1
|
Lv F, Li Z, Jing Y, Sun L, Li Z, Duan H. The effects and underlying mechanism of extracorporeal shockwave therapy on fracture healing. Front Endocrinol (Lausanne) 2023; 14:1188297. [PMID: 37293486 PMCID: PMC10246855 DOI: 10.3389/fendo.2023.1188297] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/09/2023] [Indexed: 06/10/2023] Open
Abstract
The clinical efficacy of ESWT in treating bone non union has been widely recognized, but the biological mechanism of ESWT promoting bone non union healing is still unclear. ESWT can make old callus micro fracture through mechanical conduction, form subperiosteal hematoma, promote the release of bioactive factors, reactivate the fracture healing mechanism, rebalance the activities of osteoblasts and osteoclast, promote the angiogenesis of fracture site, and accelerate the healing of bone nonunion.Over recent years, great efforts have been made by both scientists and clinicians to explore the underlying mechanism behind the healing effect of ESWT on bone fractures. In this review, we introduced the growth factors during osteogenesis induced by ESWT hoping to provide new insights in the clinical use of ESWT.
Collapse
Affiliation(s)
| | | | | | | | | | - Haoyang Duan
- Department of Rehabilitation Medicine, First Hospital of Jilin University, Chang chun, China
| |
Collapse
|
2
|
Suh J, Kim NK, Shim W, Lee SH, Kim HJ, Moon E, Sesaki H, Jang JH, Kim JE, Lee YS. Mitochondrial fragmentation and donut formation enhance mitochondrial secretion to promote osteogenesis. Cell Metab 2023; 35:345-360.e7. [PMID: 36754021 DOI: 10.1016/j.cmet.2023.01.003] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/07/2022] [Accepted: 01/11/2023] [Indexed: 02/10/2023]
Abstract
Mitochondrial components have been abundantly detected in bone matrix, implying that they are somehow transported extracellularly to regulate osteogenesis. Here, we demonstrate that mitochondria and mitochondrial-derived vesicles (MDVs) are secreted from mature osteoblasts to promote differentiation of osteoprogenitors. We show that osteogenic induction stimulates mitochondrial fragmentation, donut formation, and secretion of mitochondria through CD38/cADPR signaling. Enhancing mitochondrial fission and donut formation through Opa1 knockdown or Fis1 overexpression increases mitochondrial secretion and accelerates osteogenesis. We also show that mitochondrial fusion promoter M1, which induces Opa1 expression, impedes osteogenesis, whereas osteoblast-specific Opa1 deletion increases bone mass. We further demonstrate that secreted mitochondria and MDVs enhance bone regeneration in vivo. Our findings suggest that mitochondrial morphology in mature osteoblasts is adapted for extracellular secretion, and secreted mitochondria and MDVs are critical promoters of osteogenesis.
Collapse
Affiliation(s)
- Joonho Suh
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Na-Kyung Kim
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Wonn Shim
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Seung-Hoon Lee
- Department of Molecular Medicine, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Hyo-Jeong Kim
- Electron Microscopy Research Center, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Eunyoung Moon
- Electron Microscopy and Spectroscopy Team, Korea Basic Science Institute, Ochang, Cheongju, Chungbuk, Republic of Korea
| | - Hiromi Sesaki
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jae Hyuck Jang
- Electron Microscopy Research Center, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea; Electron Microscopy and Spectroscopy Team, Korea Basic Science Institute, Daejeon, Republic of Korea
| | - Jung-Eun Kim
- Department of Molecular Medicine, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Yun-Sil Lee
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
3
|
Pan Y, Tang Y, Gu H, Ge W. Ubiquitin modification in osteogenic differentiation and bone formation: From mechanisms to clinical significance. Front Cell Dev Biol 2022; 10:1033223. [PMID: 36340031 PMCID: PMC9634082 DOI: 10.3389/fcell.2022.1033223] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/10/2022] [Indexed: 01/03/2024] Open
Abstract
The ubiquitin-proteasome system is an important pathway for mediating posttranslational modification and protein homeostasis and exerts a wide range of functions in diverse biological processes, including stem cell differentiation, DNA repair, and cell cycle regulation. Many studies have shown that ubiquitination modification plays a critical role in regulating the osteogenic differentiation of stem cells and bone formation through various mechanisms. This review summarizes current progress on the effects and mechanisms of ubiquitin modification on transcription factors and signaling pathways involved in osteogenic differentiation. Moreover, the review highlights the latest advances in the clinical application of drugs in bone tissue engineering. A thorough understanding of ubiquitin modifications may provide promising therapeutic targets for stem cell-based bone tissue engineering.
Collapse
Affiliation(s)
- Yuan Pan
- Department of General Dentistry II, Peking University School and Hospital of Stomatology, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Yiman Tang
- Fourth Clinical Division, Peking University School and Hospital of Stomatology, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Hang Gu
- Department of General Dentistry II, Peking University School and Hospital of Stomatology, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Wenshu Ge
- Department of General Dentistry II, Peking University School and Hospital of Stomatology, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| |
Collapse
|
4
|
Yan F, Huo Q, Zhang W, Wu T, Dilimulati D, Shi L. MiR-138-5p targets RUNX2 to inhibit osteogenic differentiation of aortic valve interstitial cells via Wnt/β-catenin signaling pathway. BMC Cardiovasc Disord 2022; 22:24. [PMID: 35109802 PMCID: PMC8811996 DOI: 10.1186/s12872-022-02471-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 01/21/2022] [Indexed: 11/18/2022] Open
Abstract
Background Human aortic valve interstitial cells (hAVICs) are a key factor in the pathogenesis of calcific aortic valve disease (CAVD). This research examines the role and mechanism of microRNA miR-138-5p in osteogenic differentiation of hAVICs. Methods RT-qPCR analysis was applied for detecting miR-138-5p and RUNX2 expression in valve tissues of CAVD patients and controls. On completion of induction of osteogenic differentiation of hAVICs, and after overexpression or interference of miR-138-5p expression, the condition of osteogenic differentiation and calcification of hAVICs was confirmed using alkaline phosphatase staining and alizarin red staining. Subsequently, western blot was utilized to detect the expression of osteogenesis-related proteins OPN and ALP, and Wnt/β-catenin signaling pathway-related proteins. Finally, the relationship between miR-138-5p and RUNX2 was validated by dual-luciferase reporter assay and Pearson’s correlation test. Results Down-regulation of miR-138-5p was found in CAVD patients and during osteogenic differentiation of hAVICs. Overexpression of miR-138-5p contribute to the inhibition of osteoblast differentiation and calcium deposition in hAVICs, and of ALP and OPN protein expression. RUNX2 was a target gene of miR-138-5p, and it was negatively correlated with miR-138-5p in CAVD. Additionally, overexpression of RUNX2 could reverse the inhibitory effect of miR-138-5p on osteogenic differentiation of hAVICs. Conclusion miR-138-5p can act as a positive regulator of osteogenic differentiation in CAVD patients to involve in inhibiting valve calcification, which is achieved through RUNX2 and Wnt/β-catenin signaling pathway. Supplementary Information The online version contains supplementary material available at 10.1186/s12872-022-02471-6.
Collapse
Affiliation(s)
- Fei Yan
- Department of Cardiac Surgery, The First Affiliated Hospital of Xinjiang Medical University, 137 Liyushan South Road, Xinshi District, Urumqi, 830054, Xinjiang, China.
| | - Qiang Huo
- Department of Cardiac Surgery, The First Affiliated Hospital of Xinjiang Medical University, 137 Liyushan South Road, Xinshi District, Urumqi, 830054, Xinjiang, China
| | - Weimin Zhang
- Department of Cardiac Surgery, The First Affiliated Hospital of Xinjiang Medical University, 137 Liyushan South Road, Xinshi District, Urumqi, 830054, Xinjiang, China
| | - Tingting Wu
- Department of Cardiology, The First Affiliated Hospital of Xinjiang Medical University, 137 Liyushan South Road, Xinshi District, Urumqi, 830054, Xinjiang, China
| | - Daniyaer Dilimulati
- Department of Cardiac Surgery, The First Affiliated Hospital of Xinjiang Medical University, 137 Liyushan South Road, Xinshi District, Urumqi, 830054, Xinjiang, China
| | - Lin Shi
- Department of Cardiac Surgery, The First Affiliated Hospital of Xinjiang Medical University, 137 Liyushan South Road, Xinshi District, Urumqi, 830054, Xinjiang, China
| |
Collapse
|
5
|
Kim BS, Shin HR, Kim HJ, Yoon H, Cho YD, Choi KY, Choi JY, Kim WJ, Ryoo HM. Septal chondrocyte hypertrophy contributes to midface deformity in a mouse model of Apert syndrome. Sci Rep 2021; 11:7979. [PMID: 33846505 PMCID: PMC8041873 DOI: 10.1038/s41598-021-87260-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/24/2021] [Indexed: 11/25/2022] Open
Abstract
Midface hypoplasia is a major manifestation of Apert syndrome. However, the tissue component responsible for midface hypoplasia has not been elucidated. We studied mice with a chondrocyte-specific Fgfr2S252W mutation (Col2a1-cre; Fgfr2S252W/+) to investigate the effect of cartilaginous components in midface hypoplasia of Apert syndrome. In Col2a1-cre; Fgfr2S252W/+ mice, skull shape was normal at birth, but hypoplastic phenotypes became evident with age. General dimensional changes of mutant mice were comparable with those of mice with mutations in EIIa-cre; Fgfr2S252W/+, a classic model of Apert syndrome in mice. Col2a1-cre; Fgfr2S252W/+ mice showed some unique facial phenotypes, such as elevated nasion, abnormal fusion of the suture between the premaxilla and the vomer, and decreased perpendicular plate of the ethmoid bone volume, which are related to the development of the nasal septal cartilage. Morphological and histological examination revealed that the presence of increased septal chondrocyte hypertrophy and abnormal thickening of nasal septum is causally related to midface deformities in nasal septum-associated structures. Our results suggest that careful examination and surgical correction of the nasal septal cartilage may improve the prognosis in the surgical treatment of midface hypoplasia and respiratory problems in patients with Apert syndrome.
Collapse
Affiliation(s)
- Bong-Soo Kim
- Department of Molecular Genetics and Dental Pharmacology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, South Korea
| | - Hye-Rim Shin
- Department of Molecular Genetics and Dental Pharmacology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, South Korea
| | - Hyun-Jung Kim
- Department of Molecular Genetics and Dental Pharmacology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, South Korea
| | - Heein Yoon
- Department of Molecular Genetics and Dental Pharmacology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, South Korea
| | - Young-Dan Cho
- Department of Periodontology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, South Korea
| | - Kang-Young Choi
- Department of Plastic and Reconstructive Surgery, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Je-Yong Choi
- Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, Skeletal Disease Analysis Center, Korea Mouse Phenotyping Center (KMPC), School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Woo-Jin Kim
- Department of Molecular Genetics and Dental Pharmacology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, South Korea.
| | - Hyun-Mo Ryoo
- Department of Molecular Genetics and Dental Pharmacology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, South Korea.
| |
Collapse
|