department of Medicine (RMH), The University of Melbourne, Melbourne, Australia
| | - Nigel D Toussaint
- Department of Nephrology, The Royal Melbourne Hospital, Parkville, Victoria, Australia.,Department of Medicine (RMH), The University of Melbourne, Melbourne, Australia
| |
Collapse
|
31
|
Rajapakse CS, Leonard MB, Kobe EA, Slinger MA, Borges KA, Billig E, Rubin CT, Wehrli FW. The Efficacy of Low-intensity Vibration to Improve Bone Health in Patients with End-stage Renal Disease Is Highly Dependent on Compliance and Muscle Response. Acad Radiol 2017; 24:1332-1342. [PMID: 28652048 DOI: 10.1016/j.acra.2017.05.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 05/23/2017] [Indexed: 12/28/2022]
Abstract
RATIONAL AND OBJECTIVES Low intensity vibration (LIV) may represent a nondrug strategy to mitigate bone deficits in patients with end-stage renal disease. MATERIALS AND METHODS Thirty end-stage renal patients on maintenance hemodialysis were randomized to stand for 20 minutes each day on either an active or placebo LIV device. Analysis at baseline and completion of 6-month intervention included magnetic resonance imaging (tibia and fibula stiffness; trabecular thickness, number, separation, bone volume fraction, plate-to-rod ratio; and cortical bone porosity), dual-energy X-ray absorptiometry (hip and spine bone mineral density [BMD]), and peripheral quantitative computed tomography (tibia trabecular and cortical BMD; calf muscle cross-sectional area). RESULTS Intention-to-treat analysis did not show any significant changes in outcomes associated with LIV. Subjects using the active device and with greater than the median adherence (70%) demonstrated an increase in distal tibia stiffness (5.3%), trabecular number (1.7%), BMD (2.3%), and plate-to-rod ratio (6.5%), and a decrease in trabecular separation (-1.8%). Changes in calf muscle cross-sectional area were associated with changes in distal tibia stiffness (R = 0.85), trabecular bone volume/total volume (R = 0.91), number (R = 0.92), and separation (R = -0.94) in the active group but not in the placebo group. Baseline parathyroid hormone levels were positively associated with increased cortical bone porosity over the 6-month study period in the placebo group (R = 0.55) but not in the active group (R = 0.01). No changes were observed in the nondistal tibia locations for either group except a decrease in hip BMD in the placebo group (-1.7%). CONCLUSION Outcomes and adherence thresholds identified from this pilot study could guide future longitudinal studies involving vibration therapy.
Collapse
|
32
|
Tsai JN, Nishiyama KK, Lin D, Yuan A, Lee H, Bouxsein ML, Leder BZ. Effects of Denosumab and Teriparatide Transitions on Bone Microarchitecture and Estimated Strength: the DATA-Switch HR-pQCT study. J Bone Miner Res 2017; 32:2001-2009. [PMID: 28608571 DOI: 10.1002/jbmr.3198] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 06/08/2017] [Accepted: 06/11/2017] [Indexed: 11/07/2022]
Abstract
In postmenopausal osteoporosis, switching from teriparatide to denosumab results in continued bone mineral density (BMD) gains whereas switching from denosumab to teriparatide results in BMD loss. To assess the effects of these transitions on bone microarchitecture and strength, we performed high-resolution peripheral QCT (HR-pQCT) at the distal tibia and radius in postmenopausal osteoporotic women who received 24 months of teriparatide 20 μg daily followed by 24 months of denosumab 60 mg every 6 months, 24 months of denosumab followed by 24 months of teriparatide, or 24 months of both medications followed by 24 months of denosumab. The 77 women who completed at least one post-switch visit are included in this analysis. Tibial cortical volumetric BMD (vBMD) increased between months 24 and 48 in the teriparatide-to-denosumab (net 48-month change -0.8% ± 2.4%) and combination-to-denosumab groups (net 48-month changes +2.4% ± 4.1%) but decreased in the denosumab-to-teriparatide group (net 48-month change -3.4% ± 3.2%, p < 0.001 for all between-group comparisons). Changes in total vBMD, cortical thickness, and estimated stiffness (by micro-finite element analysis [µFEA]) followed a similar pattern, as did changes at the radius. Conversely, tibial cortical porosity remained stable between months 24 and 48 in the teriparatide-to-denosumab and combination-to-denosumab groups (net 48-month changes +7.2% ± 14.8% and -3.4% ± 12.1%, respectively) but increased in the denosumab-to-teriparatide group (net 48-month change +16.2% ± 11.5%, p < 0.05 versus other groups). Trabecular vBMD changes did not differ among groups. Together, these findings demonstrate that in women treated with denosumab, switching to teriparatide is associated with a reduction in total and cortical vBMD, cortical thickness, and estimated strength, whereas switching to denosumab from teriparatide or combination therapy results in improvements in these parameters with the greatest improvements observed in women treated with combined therapy followed by denosumab. These findings strongly suggest that the use of teriparatide after denosumab should be avoided and that the use of combined teriparatide/denosumab followed by denosumab alone may be a useful treatment strategy in those with severe osteoporosis. © 2017 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Joy N Tsai
- Endocrine Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Kyle K Nishiyama
- Division of Endocrinology, Department of Medicine, Columbia University, New York, NY, USA
| | - David Lin
- Endocrine Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Amy Yuan
- Endocrine Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Hang Lee
- Biostatistics Center, Massachusetts General Hospital, Boston, MA, USA
| | - Mary L Bouxsein
- Orthopedic Surgery, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | | |
Collapse
|
33
|
The use of bone mineral density measured by dual energy X-ray absorptiometry (DXA) and peripheral quantitative computed microtomography in chronic kidney disease. J Nephrol 2017; 30:635-643. [PMID: 28900872 DOI: 10.1007/s40620-017-0433-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 08/14/2017] [Indexed: 10/18/2022]
Abstract
Chronic kidney disease (CKD) is a risk factor for fractures. The current evaluation of fracture risk is based upon the combination of various clinical factors and quantitative imaging of bone. X-ray-based tools were developed to evaluate bone status and predict fracture risk. Dual energy X-ray absorptiometry (DXA) is available worldwide. Longitudinal studies showed that low areal Bone Mineral Density (BMD) measured by DXA predicts fractures in the CKD population as it does in non uremic populations, with good specificity and moderate sensitivity. Peripheral quantitative computed tomography (pQCT) and high resolution pQCT are research tools which measure volumetric BMD at the tibia and radius. They are able to discriminate between the cortical and trabecular envelopes which are differentially affected by renal osteodystrophy. In CKD, a rapid thinning and increased porosity at the cortex is observed which is associated with increased the risk for fracture.
Collapse
|
34
|
Recent Changes in Chronic Kidney Disease–Mineral and Bone Disorders and Associated Fractures After Kidney Transplantation. Transplantation 2017; 101:1897-1905. [DOI: 10.1097/tp.0000000000001449] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
35
|
Christen P, Müller R. In vivo Visualisation and Quantification of Bone Resorption and Bone Formation from Time-Lapse Imaging. Curr Osteoporos Rep 2017. [PMID: 28639146 DOI: 10.1007/s11914-017-0372-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE OF REVIEW Mechanoregulation of bone cells was proposed over a century ago, but only now can we visualise and quantify bone resorption and bone formation and its mechanoregulation. In this review, we show how the newest advances in imaging and computational methods paved the way for this breakthrough. RECENT FINDINGS Non-invasive in vivo assessment of bone resorption and bone formation was demonstrated by time-lapse micro-computed tomography in animals, and by high-resolution peripheral quantitative computed tomography in humans. Coupled with micro-finite element analysis, the relationships between sites of bone resorption and bone formation and low and high tissue loading, respectively, were shown. Time-lapse in vivo imaging and computational methods enabled visualising and quantifying bone resorption and bone formation as well as its mechanoregulation. Future research includes visualising and quantifying mechanoregulation of bone resorption and bone formation from molecular to organ scales, and translating the findings into medicine using personalised bone health prognosis.
Collapse
Affiliation(s)
- Patrik Christen
- ETH Zurich, Institute for Biomechanics, Leopold-Ruzicka-Weg 4, 8093, Zurich, Switzerland
| | - Ralph Müller
- ETH Zurich, Institute for Biomechanics, Leopold-Ruzicka-Weg 4, 8093, Zurich, Switzerland.
| |
Collapse
|
36
|
Coco M, Pullman JM. Noninvasive Imaging of Bone Microarchitecture in Patients Receiving Renal Transplant: Can it Replace Histology? Clin J Am Soc Nephrol 2017; 12:562-564. [PMID: 28348029 PMCID: PMC5383378 DOI: 10.2215/cjn.02210217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
| | - James M. Pullman
- Pathology, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
37
|
Luckman M, Hans D, Cortez N, Nishiyama KK, Agarawal S, Zhang C, Nikkel L, Iyer S, Fusaro M, Guo EX, McMahon DJ, Shane E, Nickolas TL. Spine Trabecular Bone Score as an Indicator of Bone Microarchitecture at the Peripheral Skeleton in Kidney Transplant Recipients. Clin J Am Soc Nephrol 2017; 12:644-652. [PMID: 28348031 PMCID: PMC5383391 DOI: 10.2215/cjn.09850916] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Accepted: 01/09/2017] [Indexed: 01/04/2023]
Abstract
BACKGROUND AND OBJECTIVES Studies using high-resolution peripheral quantitative computed tomography showed progressive abnormalities in cortical and trabecular microarchitecture and biomechanical competence over the first year after kidney transplantation. However, high-resolution peripheral computed tomography is a research tool lacking wide availability. In contrast, the trabecular bone score is a novel and widely available tool that uses gray-scale variograms of the spine image from dual-energy x-ray absorptiometry to assess trabecular quality. There are no studies assessing whether trabecular bone score characterizes bone quality in kidney transplant recipients. DESIGN, SETTINGS, PARTICIPANTS, & MEASUREMENTS Between 2009 and 2010, we conducted a study to assess changes in peripheral skeletal microarchitecture, measured by high-resolution peripheral computed tomography, during the first year after transplantation in 47 patients managed with early corticosteroid-withdrawal immunosuppression. All adult first-time transplant candidates were eligible. Patients underwent imaging with high-resolution peripheral computed tomography and dual-energy x-ray absorptiometry pretransplantation and 3, 6, and 12 months post-transplantation. We now test if, during the first year after transplantation, trabecular bone score assesses the evolution of bone microarchitecture and biomechanical competence as determined by high-resolution peripheral computed tomography. RESULTS At baseline and follow-up, among the 72% and 78%, respectively, of patients having normal bone mineral density by dual-energy x-ray absorptiometry, 53% and 50%, respectively, were classified by trabecular bone score as having high fracture risk. At baseline, trabecular bone score correlated with spine, hip, and ultradistal radius bone mineral density by dual-energy x-ray absorptiometry and cortical area, density, thickness, and porosity; trabecular density, thickness, separation, and heterogeneity; and stiffness and failure load by high-resolution peripheral computed tomography. Longitudinally, each percentage increase in trabecular bone score was associated with increases in trabecular number (0.35%±1.4%); decreases in trabecular thickness (-0.45%±0.15%), separation (-0.40%±0.15%), and network heterogeneity (-0.48%±0.20%); and increases in failure load (0.22%±0.09%) by high-resolution peripheral computed tomography (all P<0.05). CONCLUSIONS Trabecular bone score may be a useful method to assess and monitor bone quality and strength and classify fracture risk in kidney transplant recipients.
Collapse
Affiliation(s)
| | - Didier Hans
- Center of Bone Diseases, Bone and Joint Department, Medical University of Lausanne, Lausanne, Switzerland
| | | | | | | | | | - Lucas Nikkel
- Department of Orthopaedics and Rehabilitation, University of Rochester, Rochester, New York
| | - Sapna Iyer
- Department of Medicine, Kaiser Oakland Medical Center, Oakland, California; and
| | - Maria Fusaro
- Institute of Clinical Physiology, National Research Council, Pisa, Italy
| | - Edward X. Guo
- Biomedical Engineering, Columbia University, New York, New York
| | | | | | | |
Collapse
|
38
|
Manhard MK, Nyman JS, Does MD. Advances in imaging approaches to fracture risk evaluation. Transl Res 2017; 181:1-14. [PMID: 27816505 PMCID: PMC5357194 DOI: 10.1016/j.trsl.2016.09.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 09/19/2016] [Accepted: 09/27/2016] [Indexed: 01/23/2023]
Abstract
Fragility fractures are a growing problem worldwide, and current methods for diagnosing osteoporosis do not always identify individuals who require treatment to prevent a fracture and may misidentify those not a risk. Traditionally, fracture risk is assessed using dual-energy X-ray absorptiometry, which provides measurements of areal bone mineral density at sites prone to fracture. Recent advances in imaging show promise in adding new information that could improve the prediction of fracture risk in the clinic. As reviewed herein, advances in quantitative computed tomography (QCT) predict hip and vertebral body strength; high-resolution HR-peripheral QCT (HR-pQCT) and micromagnetic resonance imaging assess the microarchitecture of trabecular bone; quantitative ultrasound measures the modulus or tissue stiffness of cortical bone; and quantitative ultrashort echo-time MRI methods quantify the concentrations of bound water and pore water in cortical bone, which reflect a variety of mechanical properties of bone. Each of these technologies provides unique characteristics of bone and may improve fracture risk diagnoses and reduce prevalence of fractures by helping to guide treatment decisions.
Collapse
Affiliation(s)
- Mary Kate Manhard
- Biomedical Engineering, Vanderbilt University, Nashville, TN; Vanderbilt University Institute of Imaging Science, Nashville, TN
| | - Jeffry S Nyman
- Biomedical Engineering, Vanderbilt University, Nashville, TN; Vanderbilt University Institute of Imaging Science, Nashville, TN; Orthopaedic Surgery and Rehabilitation, Vanderbilt University, Nashville, TN; Tennessee Valley Healthcare System, Department of Veterans Affairs, Nashville, TN; Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN
| | - Mark D Does
- Biomedical Engineering, Vanderbilt University, Nashville, TN; Vanderbilt University Institute of Imaging Science, Nashville, TN; Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN; Electrical Engineering, Vanderbilt University, Nashville, TN.
| |
Collapse
|
39
|
Bielesz B, Patsch JM, Fischer L, Bojic M, Winnicki W, Weber M, Cejka D. Cortical porosity not superior to conventional densitometry in identifying hemodialysis patients with fragility fracture. PLoS One 2017; 12:e0171873. [PMID: 28199411 PMCID: PMC5310770 DOI: 10.1371/journal.pone.0171873] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 01/26/2017] [Indexed: 11/23/2022] Open
Abstract
Hemodialysis (HD) patients face increased fracture risk, which is further associated with elevated risk of hospitalization and mortality. High-resolution peripheral computed tomography (HR-pQCT) has advanced our understanding of bone disease in chronic kidney disease by characterizing distinct changes in both the cortical and trabecular compartments. Increased cortical porosity (Ct.Po) has been shown to be associated with fracture in patients with osteopenia or in postmenopausal diabetic women. We tested whether the degree of Ct.Po identifies hemodialysis patients with prevalent fragility fractures in comparison to bone mineral density (BMD) assessed by dual X-ray absorptiometry (DXA). We performed a post-hoc analysis of a cross-sectional study in 76 prevalent hemodialysis patients. Markers of mineral metabolism, coronary calcification score, DXA-, and HR-pQCT-data were analyzed, and Ct.Po determined at radius and tibia. Ct.Po was significantly higher in patients with fracture but association was lost after adjusting for age and gender (tibia p = 0.228, radius p = 0.5). Instead, femoral (F) BMD neck area (p = 0.03), F T-score neck area (p = 0.03), radius (R) BMD (p = 0.03), R T-score (p = 0.03), and cortical HR-pQCT indices such as cortical area (Ct.Ar) (tibia: p = 0.01; radius: p = 0.02) and cortical thickness (Ct.Th) (tibia: p = 0.03; radius: p = 0.02) correctly classified patients with fragility fractures. Area under receiver operating characteristic curves (AUC) for Ct.Po (tibia AUC: 0.711; p = 0.01; radius AUC: 0.666; p = 0.04), Ct.Ar (tibia AUC: 0.832; p<0.001; radius AUC: 0.796; p<0.001), and F neck BMD (AUC: 0.758; p = 0.002) did not differ significantly among each other. In conclusion, measuring Ct.Po is not superior to BMD determined by DXA for identification of HD patients with fragility fracture.
Collapse
Affiliation(s)
- Bernhard Bielesz
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
- * E-mail:
| | - Janina M. Patsch
- Division of General Radiology and Pediatric Radiology, Department of Biomedical Imaging and Image-Guided Therapy, Vienna, Austria
| | - Lukas Fischer
- Computational Imaging Research (CIR) Laboratory, Department of Biomedical Imaging and Image-Guided Therapy, Vienna, Austria
- Software Competence Center Hagenberg, Hagenberg, Austria
| | - Marija Bojic
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Wolfgang Winnicki
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Michael Weber
- Division of General Radiology and Pediatric Radiology, Department of Biomedical Imaging and Image-Guided Therapy, Vienna, Austria
| | - Daniel Cejka
- Department of Medicine III, Nephrology, Transplantation, Rheumatology, Geriatrics, Ordensklinikum Linz, Linz, Austria
| |
Collapse
|
40
|
Carvalho C, Magalhães J, Pereira L, Simões-Silva L, Castro-Ferreira I, Frazão JM. Evolution of bone disease after kidney transplantation: A prospective histomorphometric analysis of trabecular and cortical bone. Nephrology (Carlton) 2016. [PMID: 26201946 DOI: 10.1111/nep.12570] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
AIM Post-transplant bone disease results from multiple factors, including previous bone and mineral metabolism disturbances and effects from transplant-related medications. Bone biopsy remains the gold-standard diagnostic tool. METHODS We aimed to prospectively evaluate trabecular and cortical bone by histomorphometry after kidney transplantation. Seven patients, willing to perform follow-up bone biopsy, were included in the study. Dual-X-ray absorptiometry and trans-iliac bone biopsy were performed within the first 2 months after renal transplantation and repeated after 2-5 years of follow-up. RESULTS Follow-up biopsy revealed a significant decrease in osteoblast surface/bone surface (0.91 ± 0.81 to 0.47 ± 0.12%, P = 0.036), osteoblasts number/bone surface (0.45 (0.23, 0.94) to 0.00/mm(2) , P = 0.018) and erosion surface/bone surface (3.75 ± 2.02 to 2.22 ± 1.38%, P = 0.044). A decrease in trabecular number (3.55 (1.81, 2.89) to 1.55/mm (1.24, 2.06), P = 0.018) and increase in trabecular separation (351.65 ± 135.04 to 541.79 ± 151.91 μm, P = 0.024) in follow-up biopsy suggest loss in bone quantity. We found no significant differences in cortical analysis, except a reduction in external cortical osteonal eroded surface (5.76 (2.94, 13.97) to 3.29% (0.00, 6.67), P = 0.043). Correlations between bone histomorphometric and dual-X-ray absorptiometry parameters gave inconsistent results. CONCLUSIONS The results show a reduction in bone activity, suggesting increased risk of adynamic bone and loss of bone volume. Cortical bone seems less affected by post-transplant biological changes in the first years after kidney transplantation.
Collapse
Affiliation(s)
- Catarina Carvalho
- Nephrology and Infectiology Research and Development Group, INEB, Porto, Portugal
| | - Juliana Magalhães
- Nephrology and Infectiology Research and Development Group, INEB, Porto, Portugal
| | - Luciano Pereira
- Nephrology and Infectiology Research and Development Group, INEB, Porto, Portugal
| | - Liliana Simões-Silva
- Nephrology Research and Development Unit, Medical School, Porto University, Porto, Portugal
| | - Inês Castro-Ferreira
- Nephrology Research and Development Unit, Medical School, Porto University, Porto, Portugal
| | - João Miguel Frazão
- Nephrology and Infectiology Research and Development Group, INEB, Porto, Portugal
| |
Collapse
|
41
|
Bouquegneau A, Salam S, Delanaye P, Eastell R, Khwaja A. Bone Disease after Kidney Transplantation. Clin J Am Soc Nephrol 2016; 11:1282-1296. [PMID: 26912549 PMCID: PMC4934848 DOI: 10.2215/cjn.11371015] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Bone and mineral disorders occur frequently in kidney transplant recipients and are associated with a high risk of fracture, morbidity, and mortality. There is a broad spectrum of often overlapping bone diseases seen after transplantation, including osteoporosis as well as persisting high- or low-turnover bone disease. The pathophysiology underlying bone disorders after transplantation results from a complex interplay of factors, including preexisting renal osteodystrophy and bone loss related to a variety of causes, such as immunosuppression and alterations in the parathyroid hormone-vitamin D-fibroblast growth factor 23 axis as well as changes in mineral metabolism. Management is complex, because noninvasive tools, such as imaging and bone biomarkers, do not have sufficient sensitivity and specificity to detect these abnormalities in bone structure and function, whereas bone biopsy is not a widely available diagnostic tool. In this review, we focus on recent data that highlight improvements in our understanding of the prevalence, pathophysiology, and diagnostic and therapeutic strategies of mineral and bone disorders in kidney transplant recipients.
Collapse
Affiliation(s)
- Antoine Bouquegneau
- Department of Nephrology, Dialysis, and Transplantation, Centre Hospitalier Universitaire de Liege, Liege, Belgium
| | - Syrazah Salam
- Sheffield Kidney Institute, Northern General Hospital, Sheffield, United Kingdom; and
| | - Pierre Delanaye
- Department of Nephrology, Dialysis, and Transplantation, Centre Hospitalier Universitaire de Liege, Liege, Belgium
| | - Richard Eastell
- Academic Unit of Bone Metabolism, Metabolic Bone Centre, Northern General Hospital, Sheffield, United Kingdom
| | - Arif Khwaja
- Sheffield Kidney Institute, Northern General Hospital, Sheffield, United Kingdom; and
| |
Collapse
|
42
|
Cheuk KY, Tam EMS, Yu FWP, Yip BHK, Hung VWY, Wang X, Ghasem-Zadeh A, Zhu TY, Qin L, Cheng JCY, Lam TP. A Critical Comparison Between Two Scanning Protocols of High-Resolution Peripheral Quantitative Computed Tomography at the Distal Radius in Adolescents. J Clin Densitom 2016; 19:305-15. [PMID: 27130257 DOI: 10.1016/j.jocd.2016.04.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 03/31/2016] [Accepted: 04/05/2016] [Indexed: 10/21/2022]
Abstract
High-resolution peripheral quantitative computed tomography (HR-pQCT) is a unique technology for assessing bone mineral density and bone microarchitecture. Currently, no universally accepted protocol for selecting the region of interest (ROI) at the distal radius has been established for growing subjects. This study aimed (1) to investigate the differences in HR-pQCT measurements of 2 different ROI protocols applied to the distal radius of healthy adolescents and (2) to identify the least common area of ROI (the least common ROI) between the protocols. Twenty-six boys and 26 girls aged between 13 and 16 yr old were recruited. Nondominant distal radius was scanned by 2 HR-pQCT protocols, namely, the "5-mm protocol," where the distal end of ROI started at 5 mm proximal to a reference line, and the "4% protocol," where the ROI started at 4% of the ulnar length proximal to another reference line. The least common ROI between the 2 protocols was identified and the slice numbering within the common ROI was determined. Bland-Altman plots were used to check the agreement of the least common ROIs between the 2 protocols. Paired t-test and Wilcoxon signed-rank test were used for analysis. In boys, significant differences between protocols were found in most parameters with the maximum difference observed in the cortical area (25.0%, p < 0.001). In girls, differences were observed only for total volumetric bone mineral density (3.6%, p = 0.032). The number of slices in the least common ROI was 66 (60.0%) and 57 (51.8%) in boys and girls, respectively. Good agreements on all HR-pQCT parameters from the least common ROI between the 2 protocols were found. Significant differences in bone parameters were noted between the 2 protocols. When comparing the 2 protocols, observed gender differences could reflect the differences in skeletal growth at the peripubertal period between genders. Least common ROI could be useful for cross-center comparisons and when merging datasets from different centers.
Collapse
Affiliation(s)
- Ka-Yee Cheuk
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR; SH Ho Scoliosis Research Laboratory, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR; Joint Scoliosis Research Center of the Chinese University of Hong Kong and Nanjing University, The Chinese University of Hong Kong, Hong Kong SAR
| | - Elisa Man-Shan Tam
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR; SH Ho Scoliosis Research Laboratory, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR; Joint Scoliosis Research Center of the Chinese University of Hong Kong and Nanjing University, The Chinese University of Hong Kong, Hong Kong SAR
| | - Fiona Wai-Ping Yu
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR; SH Ho Scoliosis Research Laboratory, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR; Joint Scoliosis Research Center of the Chinese University of Hong Kong and Nanjing University, The Chinese University of Hong Kong, Hong Kong SAR; Bone Quality and Health Centre, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR
| | - Benjamin Hon-Kei Yip
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR; SH Ho Scoliosis Research Laboratory, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR; School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR
| | - Vivian Wing-Yin Hung
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR; SH Ho Scoliosis Research Laboratory, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR; Joint Scoliosis Research Center of the Chinese University of Hong Kong and Nanjing University, The Chinese University of Hong Kong, Hong Kong SAR; Bone Quality and Health Centre, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR
| | - Xiaofang Wang
- Departments of Endocrinology and Medicine, Austin Health, University of Melbourne, Australia
| | - Ali Ghasem-Zadeh
- Departments of Endocrinology and Medicine, Austin Health, University of Melbourne, Australia
| | - Tracy Y Zhu
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR; SH Ho Scoliosis Research Laboratory, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR; Bone Quality and Health Centre, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR
| | - Ling Qin
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR; SH Ho Scoliosis Research Laboratory, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR; Bone Quality and Health Centre, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR
| | - Jack Chun-Yiu Cheng
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR; SH Ho Scoliosis Research Laboratory, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR; Joint Scoliosis Research Center of the Chinese University of Hong Kong and Nanjing University, The Chinese University of Hong Kong, Hong Kong SAR; Bone Quality and Health Centre, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR
| | - Tsz-Ping Lam
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR; SH Ho Scoliosis Research Laboratory, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR; Joint Scoliosis Research Center of the Chinese University of Hong Kong and Nanjing University, The Chinese University of Hong Kong, Hong Kong SAR; Bone Quality and Health Centre, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR.
| |
Collapse
|
43
|
Sharma AK, Masterson R, Holt SG, Toussaint ND. Emerging role of high-resolution imaging in the detection of renal osteodystrophy. Nephrology (Carlton) 2016; 21:801-11. [PMID: 27042945 DOI: 10.1111/nep.12790] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 03/14/2016] [Accepted: 03/25/2016] [Indexed: 12/17/2022]
Abstract
The term renal osteodystrophy refers to changes in bone morphology induced by chronic kidney disease (CKD) and represents the skeletal component of the entity 'chronic kidney disease - mineral and bone disorder'. Changes in turnover, mineralization, mass and microarchitecture impair bone quality, compromising strength and increasing susceptibility to fractures. Fractures are more common in CKD compared with the general population and result in increased morbidity and mortality. Screening for fracture risk and management of renal osteodystrophy are hindered by the complex, and still only partially understood, pathophysiology and the inadequacy of currently available diagnostic methods. Bone densitometry and bone turnover markers, although potentially helpful, have significant limitations in patients with CKD, and the 'gold standard' test of bone biopsy is infrequently performed in routine clinical practice. However, recent advances in high-resolution bone microarchitecture imaging may offer greater potential for quantification and assessment of bone structure and strength and, when used in conjunction with serum biomarkers, may allow non-invasive testing for a diagnostic virtual bone biopsy.
Collapse
Affiliation(s)
- Ashish K Sharma
- Department of Nephrology, The Royal Melbourne Hospital, Parkville, Victoria, Australia.,Department of Medicine (RMH), The University of Melbourne, Melbourne, Victoria, Australia
| | - Rosemary Masterson
- Department of Nephrology, The Royal Melbourne Hospital, Parkville, Victoria, Australia.,Department of Medicine (RMH), The University of Melbourne, Melbourne, Victoria, Australia
| | - Stephen G Holt
- Department of Nephrology, The Royal Melbourne Hospital, Parkville, Victoria, Australia.,Department of Medicine (RMH), The University of Melbourne, Melbourne, Victoria, Australia
| | - Nigel D Toussaint
- Department of Nephrology, The Royal Melbourne Hospital, Parkville, Victoria, Australia. .,Department of Medicine (RMH), The University of Melbourne, Melbourne, Victoria, Australia.
| |
Collapse
|
44
|
Mao SS, Li D, Luo Y, Syed YS, Budoff MJ. Application of quantitative computed tomography for assessment of trabecular bone mineral density, microarchitecture and mechanical property. Clin Imaging 2016; 40:330-8. [DOI: 10.1016/j.clinimag.2015.09.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 07/17/2015] [Accepted: 09/10/2015] [Indexed: 12/17/2022]
|
45
|
Wong J, Tan MZW, Chandran M. Fifty shades of gray: Bone disease in renal transplantation. PROCEEDINGS OF SINGAPORE HEALTHCARE 2015. [DOI: 10.1177/2010105815611808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Kidney transplantation is the renal replacement therapy of choice for patients with end stage renal disease. Advances in technology, surgical techniques and pharmacotherapy have improved renal allograft survival. Increasingly, we are seeing long term side effects related to renal transplantation, bone disease being a major one amongst them. Renal transplant patients have a higher risk of fragility fractures even when compared to those who remain on dialysis. This is likely to be related to pre-existing underlying bone disease and the emergence of new metabolic bone problems post-transplant. Conditions such as persistent hyperparathyroidism and the use of certain immunosuppressive agents have a deleterious effect on the post renal transplant bone. Remarkable advances in the field of metabolic bone research have been made in the last decade and newer imaging techniques, biomarkers and therapeutic options are now available for osteoporosis in the general population. Interest is being focused on attempting to extrapolate these new discoveries to the management of bone disease post renal transplant. This review will briefly describe the metabolic bone changes that occur after transplantation and will provide an update on the currently available investigative options and therapeutic strategies for the management of post renal transplant bone disease.
Collapse
Affiliation(s)
- Jiunn Wong
- Department of Renal Medicine, Singapore General Hospital, Singapore
| | | | - Manju Chandran
- Department of Endocrinology, Singapore General Hospital, Singapore
| |
Collapse
|
46
|
Nirody JA, Cheng KP, Parrish RM, Burghardt AJ, Majumdar S, Link TM, Kazakia GJ. Spatial distribution of intracortical porosity varies across age and sex. Bone 2015; 75:88-95. [PMID: 25701139 PMCID: PMC4454740 DOI: 10.1016/j.bone.2015.02.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2014] [Revised: 01/15/2015] [Accepted: 02/06/2015] [Indexed: 11/25/2022]
Abstract
Cortical bone porosity is a major determinant of strength, stiffness, and fracture toughness of cortical tissue. The goal of this work was to investigate changes in spatial distribution and microstructure of cortical porosity associated with aging in men and women. The specific aims were to: 1) develop an automated technique for spatial analysis of cortical microstructure based on HR-pQCT data, and; 2) apply this technique to explore sex- and age-specific spatial distribution and microstructure of porosity within the cortex. We evaluated HR-pQCT images of the distal tibia from a cross-sectional cohort of 145 individuals, characterizing detectable pores as being in the endosteal, midcortical, or periosteal layers of the cortex. Metrics describing porosity, pore number, and pore size were quantified within each layer and compared across sexes, age groups, and cortical layers. The elderly cohort (65-78 years, n=22) displayed higher values than the young cohort (20-29 years, n=29) for all parameters both globally and within each layer. While all three layers displayed significant age-related porosity increases, the greatest difference in porosity between the young and elderly cohort was in the midcortical layer (+344%, p<0.001). Similarly, the midcortical layer reflected the greatest differences between young and elderly cohorts in both pore number (+243%, p<0.001) and size (+28%, p<0.001). Females displayed greater age-related changes in porosity and pore number than males. Females and males displayed comparable small to non-significant changes with age in pore size. In summary, considerable variability exists in the spatial distribution of detectable cortical porosity at the distal tibia, and this variability is dependent on age and sex. Intracortical pore distribution analysis may ultimately provide insight into both mechanisms of pore network expansion and biomechanical consequences of pore distribution.
Collapse
Affiliation(s)
- Jasmine A Nirody
- Biophysics Graduate Group, University of California, Berkeley, CA, USA.
| | - Karen P Cheng
- Musculoskeletal Quantitative Imaging Research Group, Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA; Department of Bioengineering, University of California, Berkeley, CA.
| | - Robin M Parrish
- Musculoskeletal Quantitative Imaging Research Group, Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA.
| | - Andrew J Burghardt
- Musculoskeletal Quantitative Imaging Research Group, Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA.
| | - Sharmila Majumdar
- Musculoskeletal Quantitative Imaging Research Group, Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA.
| | - Thomas M Link
- Musculoskeletal Quantitative Imaging Research Group, Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA.
| | - Galateia J Kazakia
- Musculoskeletal Quantitative Imaging Research Group, Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA.
| |
Collapse
|
47
|
Abstract
Fractures are more common and are associated with greater morbidity and morality in patients with kidney disease than in members of the general population. Thus, it is troubling that in chronic kidney disease (CKD) patients there has been a paradoxical increase in fracture rates over the past 20 years compared to the general population. Increased fracture incidence in CKD patients may be driven in part by the lack of screening for fracture risk. In the general population, dual energy X-ray absorptiometry (DXA) is the clinical standard to stratify fracture risk, and its use has contributed to decreases in fracture incidence. In contrast, in CKD, fracture risk screening with DXA has been uncommon due to its unclear efficacy in predicting fracture and its inability to predict type of renal osteodystrophy. Recently, several prospective studies conducted in patients across the spectrum of kidney disease have demonstrated that bone mineral density measured by DXA predicts future fracture risk and that clinically relevant information regarding fracture risk is provided by application of the World Health Organization cutoffs for osteopenia and osteoporosis to DXA measures. Furthermore, novel high-resolution imaging tools, such as high-resolution peripheral quantitative computed tomography (HR-pQCT), have been used to elucidate the effects of kidney disease on cortical and trabecular microarchitecture and bone strength and to identify potential targets for strategies that protect against fractures. This review will discuss the updated epidemiology of fractures in CKD, fracture risk screening by DXA, and the utility of state-of-the art imaging methods to uncover the effects of kidney disease on the skeleton.
Collapse
Affiliation(s)
- Sophie A Jamal
- Women's College Research Institute, University of Toronto, Toronto, Canada
| | | |
Collapse
|
48
|
Soomro IH, Goldfarb DS. Dysphoria induced in dialysis providers by secondary hyperparathyroidism. Clin J Am Soc Nephrol 2015; 10:9-11. [PMID: 25516914 DOI: 10.2215/cjn.11551114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Irfana H Soomro
- Department of Medicine, New York University Langone Medical Center, New York, New York; and
| | - David S Goldfarb
- Department of Medicine, New York University Langone Medical Center, New York, New York; and Nephrology Section, New York Harbor Veterans Affairs Health Care System, New York, New York
| |
Collapse
|