1
|
Sanyal S, Rajput S, Sadhukhan S, Rajender S, Mithal A, Chattopadhyay N. Polymorphisms in the Runx2 and osteocalcin genes affect BMD in postmenopausal women: a systematic review and meta-analysis. Endocrine 2024; 84:63-75. [PMID: 38055125 DOI: 10.1007/s12020-023-03621-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 11/17/2023] [Indexed: 12/07/2023]
Abstract
PURPOSE Runx2 and osteocalcin have pivotal roles in bone homeostasis. Polymorphism of these two genes could alter the function of osteoblasts and consequently bone mineral density (BMD). Attempts to understand the relationship between these polymorphisms and BMD in postmenopausal women across a variety of populations have yielded inconsistent results. This meta-analysis seeks to define the relationship between these polymorphisms with BMD in postmenopausal women. METHODS Eligible studies were identified from three electronic databases. Data were extracted from the eligible studies (4 studies on Runx2 and 6 studies on osteocalcin), and associations of Runx2 T > C and osteocalcin HindIII polymorphisms with BMD in postmenopausal women were assessed using standard difference in means (SDM) and 95% confidence intervals (CI) as statistical measures. RESULTS A significant difference in the lumbar spine (LS) BMD in postmenopausal women was observed between the TT and CC homozygotes for the Runx2 T > C (SDM = -0.445, p-value = 0.034). The mutant genotypes (CC) showed significantly lower LS BMD in comparison to wild type genotypes under recessive model of genetic analysis (TC + TT vs. CC: SDM = -0.451, p-value = 0.032). For osteocalcin, HindIII polymorphism, the mutant genotypes (HH) was associated with significantly higher BMD for both LS and femoral neck (FN) than the wild type (hh) homozygotes (SDM = 0.152, p-value = 0.008 and SDM = 0.139, p-value = 0.016 for LS and FN, respectively). There was no association between total hip (TH) BMD and the osteocalcin HindIII polymorphism. CONCLUSIONS Runx2 T > C and osteocalcin HindIII polymorphisms influence the level of BMD in postmenopausal women and may be used as predictive markers of osteoporosis.
Collapse
Affiliation(s)
- Somali Sanyal
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Lucknow, Uttar Pradesh, 226018, India.
| | - Swati Rajput
- Division of Endocrinology and Centre for Research in Anabolic Skeletal Targets in Health and Illness (ASTHI), CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Sreyanko Sadhukhan
- Division of Endocrinology and Centre for Research in Anabolic Skeletal Targets in Health and Illness (ASTHI), CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Singh Rajender
- Division of Endocrinology and Centre for Research in Anabolic Skeletal Targets in Health and Illness (ASTHI), CSIR-Central Drug Research Institute, Lucknow, India
| | - Ambrish Mithal
- Institute of Endocrinology and Diabetes, Max Healthcare, Institutional Area, Press Enclave Road, Saket, New Delhi, India.
| | - Naibedya Chattopadhyay
- Division of Endocrinology and Centre for Research in Anabolic Skeletal Targets in Health and Illness (ASTHI), CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
2
|
Jiang Z, Wang H, Yu K, Feng Y, Wang Y, Huang T, Lai K, Xi Y, Yang G. Light-Controlled BMSC Sheet-Implant Complexes with Improved Osteogenesis via an LRP5/β-Catenin/Runx2 Regulatory Loop. ACS APPLIED MATERIALS & INTERFACES 2017; 9:34674-34686. [PMID: 28879758 DOI: 10.1021/acsami.7b10184] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The combination of bone marrow mesenchymal stem cell (BMSC) sheets and titanium implants (BMSC sheet-implant complexes) can accelerate osseointegration. However, methods of fabricating BMSC sheet-implant complexes are quite limited, and the survival of BMSC sheet-implant complexes is one of the key barriers. Here, we show that a light-controlled fabricating system can generate less injured BMSC sheet-implant complexes with improved viability and osteogenesis and that noninvasive monitoring of the viability of BMSC sheet-implant complexes using a lentiviral delivery system is feasible. Enhanced green fluorescent protein- and luciferase-expressing BMSC sheets were used to track the viability of BMSC sheet-implant complexes in vivo. The experiments of micro-computed tomography analysis and hard tissue slices were performed to evaluate the osteogenic ability of BMSC sheet-implant complexes in vivo. The results showed that BMSC sheet-implant complexes survived for almost 1 month after implantation. Notably, BMSC sheet-implant complexes fabricated by the light-controlled fabricating system had upregulating expression levels of low-density lipoprotein-receptor-related protein 5 (LRP5), β-catenin, and runt-related transcription factor 2 (Runx2) compared to the complexes fabricated by mechanical scraping. Furthermore, we found that Runx2 directly bound to the rat LRP5 promoter and the LRP5/β-catenin/Runx2 regulatory loop contributed to the enhancement of the osseointegrating potentials. In this study, we successfully fabricated BMSC sheet-implant complexes with improved viability and osteogenesis and established a feasible, noninvasive, and continuous method for tracking BMSC sheet-implant complexes in vivo. Our findings lay the foundation for the application of BMSC sheet-implant complexes in vivo and open new avenues for engineered BMSC sheet-implant complexes.
Collapse
Affiliation(s)
- Zhiwei Jiang
- Department of Implantology, Stomatology Hospital, School of Medicine, ‡Department of Oral and Maxillofacial Surgery, Stomatology Hospital, School of Medicine, and §Department of Oral Medicine, Stomatology Hospital, School of Medicine, Zhejiang University , Yan'an Road, Hangzhou 310058, P. R. China
| | - Huiming Wang
- Department of Implantology, Stomatology Hospital, School of Medicine, ‡Department of Oral and Maxillofacial Surgery, Stomatology Hospital, School of Medicine, and §Department of Oral Medicine, Stomatology Hospital, School of Medicine, Zhejiang University , Yan'an Road, Hangzhou 310058, P. R. China
| | - Ke Yu
- Department of Implantology, Stomatology Hospital, School of Medicine, ‡Department of Oral and Maxillofacial Surgery, Stomatology Hospital, School of Medicine, and §Department of Oral Medicine, Stomatology Hospital, School of Medicine, Zhejiang University , Yan'an Road, Hangzhou 310058, P. R. China
| | - Yuting Feng
- Department of Implantology, Stomatology Hospital, School of Medicine, ‡Department of Oral and Maxillofacial Surgery, Stomatology Hospital, School of Medicine, and §Department of Oral Medicine, Stomatology Hospital, School of Medicine, Zhejiang University , Yan'an Road, Hangzhou 310058, P. R. China
| | - Ying Wang
- Department of Implantology, Stomatology Hospital, School of Medicine, ‡Department of Oral and Maxillofacial Surgery, Stomatology Hospital, School of Medicine, and §Department of Oral Medicine, Stomatology Hospital, School of Medicine, Zhejiang University , Yan'an Road, Hangzhou 310058, P. R. China
| | - Tingben Huang
- Department of Implantology, Stomatology Hospital, School of Medicine, ‡Department of Oral and Maxillofacial Surgery, Stomatology Hospital, School of Medicine, and §Department of Oral Medicine, Stomatology Hospital, School of Medicine, Zhejiang University , Yan'an Road, Hangzhou 310058, P. R. China
| | - Kaichen Lai
- Department of Implantology, Stomatology Hospital, School of Medicine, ‡Department of Oral and Maxillofacial Surgery, Stomatology Hospital, School of Medicine, and §Department of Oral Medicine, Stomatology Hospital, School of Medicine, Zhejiang University , Yan'an Road, Hangzhou 310058, P. R. China
| | - Yue Xi
- Department of Implantology, Stomatology Hospital, School of Medicine, ‡Department of Oral and Maxillofacial Surgery, Stomatology Hospital, School of Medicine, and §Department of Oral Medicine, Stomatology Hospital, School of Medicine, Zhejiang University , Yan'an Road, Hangzhou 310058, P. R. China
| | - Guoli Yang
- Department of Implantology, Stomatology Hospital, School of Medicine, ‡Department of Oral and Maxillofacial Surgery, Stomatology Hospital, School of Medicine, and §Department of Oral Medicine, Stomatology Hospital, School of Medicine, Zhejiang University , Yan'an Road, Hangzhou 310058, P. R. China
| |
Collapse
|
3
|
Xia W, Hu J, Liu F, Ma J, Sun S, Zhang J, Jin K, Huang J, Jiang N, Wang X, Li W, Ma Z, Ma D. New role of LRP5, associated with nonsyndromic autosomal-recessive hereditary hearing loss. Hum Mutat 2017; 38:1421-1431. [PMID: 28677207 DOI: 10.1002/humu.23285] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 06/19/2017] [Accepted: 06/25/2017] [Indexed: 12/14/2022]
Abstract
Human hearing loss is a common neurosensory disorder about which many basic research and clinically relevant questions are unresolved. At least 50% of hearing loss are due to a genetic etiology. Although hundreds of genes have been reported, there are still hundreds of related deafness genes to be found. Clinical, genetic, and functional investigations were performed to identify the causative mutation in a distinctive Chinese family with postlingual nonsyndromic sensorineural hearing loss. Whole-exome sequencing (WES) identified lipoprotein receptor-related protein 5 (LRP5), a member of the low-density lipoprotein receptor family, as the causative gene in this family. In the zebrafish model, lrp5 downregulation using morpholinos led to significant abnormalities in zebrafish inner ear and lateral line neuromasts and contributed, to some extent, to disabilities in hearing and balance. Rescue experiments showed that LRP5 mutation is associated with hearing loss. Knocking down lrp5 in zebrafish results in reduced expression of several genes linked to Wnt signaling pathway and decreased cell proliferation when compared with those in wild-type zebrafish. In conclusion, the LRP5 mutation influences cell proliferation through the Wnt signaling pathway, thereby reducing the number of supporting cells and hair cells and leading to nonsyndromic hearing loss in this Chinese family.
Collapse
Affiliation(s)
- Wenjun Xia
- Institutes of Biomedical Science, Fudan University, Shanghai, China
| | - Jiongjiong Hu
- Department of Otorhinolaryngology, Shanghai East Hospital, Tongji University, Shanghai, China
| | - Fei Liu
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, Institute of Biomedical Sciences, Collaborative Innovation Center of Genetics and Development, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jing Ma
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, Institute of Biomedical Sciences, Collaborative Innovation Center of Genetics and Development, School of Basic Medical Sciences, Fudan University, Shanghai, China.,Center Laboratory, Bao'an Maternal and Children Healthcare Hospital, Key Laboratory of Birth Defects Research, Shenzhen, China
| | - Shaoyang Sun
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, Institute of Biomedical Sciences, Collaborative Innovation Center of Genetics and Development, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jin Zhang
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, Institute of Biomedical Sciences, Collaborative Innovation Center of Genetics and Development, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Kaiyue Jin
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, Institute of Biomedical Sciences, Collaborative Innovation Center of Genetics and Development, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jianbo Huang
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, Institute of Biomedical Sciences, Collaborative Innovation Center of Genetics and Development, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Nan Jiang
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, Institute of Biomedical Sciences, Collaborative Innovation Center of Genetics and Development, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Xu Wang
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, Institute of Biomedical Sciences, Collaborative Innovation Center of Genetics and Development, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Wen Li
- Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Zhaoxin Ma
- Department of Otorhinolaryngology, Shanghai East Hospital, Tongji University, Shanghai, China
| | - Duan Ma
- Institutes of Biomedical Science, Fudan University, Shanghai, China.,Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, Institute of Biomedical Sciences, Collaborative Innovation Center of Genetics and Development, School of Basic Medical Sciences, Fudan University, Shanghai, China.,Children's Hospital, Fudan University, Shanghai, China
| |
Collapse
|
4
|
Endochondral ossification pathway genes and postmenopausal osteoporosis: Association and specific allele related serum bone sialoprotein levels in Han Chinese. Sci Rep 2015; 5:16783. [PMID: 26568273 PMCID: PMC4645187 DOI: 10.1038/srep16783] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 10/20/2015] [Indexed: 01/02/2023] Open
Abstract
Osteoporosis is a systemic skeletal disorder characterized by reduced bone mineral density (BMD) and disrupted bone architecture, predisposing the patient to increased fracture risk. Evidence from early genetic epidemiological studies has indicated a major role for genetics in the development of osteoporosis and the variation in BMD. In this study, we focused on two key genes in the endochondral ossification pathway, IBSP and PTHLH. Over 9,000 postmenopausal Han Chinese women were recruited, and 54 SNPs were genotyped. Two significant SNPs within IBSP, rs1054627 and rs17013181, were associated with BMD and postmenopausal osteoporosis by the two-stage strategy, and rs17013181 was also significantly associated with serum IBSP levels. Moreover, one haplotype (rs12425376-rs10843047-rs42294) covering the 5' end of PTHLH was associated with postmenopausal osteoporosis. Our results provide evidence for the association of these two key endochondral ossification pathway genes with BMD and osteoporosis in postmenopausal Han Chinese women. Combined with previous findings, we provide evidence that a particular SNP in IBSP has an allele-specific effect on mRNA levels, which would, in turn, reflect serum IBSP levels.
Collapse
|
5
|
Yang S, Zhang K, Li F, Jiang J, Jia T, Yang SY. Biological responses of preosteoblasts to particulate and ion forms of Co-Cr alloy. J Biomed Mater Res A 2015; 103:3564-71. [PMID: 25966675 DOI: 10.1002/jbm.a.35501] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 05/02/2015] [Accepted: 05/07/2015] [Indexed: 11/12/2022]
Abstract
This study compared the particulate and ion forms of a cobalt-chrome (Co-Cr) alloy on the differentiation/activation of preosteoblasts. Mouse preosteoblasts (MC3T3-E1) were cultured in an osteoblast-induction medium in the presence of particulate and ion forms of a Co-Cr alloy, followed by cell proliferation and cytotoxicity evaluations. The maturation and function of osteoblasts were assessed by alkaline phosphatase (ALP) assay and related gene expressions. Both particulate and ion forms of the metals significantly reduced the proliferation of MC3T3-E1 cells in a dose-dependent manner. Similarly, cells challenged with high concentrations of particles and ions exhibited a marked cytotoxic effect and diminished expression of ALP. Real-time (RT) polymerase chain reaction (PCR) data have suggested that cells with Co-Cr particles dramatically promoted over-expression of monocyte chemo-attractant protein-1 (MCP-1), tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6), whereas Co(2+) ions treatment predominately up-regulated expressions of receptor activator of nuclear factor kappa-B ligand (RANKL), nuclear factor of activated T-cells cytoplasmic 1 (NFATc1), and down-regulated expression of osteoprotegerin (OPG) and Osterix (Osx). Overall, this study provides evidence that both Co-Cr alloy particles and metal ions interfered with the MC3T3-E1 cells for their growth, maturation, and functions. Further, Co-Cr particles exhibited stronger effects on inflammatory mediators, while metal ions showed more influence on inhibition of osteoblast differentiation and promotion of osteoclastogenesis.
Collapse
Affiliation(s)
- Shuye Yang
- Department of Orthopaedic Surgery, Jinan Central Hospital, Shandong University, Jinan, 250013, China.,Department of Biological Sciences, Wichita State University, Wichita, Kansas, 67214.,Department of Orthopaedics, Affiliated Hospital to Binzhou Medical College, Binzhou, China
| | - Kai Zhang
- Department of Orthopaedics, Affiliated Hospital to Binzhou Medical College, Binzhou, China
| | - Fangfang Li
- Department of Gynaecology and Obstetrics, Affiliated Hospital to Binzhou Medical College, Binzhou, China
| | - Jianhao Jiang
- Department of Orthopaedic Surgery, Jinan Central Hospital, Shandong University, Jinan, 250013, China
| | - Tanghong Jia
- Department of Orthopaedic Surgery, Jinan Central Hospital, Shandong University, Jinan, 250013, China
| | - Shang-You Yang
- Department of Orthopaedic Surgery, Jinan Central Hospital, Shandong University, Jinan, 250013, China.,Department of Biological Sciences, Wichita State University, Wichita, Kansas, 67214
| |
Collapse
|
6
|
Common polymorphism in the LRP5 gene may increase the risk of bone fracture and osteoporosis. BIOMED RESEARCH INTERNATIONAL 2014; 2014:290531. [PMID: 25580429 PMCID: PMC4279179 DOI: 10.1155/2014/290531] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2014] [Revised: 09/10/2014] [Accepted: 09/10/2014] [Indexed: 01/11/2023]
Abstract
The low-density lipoprotein receptor-related protein 5 gene (LRP5) was identified to be linked to the variation in bone mineral density and types of bone diseases. The present study was aimed at examining the association of LRP5 rs3736228 C>T gene with bone fracture and osteoporosis by meta-analysis. A systematic electronic search of literature was conducted to identify all published studies in English or Chinese on the association of the LRP5 gene with bone fracture and osteoporosis risks. All analyses were calculated using the Version 12.0 STATA software. Odds ratios (ORs) and their corresponding 95% confidence interval (95% CI) were calculated. An updated meta-analysis was currently performed, including seven independent case-control studies. Results identified that carriers of rs3736228 C>T variant in the LRP5 gene were associated with an increased risk of developing osteoporosis and fractures under 4 genetic models but not under the dominant model (OR = 1.19, 95% CI = 0.97~1.46, and P = 0.103). Ethnicity-subgroup analysis implied that LRP5 rs3736228 C>T mutation was more likely to develop osteoporosis and fractures among Asians and Caucasians in majority of subgroups. These results suggest that there is a modest effect of the LRP5 rs3736228 C>T on the increased susceptibility of bone fracture and osteoporosis.
Collapse
|
7
|
Panach L, Mifsut D, Tarín JJ, Cano A, García-Pérez MÁ. Replication study of three functional polymorphisms associated with bone mineral density in a cohort of Spanish women. J Bone Miner Metab 2014; 32:691-8. [PMID: 24337955 DOI: 10.1007/s00774-013-0539-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 11/04/2013] [Indexed: 10/25/2022]
Abstract
Gene candidate and genome-wide association studies have revealed tens of loci of susceptibility for osteoporosis. Some limitations such as sample size, use of confounding variables, and control for multiple testing and for population stratification, however, represent common problems in these studies that make replication in independent cohorts desirable and even necessary. The main objective of the present study is to replicate previous data on three functional polymorphisms in a cohort of Spanish women. To that end, we performed an association study of three functional polymorphisms previously associated with bone phenotypes in the LRP5, TNFRSF11B, and FGFBP1 genes with low bone mineral density (BMD) in a cohort of 721 Spanish women, most of them postmenopausal. We detected a strong significant association, even when correcting for multiple comparisons, for polymorphism rs312009 in the LRP5 gene with low BMD at the lumbar-spine site. These were women with the CC genotype, which showed the worst bone parameters. Moreover, these women had a higher risk of osteoporosis (adjusted odds ratio 2.82, P = 0.001) than women with the TT/TC genotype. This association seems to be caused because the rs312009 single nucleotide polymorphism (SNP) is located at a binding site for the transcription factor RUNX2 at the 5' region of the LRP5 gene, and the T allele seems to be a better transcriber than the C allele. Regarding the other two SNPs, only the rs4876869 SNP in the TNFRSF11B gene showed a suggestive trend for both skeletal sites. These results underscore the significance of the LRP5 gene in bone metabolism and emphasize the significance of the replication of previous results in independent cohorts.
Collapse
Affiliation(s)
- Layla Panach
- Research Foundation, Institute of Health Research INCLIVA, Valencia, Spain
| | | | | | | | | |
Collapse
|
8
|
Martineau C, Kevorkova O, Brissette L, Moreau R. Scavenger receptor class B, type I (Scarb1) deficiency promotes osteoblastogenesis but stunts terminal osteocyte differentiation. Physiol Rep 2014; 2:2/10/e12117. [PMID: 25281615 PMCID: PMC4254088 DOI: 10.14814/phy2.12117] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Scavenger receptor class B type I (SR-BI), the Scarb1 gene product, is a high-density lipoprotein (HDL) receptor which was shown to influence bone metabolism. Its absence in mice is associated with alterations of the glucocorticoid/adrenocorticotropic hormone axis, and translated in high bone mass and enhanced bone formation. Since the cellular alterations underlying the enhanced bone formation remain unknown, we investigated Scarb1-deficient marrow stromal cells (MSC) behavior in vitro. No difference in HDL3, cholesteryl ester (CE) or estradiol (E) association/binding was measured between Scarb1-null and wild-type (WT) cells. Scarb1 genic expression was down-regulated twofold following osteogenic treatment. Neither WT nor null cell proliferation was influenced by HDL3 exposure whereas this condition decreased genic expression of osteoblastic marker osterix (Sp7), and osteocyte markers sclerostin (Sost) and dentin matrix protein 1 (Dmp1) independently of genotype. Sost and Dmp1 basal expression in null cells was 40% and 50% that of WT cells; accordingly, osteocyte density was 20% lower in vertebrae from Scarb1-null mice. Genic expression of co-receptors for Wnt signaling, namely LDL-related protein (Lrp) 5 and Lrp8, was increased, respectively, by two- and threefold, and of transcription target-genes axis inhibition protein 2 (Axin2) and lymphoid enhancer-binding factor 1 (Lef1) over threefold. Gene expression of Wnt signaling agonist Wnt5a and of the antagonist dickkopfs-related protein 1 (Dkk1) were found to be increased 10- to 20-fold in null MSC. These data suggest alterations of Wnt pathways in Scarb1-deficient MSC potentially explaining their enhanced function, hence contributing to the high bone mass observed in these mice.
Collapse
Affiliation(s)
- Corine Martineau
- Laboratoire du Métabolisme Osseux, BioMed, Département des Sciences Biologiques, Université du Québec à Montréal, Montréal, H3C 3P8, Quebec, Canada
| | - Olha Kevorkova
- Laboratoire du Métabolisme Osseux, BioMed, Département des Sciences Biologiques, Université du Québec à Montréal, Montréal, H3C 3P8, Quebec, Canada
| | - Louise Brissette
- Laboratoire du Métabolisme des Lipoprotéines, Département des Sciences Biologiques, BioMed, Université du Québec à Montréal, Montréal, H3C 3P8, Quebec, Canada
| | - Robert Moreau
- Laboratoire du Métabolisme Osseux, BioMed, Département des Sciences Biologiques, Université du Québec à Montréal, Montréal, H3C 3P8, Quebec, Canada
| |
Collapse
|
9
|
Berlivet S, Moussette S, Ouimet M, Verlaan DJ, Koka V, Al Tuwaijri A, Kwan T, Sinnett D, Pastinen T, Naumova AK. Interaction between genetic and epigenetic variation defines gene expression patterns at the asthma-associated locus 17q12-q21 in lymphoblastoid cell lines. Hum Genet 2012; 131:1161-71. [PMID: 22271045 PMCID: PMC3374122 DOI: 10.1007/s00439-012-1142-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Accepted: 01/09/2012] [Indexed: 01/05/2023]
Abstract
Phenotypic variation results from variation in gene expression, which is modulated by genetic and/or epigenetic factors. To understand the molecular basis of human disease, interaction between genetic and epigenetic factors needs to be taken into account. The asthma-associated region 17q12-q21 harbors three genes, the zona pellucida binding protein 2 (ZPBP2), gasdermin B (GSDMB) and ORM1-like 3 (ORMDL3), that show allele-specific differences in expression levels in lymphoblastoid cell lines (LCLs) and CD4+ T cells. Here, we report a molecular dissection of allele-specific transcriptional regulation of the genes within the chromosomal region 17q12-q21 combining in vitro transfection, formaldehyde-assisted isolation of regulatory elements, chromatin immunoprecipitation and DNA methylation assays in LCLs. We found that a single nucleotide polymorphism rs4795397 influences the activity of ZPBP2 promoter in vitro in an allele-dependent fashion, and also leads to nucleosome repositioning on the asthma-associated allele. However, variable methylation of exon 1 of ZPBP2 masks the strong genetic effect on ZPBP2 promoter activity in LCLs. In contrast, the ORMDL3 promoter is fully unmethylated, which allows detection of genetic effects on its transcription. We conclude that the cis-regulatory effects on 17q12-q21 gene expression result from interaction between several regulatory polymorphisms and epigenetic factors within the cis-regulatory haplotype region.
Collapse
Affiliation(s)
- Soizik Berlivet
- Department of Obstetrics and Gynecology, McGill University, Montreal, QC Canada
| | - Sanny Moussette
- Department of Obstetrics and Gynecology, McGill University, Montreal, QC Canada
- The Research Institute of the McGill University Health Centre, Montreal, QC Canada
| | - Manon Ouimet
- Research Center, CHU Sainte-Justine, Montreal, QC Canada
| | | | - Vonda Koka
- McGill University and Genome Quebec Innovation Centre, Montreal, QC Canada
| | - Abeer Al Tuwaijri
- Department of Human Genetics, McGill University, Montreal, QC Canada
| | - Tony Kwan
- McGill University and Genome Quebec Innovation Centre, Montreal, QC Canada
| | - Daniel Sinnett
- Research Center, CHU Sainte-Justine, Montreal, QC Canada
- Department of Pediatrics, University of Montreal, Montreal, QC Canada
| | - Tomi Pastinen
- McGill University and Genome Quebec Innovation Centre, Montreal, QC Canada
- Department of Human Genetics, McGill University, Montreal, QC Canada
| | - Anna K. Naumova
- Department of Obstetrics and Gynecology, McGill University, Montreal, QC Canada
- The Research Institute of the McGill University Health Centre, Montreal, QC Canada
- Department of Human Genetics, McGill University, Montreal, QC Canada
| |
Collapse
|
10
|
Anastasilakis AD, Polyzos SA, Toulis KA. Role of wingless tail signaling pathway in osteoporosis: an update of current knowledge. Curr Opin Endocrinol Diabetes Obes 2011; 18:383-8. [PMID: 21897222 DOI: 10.1097/med.0b013e32834afff2] [Citation(s) in RCA: 256] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
PURPOSE OF REVIEW Wingless tail (Wnt) pathway is crucial for osteoblast activation and action. This review summarizes the evidence published during the previous year on the emerging role of Wnt signaling alterations in the pathogenesis, diagnosis, and potential therapeutic approaches of osteoporosis. RECENT FINDINGS New insights into the mechanisms regulating Wnt/β-catenin canonical pathway, including the role of Kremen-2 receptor, lamin A/C protein, periostin, and pleiotropin in bone physiology, the crosstalk between the RUNX-2 transcription-factor cascade and the Wnt pathway, and the concept that individual Wnt ligands may have a unique and distinct mission in bone milieu, are presented. Nutritional habits may affect Wnt signaling in bone. Serum sclerostin and dickkopf-1 levels may serve as markers of bone metabolism and disease, although further standardization methods are required. Finally, the effect of current antiosteoporotic treatments on Wnt signaling is discussed, as well as the therapeutic potential of drugs targeting either Wnt signaling amplification or Wnt antagonists' attenuation. SUMMARY Although Wnt pathway is currently a field of thorough investigation, it is still far from been fully elucidated. Understanding its complex pathophysiology has evoked promising therapeutic approaches for osteoporosis. However, given that Wnt signaling is crucial for many tissues, emerging knowledge should be cautiously translated in therapeutics.
Collapse
Affiliation(s)
- Athanasios D Anastasilakis
- Department of Endocrinology, 424 General Military Hospital, Second Medical Clinic, Medical School, Aristotle University of Thessaloniki, Ippokration Hospital, Thessaloniki, Greece.
| | | | | |
Collapse
|
11
|
Update on Wnt signaling in bone cell biology and bone disease. Gene 2011; 492:1-18. [PMID: 22079544 DOI: 10.1016/j.gene.2011.10.044] [Citation(s) in RCA: 292] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Revised: 10/13/2011] [Accepted: 10/20/2011] [Indexed: 12/17/2022]
Abstract
For more than a decade, Wnt signaling pathways have been the focus of intense research activity in bone biology laboratories because of their importance in skeletal development, bone mass maintenance, and therapeutic potential for regenerative medicine. It is evident that even subtle alterations in the intensity, amplitude, location, and duration of Wnt signaling pathways affects skeletal development, as well as bone remodeling, regeneration, and repair during a lifespan. Here we review recent advances and discrepancies in how Wnt/Lrp5 signaling regulates osteoblasts and osteocytes, introduce new players in Wnt signaling pathways that have important roles in bone development, discuss emerging areas such as the role of Wnt signaling in osteoclastogenesis, and summarize progress made in translating basic studies to clinical therapeutics and diagnostics centered around inhibiting Wnt pathway antagonists, such as sclerostin, Dkk1 and Sfrp1. Emphasis is placed on the plethora of genetic studies in mouse models and genome wide association studies that reveal the requirement for and crucial roles of Wnt pathway components during skeletal development and disease.
Collapse
|