1
|
Zhang YY, Xie N, Sun XD, Nice EC, Liou YC, Huang C, Zhu H, Shen Z. Insights and implications of sexual dimorphism in osteoporosis. Bone Res 2024; 12:8. [PMID: 38368422 PMCID: PMC10874461 DOI: 10.1038/s41413-023-00306-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 11/04/2023] [Accepted: 11/27/2023] [Indexed: 02/19/2024] Open
Abstract
Osteoporosis, a metabolic bone disease characterized by low bone mineral density and deterioration of bone microarchitecture, has led to a high risk of fatal osteoporotic fractures worldwide. Accumulating evidence has revealed that sexual dimorphism is a notable feature of osteoporosis, with sex-specific differences in epidemiology and pathogenesis. Specifically, females are more susceptible than males to osteoporosis, while males are more prone to disability or death from the disease. To date, sex chromosome abnormalities and steroid hormones have been proven to contribute greatly to sexual dimorphism in osteoporosis by regulating the functions of bone cells. Understanding the sex-specific differences in osteoporosis and its related complications is essential for improving treatment strategies tailored to women and men. This literature review focuses on the mechanisms underlying sexual dimorphism in osteoporosis, mainly in a population of aging patients, chronic glucocorticoid administration, and diabetes. Moreover, we highlight the implications of sexual dimorphism for developing therapeutics and preventive strategies and screening approaches tailored to women and men. Additionally, the challenges in translating bench research to bedside treatments and future directions to overcome these obstacles will be discussed.
Collapse
Affiliation(s)
- Yuan-Yuan Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Na Xie
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Xiao-Dong Sun
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Edouard C Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3800, Australia
| | - Yih-Cherng Liou
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117543, Republic of Singapore
| | - Canhua Huang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Huili Zhu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, Department of Reproductive Medicine, West China Second University Hospital of Sichuan University, Chengdu, China.
| | - Zhisen Shen
- Department of Otorhinolaryngology and Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, 315040, Ningbo, Zhejiang, China.
| |
Collapse
|
2
|
Benova A, Ferencakova M, Bardova K, Funda J, Prochazka J, Spoutil F, Cajka T, Dzubanova M, Balcaen T, Kerckhofs G, Willekens W, van Lenthe GH, Charyyeva A, Alquicer G, Pecinova A, Mracek T, Horakova O, Coupeau R, Hansen MS, Rossmeisl M, Kopecky J, Tencerova M. Omega-3 PUFAs prevent bone impairment and bone marrow adiposity in mouse model of obesity. Commun Biol 2023; 6:1043. [PMID: 37833362 PMCID: PMC10575870 DOI: 10.1038/s42003-023-05407-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 10/02/2023] [Indexed: 10/15/2023] Open
Abstract
Obesity adversely affects bone and fat metabolism in mice and humans. Omega-3 polyunsaturated fatty acids (omega-3 PUFAs) have been shown to improve glucose metabolism and bone homeostasis in obesity. However, the impact of omega-3 PUFAs on bone marrow adipose tissue (BMAT) and bone marrow stromal cell (BMSC) metabolism has not been intensively studied yet. In the present study we demonstrated that omega-3 PUFA supplementation in high fat diet (HFD + F) improved bone parameters, mechanical properties along with decreased BMAT in obese mice when compared to the HFD group. Primary BMSCs isolated from HFD + F mice showed decreased adipocyte and higher osteoblast differentiation with lower senescent phenotype along with decreased osteoclast formation suggesting improved bone marrow microenvironment promoting bone formation in mice. Thus, our study highlights the beneficial effects of omega-3 PUFA-enriched diet on bone and cellular metabolism and its potential use in the treatment of metabolic bone diseases.
Collapse
Affiliation(s)
- Andrea Benova
- Laboratory of Molecular Physiology of Bone, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
- Faculty of Science, Charles University, Prague, Czech Republic
| | - Michaela Ferencakova
- Laboratory of Molecular Physiology of Bone, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Kristina Bardova
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jiri Funda
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jan Prochazka
- Czech Centre for Phenogenomics & Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Frantisek Spoutil
- Czech Centre for Phenogenomics & Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Tomas Cajka
- Laboratory of Translational Metabolism, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Martina Dzubanova
- Laboratory of Molecular Physiology of Bone, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
- Faculty of Science, Charles University, Prague, Czech Republic
| | - Tim Balcaen
- Biomechanics lab, Institute of Mechanics, Materials, and Civil Engineering, UCLouvain, Louvain-la-Neuve, Belgium
- Pole of Morphology, Institute for Experimental and Clinical Research, UCLouvain, Brussels, Belgium
- Department of Chemistry, Molecular Design and Synthesis, KU Leuven, Leuven, Belgium
| | - Greet Kerckhofs
- Biomechanics lab, Institute of Mechanics, Materials, and Civil Engineering, UCLouvain, Louvain-la-Neuve, Belgium
- Pole of Morphology, Institute for Experimental and Clinical Research, UCLouvain, Brussels, Belgium
- Department of Materials Engineering, KU Leuven, Leuven, Belgium
- Prometheus, Division of Skeletal Tissue Engineering, Katholieke Universiteit Leuven, Leuven, Belgium
| | | | | | - Arzuv Charyyeva
- Laboratory of Molecular Physiology of Bone, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Glenda Alquicer
- Laboratory of Molecular Physiology of Bone, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Alena Pecinova
- Laboratory of Bioenergetics, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Tomas Mracek
- Laboratory of Bioenergetics, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Olga Horakova
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Roman Coupeau
- Laboratory of Molecular Physiology of Bone, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Morten Svarer Hansen
- Molecular Endocrinology Laboratory (KMEB), Department of Endocrinology, Odense University Hospital, Odense, C DK-5000, Denmark
| | - Martin Rossmeisl
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jan Kopecky
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Michaela Tencerova
- Laboratory of Molecular Physiology of Bone, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
3
|
Dubois V, Ciancia S, Doms S, El Kharraz S, Sommers V, Kim NR, David K, Van Dijck J, Valle-Tenney R, Maes C, Antonio L, Decallonne B, Carmeliet G, Claessens F, Cools M, Vanderschueren D. Testosterone Restores Body Composition, Bone Mass, and Bone Strength Following Early Puberty Suppression in a Mouse Model Mimicking the Clinical Strategy in Trans Boys. J Bone Miner Res 2023; 38:1497-1508. [PMID: 37222072 DOI: 10.1002/jbmr.4832] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/24/2023] [Accepted: 05/13/2023] [Indexed: 05/25/2023]
Abstract
Transgender youth increasingly present at pediatric gender services. Some of them receive long-term puberty suppression with gonadotropin-releasing hormone analogues (GnRHa) before starting gender-affirming hormones (GAH). The impact of GnRHa use started in early puberty on bone composition and bone mass accrual is unexplored. It is furthermore unclear whether subsequent GAH fully restore GnRHa effects and whether the timing of GAH introduction matters. To answer these questions, we developed a mouse model mimicking the clinical strategy applied in trans boys. Prepubertal 4-week-old female mice were treated with GnRHa alone or with GnRHa supplemented with testosterone (T) from 6 weeks (early puberty) or 8 weeks (late puberty) onward. Outcomes were analyzed at 16 weeks and compared with untreated mice of both sexes. GnRHa markedly increased total body fat mass, decreased lean body mass, and had a modest negative impact on grip strength. Both early and late T administration shaped body composition to adult male levels, whereas grip strength was restored to female values. GnRHa-treated animals showed lower trabecular bone volume and reduced cortical bone mass and strength. These changes were reversed by T to female levels (cortical bone mass and strength) irrespective of the time of administration or even fully up to adult male control values (trabecular parameters) in case of earlier T start. The lower bone mass in GnRHa-treated mice was associated with increased bone marrow adiposity, also reversed by T. In conclusion, prolonged GnRHa use started in prepubertal female mice modifies body composition toward more fat and less lean mass and impairs bone mass acquisition and strength. Subsequent T administration counteracts GnRHa impact on these parameters, shaping body composition and trabecular parameters to male values while restoring cortical bone architecture and strength up to female but not male control levels. These findings could help guide clinical strategies in transgender care. © 2023 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Vanessa Dubois
- Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism (Chrometa), KU Leuven, Leuven, Belgium
- Basic and Translational Endocrinology (BaTE), Department of Basic and Applied Medical Sciences, Ghent University, Ghent, Belgium
| | - Silvia Ciancia
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Stefanie Doms
- Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism (Chrometa), KU Leuven, Leuven, Belgium
| | - Sarah El Kharraz
- Molecular Endocrinology Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Vera Sommers
- Molecular Endocrinology Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Na Ri Kim
- Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism (Chrometa), KU Leuven, Leuven, Belgium
| | - Karel David
- Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism (Chrometa), KU Leuven, Leuven, Belgium
- Department of Endocrinology, University Hospitals Leuven, Leuven, Belgium
| | - Jolien Van Dijck
- Laboratory of Skeletal Cell Biology and Physiology (SCEBP), Skeletal Biology and Engineering Research Center (SBE), Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Roger Valle-Tenney
- Laboratory of Skeletal Cell Biology and Physiology (SCEBP), Skeletal Biology and Engineering Research Center (SBE), Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Christa Maes
- Laboratory of Skeletal Cell Biology and Physiology (SCEBP), Skeletal Biology and Engineering Research Center (SBE), Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Leen Antonio
- Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism (Chrometa), KU Leuven, Leuven, Belgium
- Department of Endocrinology, University Hospitals Leuven, Leuven, Belgium
| | - Brigitte Decallonne
- Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism (Chrometa), KU Leuven, Leuven, Belgium
- Department of Endocrinology, University Hospitals Leuven, Leuven, Belgium
| | - Geert Carmeliet
- Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism (Chrometa), KU Leuven, Leuven, Belgium
| | - Frank Claessens
- Molecular Endocrinology Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Martine Cools
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Pediatric Endocrinology Service, Department of Pediatrics, Ghent University Hospital, Ghent, Belgium
| | - Dirk Vanderschueren
- Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism (Chrometa), KU Leuven, Leuven, Belgium
- Department of Endocrinology, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
4
|
Gielen E, Dupont J, Dejaeger M, Laurent MR. Sarcopenia, osteoporosis and frailty. Metabolism 2023; 145:155638. [PMID: 37348597 DOI: 10.1016/j.metabol.2023.155638] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/21/2023] [Accepted: 06/17/2023] [Indexed: 06/24/2023]
Abstract
Muscles and bones are intricately connected tissues displaying marked co-variation during development, growth, aging, and in many diseases. While the diagnosis and treatment of osteoporosis are well established in clinical practice, sarcopenia has only been classified internationally as a disease in 2016. Both conditions are associated with an increased risk of adverse health outcomes such as fractures, dysmobility and mortality. Rather than focusing on one dimension of bone or muscle mass or weakness, the concept of musculoskeletal frailty captures the overall loss of physiological reserves in the locomotor system with age. The term osteosarcopenia in particular refers to the double jeopardy of osteoporosis and sarcopenia. Muscle-bone interactions at the biomechanical, cellular, paracrine, endocrine, neuronal or nutritional level may contribute to the pathophysiology of osteosarcopenia. The paradigm wherein muscle force controls bone strength is increasingly facing competition from a model centering on the exchange of myokines, osteokines and adipokines. The most promising results have been obtained in preclinical models where common drug targets have been identified to treat these conditions simultaneously. In this narrative review, we critically summarize the current understanding of the definitions, epidemiology, pathophysiology, and treatment of osteosarcopenia as part of an integrative approach to musculoskeletal frailty.
Collapse
Affiliation(s)
- Evelien Gielen
- Gerontology and Geriatrics Unit, Department of Public Health and Primary Care, University of Leuven, Leuven, Belgium; Centre for Metabolic Bone Diseases, University Hospitals Leuven, Leuven, Belgium
| | - Jolan Dupont
- Gerontology and Geriatrics Unit, Department of Public Health and Primary Care, University of Leuven, Leuven, Belgium
| | - Marian Dejaeger
- Gerontology and Geriatrics Unit, Department of Public Health and Primary Care, University of Leuven, Leuven, Belgium; Centre for Metabolic Bone Diseases, University Hospitals Leuven, Leuven, Belgium
| | - Michaël R Laurent
- Centre for Metabolic Bone Diseases, University Hospitals Leuven, Leuven, Belgium; Geriatrics Department, Imelda Hospital, Bonheiden, Belgium.
| |
Collapse
|
5
|
Luo F, Xie Y, Chen H, Huang J, Li C, Chen L, Yang J, Su N. Fgfr1 deficiency in osteocytes leads to increased bone mass by enhancing Wnt/β-catenin signaling. Bone 2023:116817. [PMID: 37268269 DOI: 10.1016/j.bone.2023.116817] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 05/23/2023] [Accepted: 05/26/2023] [Indexed: 06/04/2023]
Abstract
Osteoporosis (OP) is the most common skeletal disease in middle-aged and elderly people. A comprehensive understanding of the pathogenesis of osteoporosis is important. Fibroblast growth factor receptor 1 (FGFR1) is an important molecule for skeletal development and bone remodeling. Osteocytes are the most numerous cells in bone and play critical roles in bone homeostasis, however the effect of FGFR1 on osteocytes is still unclear. To clarify the direct effects of FGFR1 on osteocytes, we conditionally deleted Fgfr1 in osteocytes with Dentin matrix protein 1 (Dmp1)-Cre. We found that mice lacking Fgfr1 in osteocytes (Fgfr1f/f;Dmp-cre, MUT) showed increased trabecular bone mass at 2 and 6 months of age, which resulted from enhanced bone formation and decreased bone resorption. Furthermore, the cortical bone was thicker in WT mice than that in MUT mice at 2 and 6 months of age. Histological analysis showed that MUT mice had a decreased number of osteocytes but an increased number of osteocyte dendrites. We further found that mice lacking Fgfr1 in osteocytes showed enhanced activation of β-catenin signaling. The expression of sclerostin, an inhibitor of Wnt/β-catenin signaling, was obviously decreased in MUT mice. Furthermore, we found that FGFR1 can inhibit the expression of β-catenin and decrease the activity of β-catenin signaling. In brief, our study showed that FGFR1 in osteocytes can regulate bone mass by regulating Wnt/β-catenin signaling, providing genetic evidence that FGFR1 plays essential roles in osteocytes during bone remodeling and suggesting that FGFR1 is a potential therapeutic target for the prevention of bone loss.
Collapse
Affiliation(s)
- Fengtao Luo
- Center of Bone Metabolism and Repair, Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, PR China; Emergency Department of the 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou, Gansu, PR China
| | - Yangli Xie
- Center of Bone Metabolism and Repair, Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, PR China
| | - Hangang Chen
- Center of Bone Metabolism and Repair, Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, PR China
| | - Junlan Huang
- Center of Bone Metabolism and Repair, Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, PR China
| | - Can Li
- Center of Bone Metabolism and Repair, Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, PR China
| | - Lin Chen
- Center of Bone Metabolism and Repair, Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, PR China.
| | - Jing Yang
- Center of Bone Metabolism and Repair, Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, PR China.
| | - Nan Su
- Center of Bone Metabolism and Repair, Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, PR China.
| |
Collapse
|
6
|
Rosato E, Sciarra F, Anastasiadou E, Lenzi A, Venneri MA. Revisiting the physiological role of androgens in women. Expert Rev Endocrinol Metab 2022; 17:547-561. [PMID: 36352537 DOI: 10.1080/17446651.2022.2144834] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022]
Abstract
INTRODUCTION Extensive research underlines the critical functions of androgens in females. Nevertheless, the precise mechanisms of their action are poorly understood. Here, we review the existing literature regarding the physiological role of androgens in women throughout life. AREAS COVERED Several studies show that androgen receptors (ARs) are broadly expressed in numerous female tissues. They are essential for many physiological processes, including reproductive, sexual, cardiovascular, bone, muscle, and brain health. They are also involved in adipose tissue and liver function. Androgen levels change with the menstrual cycle and decrease in the first decades of life, independently of menopause. EXPERT OPINION To date, studies are limited by including small numbers of women, the difficulty of dosing androgens, and their cyclical variations. In particular, whether androgens play any significant role in regulating the establishment of pregnancy is poorly understood. The neural functions of ARs have also been investigated less thoroughly, although it is expressed at high levels in brain structures. Moreover, the mechanism underlying the decline of dehydroepiandrosterone (DHEA) and dehydroepiandrosterone sulfate (DHEAS) with age is unclear. Other factors, including estrogen's effect on adrenal androgen production, reciprocal regulation of ARs, and non-classical effects of androgens, remain to be determined.
Collapse
Affiliation(s)
- Elena Rosato
- Department of Experimental Medicine, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - Francesca Sciarra
- Department of Experimental Medicine, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - Eleni Anastasiadou
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - Andrea Lenzi
- Department of Experimental Medicine, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - Mary Anna Venneri
- Department of Experimental Medicine, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| |
Collapse
|
7
|
高山 賢. [Recent advances in the sex steroid hormone action involved in the development of dementia and frailty]. Nihon Ronen Igakkai Zasshi 2022; 59:430-445. [PMID: 36476689 DOI: 10.3143/geriatrics.59.430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- 賢一 高山
- 東京都健康長寿医療センター研究所老化機構研究チームシステム加齢医学
| |
Collapse
|
8
|
Benova A, Ferencakova M, Bardova K, Funda J, Prochazka J, Spoutil F, Cajka T, Dzubanova M, Balcaen T, Kerckhofs G, Willekens W, van Lenthe GH, Alquicer G, Pecinova A, Mracek T, Horakova O, Rossmeisl M, Kopecky J, Tencerova M. Novel thiazolidinedione analog reduces a negative impact on bone and mesenchymal stem cell properties in obese mice compared to classical thiazolidinediones. Mol Metab 2022; 65:101598. [PMID: 36103974 PMCID: PMC9508355 DOI: 10.1016/j.molmet.2022.101598] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/06/2022] [Accepted: 09/06/2022] [Indexed: 11/29/2022] Open
Abstract
Objective The use of thiazolidinediones (TZDs) as insulin sensitizers has been shown to have side effects including increased accumulation of bone marrow adipocytes (BMAds) associated with a higher fracture risk and bone loss. A novel TZD analog MSDC-0602K with low affinity to PPARγ has been developed to reduce adverse effects of TZD therapy. However, the effect of MSDC-0602K on bone phenotype and bone marrow mesenchymal stem cells (BM-MSCs) in relation to obesity has not been intensively studied yet. Methods Here, we investigated whether 8-week treatment with MSDC-0602K has a less detrimental effect on bone loss and BM-MSC properties in obese mice in comparison to first generation of TZDs, pioglitazone. Bone parameters (bone microstructure, bone marrow adiposity, bone strength) were examined by μCT and 3-point bending test. Primary BM-MSCs were isolated and measured for osteoblast and adipocyte differentiation. Cellular senescence, bioenergetic profiling, nutrient consumption and insulin signaling were also determined. Results The findings demonstrate that MSDC-0602K improved bone parameters along with increased proportion of smaller BMAds in tibia of obese mice when compared to pioglitazone. Further, primary BM-MSCs isolated from treated mice and human BM-MSCs revealed decreased adipocyte and higher osteoblast differentiation accompanied with less inflammatory and senescent phenotype induced by MSDC-0602K vs. pioglitazone. These changes were further reflected by increased glycolytic activity differently affecting glutamine and glucose cellular metabolism in MSDC-0602K-treated cells compared to pioglitazone, associated with higher osteogenesis. Conclusion Our study provides novel insights into the action of MSDC-0602K in obese mice, characterized by the absence of detrimental effects on bone quality and BM-MSC metabolism when compared to classical TZDs and thus suggesting a potential therapeutical use of MSDC-0602K in both metabolic and bone diseases. MSDC-0602K improves bone quality and increases proportion of smaller BMAds in obese mice. MSDC-0602K-treated mice show lower adipogenic differentiation with less senescent phenotype in primary BM-MSCs. MSDC-0602K induces higher glycolytic activity in BM-MSCs compared to pioglitazone. MSDC-0602-treated BM-MSCs prefer glutamine over glucose uptake in comparison to AT-MSCs. Beneficial effect of MSDC-06002K in BM-MSCs manifests by absence of MPC inhibition.
Collapse
Affiliation(s)
- Andrea Benova
- Laboratory of Molecular Physiology of Bone, Institute of Physiology of the Czech Academy of Sciences, Prague 142 20, Czech Republic; Faculty of Science, Charles University, Prague, Czech Republic
| | - Michaela Ferencakova
- Laboratory of Molecular Physiology of Bone, Institute of Physiology of the Czech Academy of Sciences, Prague 142 20, Czech Republic
| | - Kristina Bardova
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague 142 20, Czech Republic
| | - Jiri Funda
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague 142 20, Czech Republic
| | - Jan Prochazka
- Czech Centre for Phenogenomics & Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Frantisek Spoutil
- Czech Centre for Phenogenomics & Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Tomas Cajka
- Laboratory of Translational Metabolism, Institute of Physiology of the Czech Academy of Sciences, Prague 142 20, Czech Republic
| | - Martina Dzubanova
- Laboratory of Molecular Physiology of Bone, Institute of Physiology of the Czech Academy of Sciences, Prague 142 20, Czech Republic; Faculty of Science, Charles University, Prague, Czech Republic
| | - Tim Balcaen
- Biomechanics lab, Institute of Mechanics, Materials, and Civil Engineering, UCLouvain, Louvain-la-Neuve, Belgium; Pole of Morphology, Institute for Experimental and Clinical Research, UCLouvain, Brussels, Belgium; Department of Chemistry, Molecular Design and Synthesis, KU Leuven, Leuven, Belgium
| | - Greet Kerckhofs
- Biomechanics lab, Institute of Mechanics, Materials, and Civil Engineering, UCLouvain, Louvain-la-Neuve, Belgium; Department of Materials Engineering, KU Leuven, Belgium; Prometheus, Division of Skeletal Tissue Engineering, Katholieke Universiteit Leuven, 3000 Leuven, Belgium; Pole of Morphology, Institute for Experimental and Clinical Research, UCLouvain, Brussels, Belgium
| | | | | | - Glenda Alquicer
- Laboratory of Molecular Physiology of Bone, Institute of Physiology of the Czech Academy of Sciences, Prague 142 20, Czech Republic
| | - Alena Pecinova
- Laboratory of Bioenergetics, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Tomas Mracek
- Laboratory of Bioenergetics, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Olga Horakova
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague 142 20, Czech Republic
| | - Martin Rossmeisl
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague 142 20, Czech Republic
| | - Jan Kopecky
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague 142 20, Czech Republic
| | - Michaela Tencerova
- Laboratory of Molecular Physiology of Bone, Institute of Physiology of the Czech Academy of Sciences, Prague 142 20, Czech Republic.
| |
Collapse
|
9
|
Kim NR, David K, Sommers V, Schollaert D, Deboel L, Ohlsson C, Gustafsson JÅ, Antonio L, Decallonne B, Claessens F, Vanderschueren D, Dubois V. Inactivation of AR or ERα in Extrahypothalamic Neurons Does not Affect Osteogenic Response to Loading in Male Mice. Endocrinology 2022; 163:6594680. [PMID: 35640239 DOI: 10.1210/endocr/bqac080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Indexed: 11/19/2022]
Abstract
Failure of bone mass maintenance in spite of functional loading is an important contributor to osteoporosis and related fractures. While the link between sex steroids and the osteogenic response to loading is well established, the underlying mechanisms are unknown, hampering clinical relevance. Androgens inhibit mechanoresponsiveness in male mice, but the cell type mediating this effect remains unidentified. To evaluate the role of neuronal sex steroid receptor signaling in the male bone's adaptive capacity, we subjected adult male mice with an extrahypothalamic neuron-specific knockout of the androgen receptor (N-ARKO) or the estrogen receptor alpha (N-ERαKO) to in vivo mechanical stimulation of the tibia. Loading increased cortical thickness in the control animals mainly through periosteal expansion, as total cross-sectional tissue area and cortical bone area but not medullary area were higher in the loaded than the unloaded tibia. Trabecular bone volume fraction also increased upon loading in the control group, mostly due to trabecular thickening. N-ARKO and N-ERαKO males displayed a loading response at both the cortical and trabecular bone compartments that was not different from their control littermates. In conclusion, we show that the presence of androgen receptor or estrogen receptor alpha in extrahypothalamic neurons is dispensable for the osteogenic response to mechanical loading in male mice.
Collapse
Affiliation(s)
- Na Ri Kim
- Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, KU Leuven, 3000 Leuven, Belgium
| | - Karel David
- Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, KU Leuven, 3000 Leuven, Belgium
| | - Vera Sommers
- Molecular Endocrinology Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Dieter Schollaert
- Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, KU Leuven, 3000 Leuven, Belgium
| | - Ludo Deboel
- Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, KU Leuven, 3000 Leuven, Belgium
| | - Claes Ohlsson
- Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 413 45 Gothenburg, Sweden
| | - Jan-Åke Gustafsson
- Department of Biology and Biochemistry, Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, TX 77204-5056, USA
| | - Leen Antonio
- Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, KU Leuven, 3000 Leuven, Belgium
| | - Brigitte Decallonne
- Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, KU Leuven, 3000 Leuven, Belgium
| | - Frank Claessens
- Molecular Endocrinology Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Dirk Vanderschueren
- Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, KU Leuven, 3000 Leuven, Belgium
| | - Vanessa Dubois
- Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, KU Leuven, 3000 Leuven, Belgium
- Basic and Translational Endocrinology, Department of Basic and Applied Medical Sciences, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
10
|
Contino KF, Yadav H, Shiozawa Y. The gut microbiota can be a potential regulator and treatment target of bone metastasis. Biochem Pharmacol 2022; 197:114916. [PMID: 35041811 PMCID: PMC8858876 DOI: 10.1016/j.bcp.2022.114916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/10/2022] [Accepted: 01/10/2022] [Indexed: 02/08/2023]
Abstract
The gut microbiota, an often forgotten organ, have a tremendous impact on human health. It has long been known that the gut microbiota are implicated in cancer development, and more recently, the gut microbiota have been shown to influence cancer metastasis to distant organs. Although one of the most common sites of distant metastasis is the bone, and the skeletal system has been shown to be a subject of interactions with the gut microbiota to regulate bone homeostasis, little research has been done regarding how the gut microbiota control the development of bone metastasis. This review will discuss the mechanisms through which the gut microbiota and derived microbial compounds (i) regulate gastrointestinal cancer disease progression and metastasis, (ii) influence skeletal remodeling and potentially modulate bone metastasis, and (iii) affect and potentially enhance immunotherapeutic treatments for bone metastasis.
Collapse
Affiliation(s)
- Kelly F Contino
- Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA
| | - Hariom Yadav
- Department of Neurosurgery and Brain Repair and Institute for Microbiome, University of South Florida, Tampa, FL 33612, USA
| | - Yusuke Shiozawa
- Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA.
| |
Collapse
|
11
|
Kim NR, Khalil R, David K, Antonio L, Schollaert D, Deboel L, Van Herck E, Wardenier N, Cools M, Decallonne B, Claessens F, Dubois V, Vanderschueren D. Novel model to study the physiological effects of temporary or prolonged sex steroid deficiency in male mice. Am J Physiol Endocrinol Metab 2021; 320:E415-E424. [PMID: 33308013 DOI: 10.1152/ajpendo.00401.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Sex steroids are critical for skeletal development and maturation during puberty as well as for skeletal maintenance during adult life. However, the exact time during puberty when sex steroids have the highest impact as well as the ability of bone to recover from transient sex steroid deficiency is unclear. Surgical castration is a common technique to study sex steroid effects in rodents, but it is irreversible, invasive, and associated with metabolic and behavioral alterations. Here, we used a low dose (LD) or a high dose (HD) of gonadotropin-releasing hormone antagonist to either temporarily or persistently suppress sex steroid action in male mice, respectively. The LD group, a model for delayed puberty, did not show changes in linear growth or body composition, but displayed reduced trabecular bone volume during puberty, which fully caught up at adult age. In contrast, the HD group, representing complete pubertal suppression, showed a phenotype reminiscent of that observed in surgically castrated rodents. Indeed, HD animals exhibited severely impaired cortical and trabecular bone acquisition, decreased body weight and lean mass, and increased fat mass. In conclusion, we developed a rodent model of chemical castration that can be used as an alternative to surgical castration. Moreover, the transient nature of the intervention enables to study the effects of delayed puberty and reversibility of sex steroid deficiency.NEW & NOTEWORTHY We developed a rodent model of chemical castration, which can be used as an alternative to surgical castration. Moreover, the transient nature of the intervention enables to study the effects of delayed puberty and reversibility of sex steroid deficiency.
Collapse
Affiliation(s)
- Na Ri Kim
- Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, Leuven, Belgium
| | - Rougin Khalil
- Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, Leuven, Belgium
| | - Karel David
- Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, Leuven, Belgium
| | - Leen Antonio
- Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, Leuven, Belgium
| | - Dieter Schollaert
- Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, Leuven, Belgium
| | - Ludo Deboel
- Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, Leuven, Belgium
| | - Erik Van Herck
- Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, Leuven, Belgium
| | - Nele Wardenier
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Division of Pediatric Endocrinology, Department of Pediatrics, Ghent University Hospital, Ghent, Belgium
| | - Martine Cools
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Division of Pediatric Endocrinology, Department of Pediatrics, Ghent University Hospital, Ghent, Belgium
| | - Brigitte Decallonne
- Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, Leuven, Belgium
| | - Frank Claessens
- Molecular Endocrinology Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Vanessa Dubois
- Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, Leuven, Belgium
| | - Dirk Vanderschueren
- Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, Leuven, Belgium
| |
Collapse
|
12
|
Sawant L, Thunuguntla P, Jones C. Cooperative activation of bovine herpesvirus 1 productive infection and viral regulatory promoters by androgen receptor and Krüppel-like transcription factors 4 and 15. Virology 2021; 552:63-72. [PMID: 33065464 DOI: 10.1016/j.virol.2020.08.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 08/12/2020] [Accepted: 08/28/2020] [Indexed: 01/01/2023]
Abstract
Bovine herpesvirus 1 (BoHV-1), a significant viral pathogen, establishes latency in sensory neurons. The viral genome contains more than 100 consensus glucocorticoid receptor (GR) regulatory elements (GREs): consequently, stress stimulates viral replication and reactivation from latency. The immediate early transcription unit 1 (IEtu1) and bICP0 early promoters are transactivated by GR and synthetic corticosteroid dexamethasone. The androgen receptor (AR), like GR, is a Type 1 nuclear hormone receptor that binds and stimulates certain promoters containing GREs. Consequently, we hypothesized AR and 5α-Dihydrotestosterone (DHT) stimulate productive infection and key viral promoters. New studies demonstrated AR, DHT, and Krüppel like transcription factor 4 (KLF4) cooperatively stimulated productive infection and bICP0 E promoter activity in mouse neuroblastoma cells (Neuro-2A). KLF15 also cooperated with AR and DHT to stimulate IEtu1 promoter activity. We suggest AR and testosterone increase the prevalence of virus in semen by stimulating viral gene expression and replication.
Collapse
Affiliation(s)
- Laximan Sawant
- Oklahoma State University, Center for Veterinary Health Sciences, Department of Veterinary Pathobiology, Stillwater, OK, USA
| | - Prasanth Thunuguntla
- Oklahoma State University, Center for Veterinary Health Sciences, Department of Veterinary Pathobiology, Stillwater, OK, USA
| | - Clinton Jones
- Oklahoma State University, Center for Veterinary Health Sciences, Department of Veterinary Pathobiology, Stillwater, OK, USA.
| |
Collapse
|
13
|
Chen J, Hendriks M, Chatzis A, Ramasamy SK, Kusumbe AP. Bone Vasculature and Bone Marrow Vascular Niches in Health and Disease. J Bone Miner Res 2020; 35:2103-2120. [PMID: 32845550 DOI: 10.1002/jbmr.4171] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/21/2020] [Accepted: 08/05/2020] [Indexed: 12/20/2022]
Abstract
Bone vasculature and bone marrow vascular niches supply oxygen, nutrients, and secrete angiocrine factors required for the survival, maintenance, and self-renewal of stem and progenitor cells. In the skeletal system, vasculature creates nurturing niches for bone and blood-forming stem cells. Blood vessels regulate hematopoiesis and drive bone formation during development, repair, and regeneration. Dysfunctional vascular niches induce skeletal aging, bone diseases, and hematological disorders. Recent cellular and molecular characterization of the bone marrow microenvironment has provided unprecedented insights into the complexity, heterogeneity, and functions of the bone vasculature and vascular niches. The bone vasculature is composed of distinct vessel subtypes that differentially regulate osteogenesis, hematopoiesis, and disease conditions in bones. Further, bone marrow vascular niches supporting stem cells are often complex microenvironments involving multiple different cell populations and vessel subtypes. This review provides an overview of the emerging vascular cell heterogeneity in bone and the new roles of the bone vasculature and associated vascular niches in health and disease. © 2020 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Junyu Chen
- Tissue and Tumor Microenvironments Group, The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Michelle Hendriks
- Institute of Clinical Sciences, Imperial College London, London, UK
- MRC London Institute of Medical Sciences, Imperial College London, London, UK
| | - Alexandros Chatzis
- Tissue and Tumor Microenvironments Group, The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Saravana K Ramasamy
- Institute of Clinical Sciences, Imperial College London, London, UK
- MRC London Institute of Medical Sciences, Imperial College London, London, UK
| | - Anjali P Kusumbe
- Tissue and Tumor Microenvironments Group, The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| |
Collapse
|
14
|
Li L, Rao S, Cheng Y, Zhuo X, Deng C, Xu N, Zhang H, Yang L. Microbial osteoporosis: The interplay between the gut microbiota and bones via host metabolism and immunity. Microbiologyopen 2019; 8:e00810. [PMID: 31001921 PMCID: PMC6692530 DOI: 10.1002/mbo3.810] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 01/09/2019] [Accepted: 01/11/2019] [Indexed: 01/15/2023] Open
Abstract
The complex relationship between intestinal microbiota and host is a novel field in recent years. A large number of studies are being conducted on the relationship between intestinal microbiota and bone metabolism. Bone metabolism consisted of bone absorption and formation exists in the whole process of human growth and development. The nutrient components, inflammatory factors, and hormone environment play important roles in bone metabolism. Recently, intestinal microbiota has been found to influence bone metabolism via influencing the host metabolism, immune function, and hormone secretion. Here, we searched relevant literature on Pubmed and reviewed the effect of intestinal microbiota on bone metabolism through the three aspects, which may provide new ideas and targets for the clinical treatment of osteoporosis.
Collapse
Affiliation(s)
- Lishan Li
- Department of endocrinology and metabolismZhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Shitao Rao
- School of Biomedical SciencesCUHKShatin, N.THong Kong SARChina
| | - Yanzhen Cheng
- Department of endocrinology and metabolismZhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Xiaoyun Zhuo
- Department of endocrinology and metabolismZhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Caihong Deng
- Department of endocrinology and metabolismZhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Ningning Xu
- Department of endocrinology and metabolismZhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Hua Zhang
- Department of endocrinology and metabolismZhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Li Yang
- Department of endocrinology and metabolismZhujiang HospitalSouthern Medical UniversityGuangzhouChina
| |
Collapse
|