1
|
Hua R, Truong VA, Fajardo RJ, Guda T, Gu S, Jiang JX. Connexin hemichannels drive lactation-induced osteocyte acidification and perilacunar-canalicular remodeling. Cell Rep 2024; 43:114363. [PMID: 38935505 DOI: 10.1016/j.celrep.2024.114363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 04/30/2024] [Accepted: 05/31/2024] [Indexed: 06/29/2024] Open
Abstract
The maternal skeleton experiences significant bone loss during lactation, followed by rapid restoration post weaning. Parathyroid-related protein (PTHrP)-induced acidification of the perilacunar matrix by osteocytes is crucial in this process, yet its mechanism remains unclear. Here, we identify Cx43 hemichannels (HCs) as key mediators of osteocyte acidification and perilacunar-canalicular remodeling (PLR). Utilizing transgenic mouse models expressing dominant-negative Cx43 mutants, we show that mice with impaired Cx43 HCs exhibit attenuated lactation-induced responses compared to wild-type and only gap junction-impaired groups, including lacunar enlargement, upregulation of PLR genes, and bone loss with compromised mechanical properties. Furthermore, inhibition of HCs by a Cx43 antibody blunts PTHrP-induced calcium influx and protein kinase A activation, followed by impaired osteocyte acidification. Additionally, impeded HCs suppress bone recovery during the post-lactation period. Our findings highlight the pivotal role of Cx43 HCs in orchestrating dynamic bone changes during lactation and recovery by regulating acidification and remodeling enzyme expression.
Collapse
Affiliation(s)
- Rui Hua
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Vu A Truong
- School of Osteopathic Medicine, University of the Incarnate Word, San Antonio, TX 78209, USA
| | - Roberto J Fajardo
- School of Osteopathic Medicine, University of the Incarnate Word, San Antonio, TX 78209, USA
| | - Teja Guda
- Department of Biomedical Engineering and Chemical Engineering, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Sumin Gu
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Jean X Jiang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.
| |
Collapse
|
2
|
Zhao Y, Song L, Li M, Peng H, Qiu X, Li Y, Zhu B, Liu C, Ren S, Miao L. Injectable CNPs/DMP1-loaded self-assembly hydrogel regulating inflammation of dental pulp stem cells for dentin regeneration. Mater Today Bio 2024; 24:100907. [PMID: 38170028 PMCID: PMC10758968 DOI: 10.1016/j.mtbio.2023.100907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/04/2023] [Accepted: 12/06/2023] [Indexed: 01/05/2024] Open
Abstract
Vital pulp preservation, which is a clinical challenge of aseptic or iatrogenic accidental exposure of the pulp, in cases direct pulp capping is the main technology. Human dental pulp stem cells (hDPSCs) play a critical role in pulp tissue repair, but their differentiative ability could be inhibited by the potential infection and inflammatory response of the exposed pulp. Therefore, inflammatory regulation and differentiated promotion of hDPSCs are both essential for preserving living pulp teeth. In this study, we constructed a functional dental pulp-capping hydrogel by loading cerium oxide nanoparticles (CNPs) and dentin matrix protein-1 (DMP1) into an injectable Fmoc-triphenylalanine hydrogel (Fmoc-phe3 hydrogel) as CNPs/DMP1/Hydrogel for in situ drugs delivery. With a view to long-term storage and release of CNPs (anti-inflammatory and antioxidant) to regulate the local inflammatory environment and DMP1 to promote the regeneration of dentin. Results of CCK-8, LDH release, hemolysis, and Live/Dead assessment of cells demonstrated the good biocompatibility of CNPs/DMP1/Hydrogel. The levels of alkaline phosphatase activity, quantification of the mineralized nodules, expressions of osteogenic genes and proteins demonstrated CNPs/DMP1/Hydrogel could protect the activity of hDPSCs' osteogenic/dentinogenic differentiation by reducing the inflammation response via releasing CNPs. The therapy effects were further confirmed in rat models, CNPs/DMP1/Hydrogel reduced the necrosis rate of damaged pulp and promoted injured pulp repair and reparative dentin formation with preserved vital pulps. In summary, the CNPs/DMP1/Hydrogel composite is an up-and-coming pulp-capping material candidate to induce reparative dentin formation, as well as provide a theoretical and experimental basis for developing pulp-capping materials.
Collapse
Affiliation(s)
- Yue Zhao
- Department of Cariology and Endodontics, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Lutong Song
- Department of Cariology and Endodontics, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Mengchen Li
- Department of Cariology and Endodontics, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Haoran Peng
- Department of Cariology and Endodontics, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Xinyi Qiu
- Department of Cariology and Endodontics, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yuyang Li
- Department of Cariology and Endodontics, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Bijun Zhu
- Department of Cariology and Endodontics, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Chao Liu
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Department of Orthodontics, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Shuangshuang Ren
- Department of Cariology and Endodontics, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Leiying Miao
- Department of Cariology and Endodontics, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| |
Collapse
|
3
|
Chankamngoen W, Krungchanuchat S, Thongbunchoo J, Sirinonthanawech N, Teerapornpuntakit J, Panupinthu N, Charoenphandhu N. Extracellular Fe 2+ and Fe 3+ modulate osteocytic viability, expression of SOST, RANKL and FGF23, and fluid flow-induced YAP1 nuclear translocation. Sci Rep 2023; 13:21173. [PMID: 38040893 PMCID: PMC10692318 DOI: 10.1038/s41598-023-48436-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/27/2023] [Indexed: 12/03/2023] Open
Abstract
Iron overload negatively affects bone mass and strength. However, the impact of iron excess on osteocytes-important bone cells for mechanotransduction and remodeling-is poorly understood. Herein, we examined the effects of iron exposure on osteocytes during their maturation process. We discovered that iron overload caused apoptosis of osteocytes in early and late stages of differentiation. Notably, the expression of key proteins for iron entry was downregulated during differentiation, suggesting that mature osteocytes were less susceptible to iron toxicity due to limited iron uptake. Furthermore, iron overload also enriched a subpopulation of mature osteocytes, as indicated by increased expression of Dmp1, a gene encoding protein for bone mineralization. These iron-exposed osteocytes expressed high levels of Sost, Tnfsf11 and Fgf23 transcripts. Consistently, we demonstrated that exogenous FGF23 stimulated the formation and survival of osteoclasts, suggesting its regulatory role in bone resorption. In addition, iron overload downregulated the expression of Cx43, a gene encoding gap junction protein in the dendritic processes, and impaired YAP1 nuclear translocation in response to fluid flow in differentiated osteocytes. It can be concluded that iron overload induces cellular adaptation in differentiating osteocytes, resulting in insensitivity to mechanical stimulation and potential disruption of the balance in bone remodeling.
Collapse
Affiliation(s)
- Wasutorn Chankamngoen
- Graduate Program in Molecular Medicine, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Saowalak Krungchanuchat
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
- Department of Physiology, Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400, Thailand
| | - Jirawan Thongbunchoo
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
- Department of Physiology, Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400, Thailand
| | | | - Jarinthorn Teerapornpuntakit
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
- Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand
| | - Nattapon Panupinthu
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, 10400, Thailand.
- Department of Physiology, Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400, Thailand.
| | - Narattaphol Charoenphandhu
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
- Department of Physiology, Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400, Thailand
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, 73170, Thailand
- The Academy of Science, The Royal Society of Thailand, Dusit, Bangkok, 10300, Thailand
| |
Collapse
|
4
|
Chen J, Zhang H, Li L, Zhang X, Zhao D, Wang L, Wang J, Yang P, Sun H, Liu K, Chen W, Li L, Lin F, Li Z, Chen YE, Zhang J, Pang D, Ouyang H, He Y, Fan J, Tang X. Lp-PLA 2 (Lipoprotein-Associated Phospholipase A 2) Deficiency Lowers Cholesterol Levels and Protects Against Atherosclerosis in Rabbits. Arterioscler Thromb Vasc Biol 2023; 43:e11-e28. [PMID: 36412196 DOI: 10.1161/atvbaha.122.317898] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND Elevated plasma Lp-PLA2 (lipoprotein-associated phospholipase A2) activity is closely associated with an increased risk of cardiovascular events. However, whether and how Lp-PLA2 is directly involved in the pathogenesis of atherosclerosis is still unclear. To examine the hypothesis that Lp-PLA2 could be a potential preventative target of atherosclerosis, we generated Lp-PLA2 knockout rabbits and investigated the pathophysiological functions of Lp-PLA2. METHODS Lp-PLA2 knockout rabbits were generated using CRISPR/Cas9 system to assess the role of Lp-PLA2 in plasma lipids regulation and identify its underlying molecular mechanisms. Homozygous knockout rabbits along with wild-type rabbits were fed a cholesterol-rich diet for up to 14 weeks and their atherosclerotic lesions were compared. Moreover, the effects of Lp-PLA2 deficiency on the key cellular behaviors in atherosclerosis were assessed in vitro. RESULTS When rabbits were fed a standard diet, Lp-PLA2 deficiency led to a significant reduction in plasma lipids. The decreased protein levels of SREBP2 (sterol regulatory element-binding protein 2) and HMGCR (3-hydroxy-3-methylglutaryl coenzyme A reductase) in livers of homozygous knockout rabbits indicated that the cholesterol biosynthetic pathway was impaired with Lp-PLA2 deficiency. In vitro experiments further demonstrated that intracellular Lp-PLA2 efficiently enhanced SREBP2-related cholesterol biosynthesis signaling independently of INSIGs (insulin-induced genes). When fed a cholesterol-rich diet, homozygous knockout rabbits exhibited consistently lower level of hypercholesterolemia, and their aortic atherosclerosis lesions were significantly reduced by 60.2% compared with those of wild-type rabbits. The lesions of homozygous knockout rabbits were characterized by reduced macrophages and the expression of inflammatory cytokines. Macrophages of homozygous knockout rabbits were insensitive to M1 polarization and showed reduced DiI-labeled lipoprotein uptake capacity compared with wild-type macrophages. Lp-PLA2 deficiency also inhibited the adhesion between monocytes and endothelial cells. CONCLUSIONS These results demonstrate that Lp-PLA2 plays a causal role in regulating blood lipid homeostasis and Lp-PLA2 deficiency protects against dietary cholesterol-induced atherosclerosis in rabbits. Lp-PLA2 could be a potential target for the prevention of atherosclerosis.
Collapse
Affiliation(s)
- Jiahuan Chen
- College of Animal Sciences, Jilin University, Changchun, Jilin Province, China (J.C., H.Z., Linquan Li, X.Z., D.Z., L.W., J.W., Lin Li, F.L., Z.L., D.P., H.O., X.T.)
| | - Huanyu Zhang
- College of Animal Sciences, Jilin University, Changchun, Jilin Province, China (J.C., H.Z., Linquan Li, X.Z., D.Z., L.W., J.W., Lin Li, F.L., Z.L., D.P., H.O., X.T.)
| | - Linquan Li
- College of Animal Sciences, Jilin University, Changchun, Jilin Province, China (J.C., H.Z., Linquan Li, X.Z., D.Z., L.W., J.W., Lin Li, F.L., Z.L., D.P., H.O., X.T.)
| | - Xinwei Zhang
- College of Animal Sciences, Jilin University, Changchun, Jilin Province, China (J.C., H.Z., Linquan Li, X.Z., D.Z., L.W., J.W., Lin Li, F.L., Z.L., D.P., H.O., X.T.)
| | - Dazhong Zhao
- College of Animal Sciences, Jilin University, Changchun, Jilin Province, China (J.C., H.Z., Linquan Li, X.Z., D.Z., L.W., J.W., Lin Li, F.L., Z.L., D.P., H.O., X.T.)
| | - Lingyu Wang
- College of Animal Sciences, Jilin University, Changchun, Jilin Province, China (J.C., H.Z., Linquan Li, X.Z., D.Z., L.W., J.W., Lin Li, F.L., Z.L., D.P., H.O., X.T.)
| | - Jiaqi Wang
- College of Animal Sciences, Jilin University, Changchun, Jilin Province, China (J.C., H.Z., Linquan Li, X.Z., D.Z., L.W., J.W., Lin Li, F.L., Z.L., D.P., H.O., X.T.)
| | - Ping Yang
- Department of Cardiology, China-Japan Union Hospital of Jilin University, Changchun, China (P.Y., H.S., K.L., W.C., Y.H.)
| | - Huan Sun
- Department of Cardiology, China-Japan Union Hospital of Jilin University, Changchun, China (P.Y., H.S., K.L., W.C., Y.H.)
| | - Kun Liu
- Department of Cardiology, China-Japan Union Hospital of Jilin University, Changchun, China (P.Y., H.S., K.L., W.C., Y.H.)
| | - Weiwei Chen
- Department of Cardiology, China-Japan Union Hospital of Jilin University, Changchun, China (P.Y., H.S., K.L., W.C., Y.H.)
| | - Lin Li
- College of Animal Sciences, Jilin University, Changchun, Jilin Province, China (J.C., H.Z., Linquan Li, X.Z., D.Z., L.W., J.W., Lin Li, F.L., Z.L., D.P., H.O., X.T.)
| | - Feng Lin
- College of Animal Sciences, Jilin University, Changchun, Jilin Province, China (J.C., H.Z., Linquan Li, X.Z., D.Z., L.W., J.W., Lin Li, F.L., Z.L., D.P., H.O., X.T.)
| | - Zhanjun Li
- College of Animal Sciences, Jilin University, Changchun, Jilin Province, China (J.C., H.Z., Linquan Li, X.Z., D.Z., L.W., J.W., Lin Li, F.L., Z.L., D.P., H.O., X.T.)
| | - Y Eugene Chen
- Department of Internal Medicine, Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, Ann Arbor (Y.E.C., J.Z.)
| | - Jifeng Zhang
- Department of Internal Medicine, Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, Ann Arbor (Y.E.C., J.Z.)
| | - Daxin Pang
- College of Animal Sciences, Jilin University, Changchun, Jilin Province, China (J.C., H.Z., Linquan Li, X.Z., D.Z., L.W., J.W., Lin Li, F.L., Z.L., D.P., H.O., X.T.).,Chongqing Research Institute, Jilin University, Chongqing, China (D.P., H.O., X.T.)
| | - Hongsheng Ouyang
- College of Animal Sciences, Jilin University, Changchun, Jilin Province, China (J.C., H.Z., Linquan Li, X.Z., D.Z., L.W., J.W., Lin Li, F.L., Z.L., D.P., H.O., X.T.).,Chongqing Research Institute, Jilin University, Chongqing, China (D.P., H.O., X.T.)
| | - Yuquan He
- Department of Cardiology, China-Japan Union Hospital of Jilin University, Changchun, China (P.Y., H.S., K.L., W.C., Y.H.)
| | - Jianglin Fan
- Department of Molecular Pathology, Faculty of Medicine, Graduate School of Medical Sciences, University of Yamanashi, Japan (J.F.)
| | - Xiaochun Tang
- College of Animal Sciences, Jilin University, Changchun, Jilin Province, China (J.C., H.Z., Linquan Li, X.Z., D.Z., L.W., J.W., Lin Li, F.L., Z.L., D.P., H.O., X.T.).,Chongqing Research Institute, Jilin University, Chongqing, China (D.P., H.O., X.T.)
| |
Collapse
|
5
|
Huang R, Balu AR, Molitoris KH, White JP, Robling AG, Ayturk UM, Baht GS. The role of Meteorin-like in skeletal development and bone fracture healing. J Orthop Res 2022; 40:2510-2521. [PMID: 35076116 PMCID: PMC9309188 DOI: 10.1002/jor.25286] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 01/11/2022] [Accepted: 01/23/2022] [Indexed: 02/04/2023]
Abstract
Meteorin-like protein (Metrnl), homologous to the initially identified neurotrophic factor Meteorin, is a secreted, multifunctional protein. Here we used mouse models to investigate Metrnl's role in skeletal development and bone fracture healing. During development Metrnl was expressed in the perichondrium and primary ossification center. In neonates, single cell RNA-seq of diaphyseal bone demonstrated strongest expression of Metrnl transcript by osteoblasts. In vitro, Metrnl was osteoinductive, increasing osteoblast differentiation and mineralization in tissue culture models. In vivo, loss of Metrnl expression resulted in no change in skeletal metrics in utero, at birth, or during postnatal growth. Six-week-old Metrnl-null mice displayed similar body length, body weight, tibial length, femoral length, BV/TV, trabecular number, trabecular thickness, and cortical thickness as littermate controls. In 4-month-old mice, lack of Metrnl expression did not change structural stiffness, ultimate force, or energy to fracture of femora under 3-point-bending. Last, we investigated the role of Metrnl in bone fracture healing. Metrnl expression increased in response to tibial injury, however, loss of Metrnl expression did not affect the amount of bone deposited within the healing tissue nor did it change the structural parameters of healing tissue. This work identifies Metrnl as a dispensable molecule for skeletal development. However, the osteoinductive capabilities of Metrnl may be utilized to modulate osteoblast differentiation in cell-based orthopedic therapies.
Collapse
Affiliation(s)
- Rong Huang
- Department of MedicineDuke Molecular Physiology InstituteDurhamNorth CarolinaUSA,Department of Orthopaedic SurgeryDuke UniversityDurhamNorth CarolinaUSA
| | - Abhinav R. Balu
- Department of MedicineDuke Molecular Physiology InstituteDurhamNorth CarolinaUSA,Department of Orthopaedic SurgeryDuke UniversityDurhamNorth CarolinaUSA
| | - Kristin H. Molitoris
- Department of MedicineDuke Molecular Physiology InstituteDurhamNorth CarolinaUSA,Department of Orthopaedic SurgeryDuke UniversityDurhamNorth CarolinaUSA
| | - James P. White
- Department of MedicineDuke Molecular Physiology InstituteDurhamNorth CarolinaUSA
| | - Alexander G. Robling
- Department of Anatomy and Cell BiologyIndiana University School of MedicineIndianapolisIndianaUSA
| | - Ugur M. Ayturk
- Department of ResearchHospital for Special SurgeryNew York CityNew YorkUSA,Department of Orthopaedic SurgeryWeill Cornell MedicineNew York CityNew YorkUSA
| | - Gurpreet S. Baht
- Department of MedicineDuke Molecular Physiology InstituteDurhamNorth CarolinaUSA,Department of Orthopaedic SurgeryDuke UniversityDurhamNorth CarolinaUSA,Department of PathologyDuke UniversityDurhamNorth CarolinaUSA
| |
Collapse
|
6
|
Collins MT, Marcucci G, Anders HJ, Beltrami G, Cauley JA, Ebeling PR, Kumar R, Linglart A, Sangiorgi L, Towler DA, Weston R, Whyte MP, Brandi ML, Clarke B, Thakker RV. Skeletal and extraskeletal disorders of biomineralization. Nat Rev Endocrinol 2022; 18:473-489. [PMID: 35578027 DOI: 10.1038/s41574-022-00682-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/13/2022] [Indexed: 12/15/2022]
Abstract
The physiological process of biomineralization is complex and deviation from it leads to a variety of diseases. Progress in the past 10 years has enhanced understanding of the genetic, molecular and cellular pathophysiology underlying these disorders; sometimes, this knowledge has both facilitated restoration of health and clarified the very nature of biomineralization as it occurs in humans. In this Review, we consider the principal regulators of mineralization and crystallization, and how dysregulation of these processes can lead to human disease. The knowledge acquired to date and gaps still to be filled are highlighted. The disorders of mineralization discussed comprise a broad spectrum of conditions that encompass bone disorders associated with alterations of mineral quantity and quality, as well as disorders of extraskeletal mineralization (hyperphosphataemic familial tumoural calcinosis). Included are disorders of alkaline phosphatase (hypophosphatasia) and phosphate homeostasis (X-linked hypophosphataemic rickets, fluorosis, rickets and osteomalacia). Furthermore, crystallopathies are covered as well as arterial and renal calcification. This Review discusses the current knowledge of biomineralization derived from basic and clinical research and points to future studies that will lead to new therapeutic approaches for biomineralization disorders.
Collapse
Affiliation(s)
- Michael T Collins
- Skeletal Disorders and Mineral Homeostasis Section, National Institute of Dental and Craniofacial Research, NIH, Bethesda, MD, USA.
| | - Gemma Marcucci
- Bone Metabolic Diseases Unit, Department of Biomedical, Experimental and Clinical Sciences, University of Florence, Florence, Italy
| | - Hans-Joachim Anders
- Department of Medicine IV, Hospital of the University of Munich, Ludwig-Maximilians University, Munich, Germany
| | - Giovanni Beltrami
- Department Paediatric Orthopedic Oncology, Careggi and Meyer Children Hospital, Florence, Italy
| | - Jane A Cauley
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Peter R Ebeling
- Department of Medicine, School of Clinical Sciences, Monash University, Melbourne, Australia
| | - Rajiv Kumar
- Departments of Medicine, Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Agnès Linglart
- APHP, Endocrinologie et diabète de l'enfant, Paris, France
| | - Luca Sangiorgi
- Medical Genetics and Skeletal Rare Diseases, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Dwight A Towler
- University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ria Weston
- Cardiovascular Research Group, Manchester Metropolitan University, Manchester, UK
| | - Michael P Whyte
- Center for Metabolic Bone Disease and Molecular Research, Shriners Hospitals for Children-St Louis, St Louis, MO, USA
- Division of Bone and Mineral Diseases, Department of Internal Medicine, Washington University School of Medicine, St Louis, MO, USA
| | | | - Bart Clarke
- Mayo Clinic Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Rochester, MN, USA
| | - Rajesh V Thakker
- Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
7
|
BMP Signaling Pathway in Dentin Development and Diseases. Cells 2022; 11:cells11142216. [PMID: 35883659 PMCID: PMC9317121 DOI: 10.3390/cells11142216] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/08/2022] [Accepted: 07/12/2022] [Indexed: 12/27/2022] Open
Abstract
BMP signaling plays an important role in dentin development. BMPs and antagonists regulate odontoblast differentiation and downstream gene expression via canonical Smad and non-canonical Smad signaling pathways. The interaction of BMPs with their receptors leads to the formation of complexes and the transduction of signals to the canonical Smad signaling pathway (for example, BMP ligands, receptors, and Smads) and the non-canonical Smad signaling pathway (for example, MAPKs, p38, Erk, JNK, and PI3K/Akt) to regulate dental mesenchymal stem cell/progenitor proliferation and differentiation during dentin development and homeostasis. Both the canonical Smad and non-canonical Smad signaling pathways converge at transcription factors, such as Dlx3, Osx, Runx2, and others, to promote the differentiation of dental pulp mesenchymal cells into odontoblasts and downregulated gene expressions, such as those of DSPP and DMP1. Dysregulated BMP signaling causes a number of tooth disorders in humans. Mutation or knockout of BMP signaling-associated genes in mice results in dentin defects which enable a better understanding of the BMP signaling networks underlying odontoblast differentiation and dentin formation. This review summarizes the recent advances in our understanding of BMP signaling in odontoblast differentiation and dentin formation. It includes discussion of the expression of BMPs, their receptors, and the implicated downstream genes during dentinogenesis. In addition, the structures of BMPs, BMP receptors, antagonists, and dysregulation of BMP signaling pathways associated with dentin defects are described.
Collapse
|
8
|
Yan X, Fan D, Pi Y, Zhang Y, Fu P, Zhang H. ERα/β/DMP1 axis promotes trans-differentiation of chondrocytes to bone cells through GSK-3β/β-catenin pathway. J Anat 2022; 240:1152-1161. [PMID: 35081258 PMCID: PMC9119614 DOI: 10.1111/joa.13612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/04/2021] [Accepted: 12/06/2021] [Indexed: 02/06/2023] Open
Abstract
Estrogen-induced premature closing of the growth plate in the long bones is a major cause of short stature after premature puberty. Recent studies have found that chondrocytes can directly trans-differentiate into osteoblasts in the process of endochondral bone formation, which indicates that cartilage formation and osteogenesis may be a continuous biological process. However, whether estrogen promotes the direct trans-differentiation of chondrocytes into osteoblasts remains largely unknown. Chondrocytes were treated with different concentrations of 17β-estradiol, and Alizarin Red staining and alkaline phosphatase activity assay were used to detected osteogenesis. Specific short hairpin RNA and tamoxifen were used to block the estrogen receptor (ER) pathway and osteogenic marker genes and downstream gene expression were detected using real-time quantitative polymerase chain reaction, western blot, and immunohistochemistry staining. The findings showed that 17β-estradiol promoted the chondrocyte osteogenesis in vitro, even at high concentrations. In addition, blocking of the ERα/β pathway inhibited the trans-differentiation of chondrocytes into osteogenic cells. Furthermore, we found that dentin matrix protein 1 (DMP1), which is a direct downstream molecular of ER, was involved in 17β-estradiol/ER pathway-regulated osteogenesis. As well, glycogen synthase kinase-3 beta (GSK-3β)/β-catenin signal pathway also participates in ERα/β/DMP1-regulated chondrocyte osteogenesis. The GSK-3β/β-catenin signal pathway was involved in ERα/β/DMP1-regulated chondrocyte osteogenesis. These findings suggest that ER/DMP1/GSK-3β/β-catenin plays a vital role in estrogen regulation of chondrocyte osteogenesis and provide a therapeutic target for short stature caused by epiphyseal fusion.
Collapse
Affiliation(s)
- Xue Yan
- Department of PediatricsThe Second Hospital of Hebei Medical UniversityShijiazhuangChina
| | - Deng‐Yun Fan
- Department of PediatricsThe Second Hospital of Hebei Medical UniversityShijiazhuangChina
| | - Ya‐Lei Pi
- Department of PediatricsThe Second Hospital of Hebei Medical UniversityShijiazhuangChina
| | - Ya‐Nan Zhang
- Department of PediatricsThe Second Hospital of Hebei Medical UniversityShijiazhuangChina
| | - Peng‐Jiu Fu
- Department of PediatricsThe Second Hospital of Hebei Medical UniversityShijiazhuangChina
| | - Hui‐Feng Zhang
- Department of PediatricsThe Second Hospital of Hebei Medical UniversityShijiazhuangChina
| |
Collapse
|
9
|
The Emerging Role of Cell Transdifferentiation in Skeletal Development and Diseases. Int J Mol Sci 2022; 23:ijms23115974. [PMID: 35682655 PMCID: PMC9180549 DOI: 10.3390/ijms23115974] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 02/04/2023] Open
Abstract
The vertebrate musculoskeletal system is known to be formed by mesenchymal stem cells condensing into tissue elements, which then differentiate into cartilage, bone, tendon/ligament, and muscle cells. These lineage-committed cells mature into end-stage differentiated cells, like hypertrophic chondrocytes and osteocytes, which are expected to expire and to be replaced by newly differentiated cells arising from the same lineage pathway. However, there is emerging evidence of the role of cell transdifferentiation in bone development and disease. Although the concept of cell transdifferentiation is not new, a breakthrough in cell lineage tracing allowed scientists to trace cell fates in vivo. Using this powerful tool, new theories have been established: (1) hypertrophic chondrocytes can transdifferentiate into bone cells during endochondral bone formation, fracture repair, and some bone diseases, and (2) tendon cells, beyond their conventional role in joint movement, directly participate in normal bone and cartilage formation, and ectopic ossification. The goal of this review is to obtain a better understanding of the key roles of cell transdifferentiation in skeletal development and diseases. We will first review the transdifferentiation of chondrocytes to bone cells during endochondral bone formation. Specifically, we will include the history of the debate on the fate of chondrocytes during bone formation, the key findings obtained in recent years on the critical factors and molecules that regulate this cell fate change, and the role of chondrocyte transdifferentiation in skeletal trauma and diseases. In addition, we will also summarize the latest discoveries on the novel roles of tendon cells and adipocytes on skeletal formation and diseases.
Collapse
|
10
|
Ni X, Zhang Q, Li X, Pang Q, Gong Y, Wang O, Li M, Xing X, Jiang Y, Xia W. Low Levels of Serum Sclerostin in Adult Patients With Tumor-Induced Osteomalacia Compared With X-linked Hypophosphatemia. J Clin Endocrinol Metab 2022; 107:e361-e371. [PMID: 34363479 DOI: 10.1210/clinem/dgab579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Indexed: 12/24/2022]
Abstract
CONTEXT Sclerostin inhibits Wnt-β-catenin signaling, regulating bone formation. Circulating sclerostin was reported to be elevated in X-linked hypophosphatemia (XLH) patients, and sclerostin antibody (Scl-Ab) increased bone mass and normalized circulating phosphate in Hyp mice. However, circulating sclerostin levels in patients with acquired hypophosphatemia due to tumor-induced osteomalacia (TIO) are rarely reported. OBJECTIVE This study was designed to evaluate serum sclerostin levels in TIO patients compared with age- and sex-matched healthy controls and XLH patients to analyze correlations with bone mineral density (BMD) and laboratory parameters. METHODS This cross-sectional study determined serum sclerostin levels in 190 individuals, comprising 83 adult TIO patients, 83 adult healthy controls and 24 adult XLH patients. RESULTS TIO patients (43 male, 40 female) aged 44.3 ± 8.7 (mean ± SD) years had lower levels of circulating sclerostin than controls (94.2 ± 45.8 vs 108.4 ± 42.3 pg/mL, P = 0.01), adjusted for age, gender, BMI, and diabetes rate. Sclerostin levels were positively associated with age (r = 0.238, P = 0.030). Male patients had higher sclerostin than female patients (104.7 ± 47.3 vs 83.0 ± 41.8 pg/mL, P = 0.014). Sclerostin levels were positively associated with L1-4 BMD (r = 0.255, P = 0.028), femoral neck BMD (r = 0.242, P = 0.039), and serum calcium (r = 0.231, P = 0.043). Comparison of sclerostin levels in TIO patients (n = 24, age 35.9 ± 7.3 years) vs XLH patients vs healthy controls revealed significant differences (respectively, 68.4 ± 31.3, 132.0 ± 68.8, and 98.6 ± 41.1 pg/mL, P < 0.001). CONCLUSION Circulating sclerostin was decreased in TIO patients but increased in XLH patients, possibly due to histological abnormality and bone mass.
Collapse
Affiliation(s)
- Xiaolin Ni
- Department of Endocrinology, Key Laboratory of Endocrinology, National Commission of Health, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Qi Zhang
- Laboratory Department, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Xiang Li
- Department of Endocrinology, Key Laboratory of Endocrinology, National Commission of Health, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Qianqian Pang
- Department of Endocrinology, Key Laboratory of Endocrinology, National Commission of Health, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Yiyi Gong
- Central Research Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Ou Wang
- Department of Endocrinology, Key Laboratory of Endocrinology, National Commission of Health, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Mei Li
- Department of Endocrinology, Key Laboratory of Endocrinology, National Commission of Health, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Xiaoping Xing
- Department of Endocrinology, Key Laboratory of Endocrinology, National Commission of Health, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Yan Jiang
- Department of Endocrinology, Key Laboratory of Endocrinology, National Commission of Health, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Weibo Xia
- Department of Endocrinology, Key Laboratory of Endocrinology, National Commission of Health, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| |
Collapse
|
11
|
Arıcan G, Özmeriç A, Fırat A, Kaymaz F, Ocak M, Çelik HH, Alemdaroğlu KB. Micro-ct findings of concentrated growth factors (cgf) on bone healing in masquelet's technique-an experimental study in rabbits. Arch Orthop Trauma Surg 2022; 142:83-90. [PMID: 32945957 DOI: 10.1007/s00402-020-03596-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 09/09/2020] [Indexed: 11/30/2022]
Abstract
INTRODUCTION A recent histopathological and immunohistochemical study has proved that the addition of concentrated growth factors (CGF) to the Masquelet's technique contributes to the quality of the membrane formed, in respect of inducing inflammation and proliferation, maintaining vascularization on large diaphyseal bone defects, and increasing the number of stem cells. The aim of the study is comparison of radiological results of this combination treatment by micro-CT. MATERIALS AND METHODS The study was planned on a critical bone defect model in rabbit radius. Group I and Group III were the control groups to which only the Masquelet's technique is applied. Group II and Group IV were CGF groups in addition to the Masquelet's technique. CGF was prepared by centrifugation of rabbit's own blood. For early phase, Groups I and II were evaluated in the 8th week, while for late phase, Group III and Group IV were evaluated in the 12th week. Groups were compared in terms of bony union radiologically by micro-CT(μCT) (New Bone Volume (NBV), Total Bone Volume (TBV) and NBV/TBV) and histopathologically. RESULTS The structural parameters, including NBV, TBV, NBV/TBV were higher in the early- (8th week) and late-phase (12th week) CGF group. There was no statistically significant difference between CGF and control groups in early phase, (p = 0.153), while in late phase, CGF group was significantly higher of new bone volume than the control group, 246.3 mm3 (196.1-258) and 169.6 mm3 (154.3-235.9), respectively (p = 0.028). For early phase, control group was significantly lower than late-phase control group, 121.8 mm3 (88.8-144.4) and 169.6 mm3 (154.3-235.9), respectively (p = 0.006). The ratio of New Bone Volume to Total Bone Volume (NBV/TBV ratio) in CGF groups was significantly higher compared to the control groups 27.3% (24.7-29.6), 35.3% (32.1-38.6) (p = 0.032) and 39.7% (36.7-41.6), 55.3% (52-57.5) (p = 0.002), respectively. Histopathologically, Microscopic New Bone Formation had no statistically significant difference between control and CGF groups in early phase (8th week) (p = 0.153), while in late phase (12th week), CGF group had significantly higher amount of new bone formation than the control group, 0.29 µm2 (0.27-0.36), 0.51 µm2 (0.42-0.59), respectively (p = 0.008). CONCLUSION The addition of CGF to the Masquelet's technique is an important method for supporting new bone formation in large diaphyseal bone defects. LEVEL EVIDENCE Level III, therapeutic/care management.
Collapse
Affiliation(s)
- Gökhun Arıcan
- Department of Orthopaedics, Ankara Training and Research Hospital, Ankara, 06340, Turkey.
| | - Ahmet Özmeriç
- Department of Orthopaedics, Ankara Training and Research Hospital, Ankara, 06340, Turkey
| | - Ayşegül Fırat
- Department of Anatomy, Hacettepe Univesity Faculty of Medicine, Ankara, 06100, Turkey
| | - Figen Kaymaz
- Department of Histology and Embryology, Hacettepe Univesity Faculty of Medicine, Ankara, 06100, Turkey
| | - Mert Ocak
- Vocational School of Health, Ankara University, Ankara, 06100, Turkey
| | - H Hamdi Çelik
- Department of Anatomy, Hacettepe Univesity Faculty of Medicine, Ankara, 06100, Turkey
| | - Kadir Bahadır Alemdaroğlu
- Department of Orthopaedics, University of Health Sciences Ankara Training and Research Hospital, Ankara, 06340, Turkey
| |
Collapse
|
12
|
Yamazaki M, Michigami T. Osteocytes and the pathogenesis of hypophosphatemic rickets. Front Endocrinol (Lausanne) 2022; 13:1005189. [PMID: 36246908 PMCID: PMC9556901 DOI: 10.3389/fendo.2022.1005189] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/15/2022] [Indexed: 11/13/2022] Open
Abstract
Since phosphorus is a component of hydroxyapatite, its prolonged deprivation affects bone mineralization. Fibroblast growth factor 23 (FGF23) is essential for maintaining phosphate homeostasis and is mainly produced by osteocytes. FGF23 increases the excretion of inorganic phosphate (Pi) and decreases the production of 1,25-dihydroxyvitamin D in the kidneys. Osteocytes are cells of osteoblastic lineage that have undergone terminal differentiation and become embedded in mineralized bone matrix. Osteocytes express FGF23 and other multiple genes responsible for hereditary hypophosphatemic rickets, which include phosphate-regulating gene homologous to endopeptidase on X chromosome (PHEX), dentin matrix protein 1 (DMP1), and family with sequence similarity 20, member C (FAM20C). Since inactivating mutations in PHEX, DMP1, and FAM20C boost the production of FGF23, these molecules might be considered as local negative regulators of FGF23. Mouse studies have suggested that enhanced FGF receptor (FGFR) signaling is involved in the overproduction of FGF23 in PHEX-deficient X-linked hypophosphatemic rickets (XLH) and DMP1-deficient autosomal recessive hypophosphatemic rickets type 1. Since FGFR is involved in the transduction of signals evoked by extracellular Pi, Pi sensing in osteocytes may be abnormal in these diseases. Serum levels of sclerostin, an inhibitor Wnt/β-catenin signaling secreted by osteocytes, are increased in XLH patients, and mouse studies have suggested the potential of inhibiting sclerostin as a new therapeutic option for the disease. The elucidation of complex abnormalities in the osteocytes of FGF23-related hypophosphatemic diseases will provide a more detailed understanding of their pathogenesis and more effective treatments.
Collapse
|
13
|
Wang S, Cheng Y, Liu S, Xu Y, Gao Y, Wang C, Wang Z, Feng T, Lu G, Song J, Xia P, Hao L. A synonymous mutation in IGF-1 impacts the transcription and translation process of gene expression. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 26:1446-1465. [PMID: 34938600 PMCID: PMC8655398 DOI: 10.1016/j.omtn.2021.08.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 08/10/2021] [Indexed: 11/18/2022]
Abstract
Insulin-like growth factor 1 (IGF-1) is considered to be a crucial gene in the animal development of bone and body size. In this study, a unique synonymous mutation (c.258 A > G) of the IGF-1 gene was modified with an adenine base editor to observe the growth and developmental situation of mutant mice. Significant expression differences and molecular mechanisms among vectors with different alanine synonymous codons were explored. Although modification of a single synonymous codon rarely interferes with animal phenotypes, we observed that the expression and secretion of IGF-1 were different between 8-week-old homozygous (Ho) and wild-type (WT) mice. In addition, the IGF-1 with optimal codon combinations showed a higher expression content than other codon combination modes at both transcription and translation levels and performed proliferation promotion. The gene stability and translation initiation efficiency also changed significantly. Our findings illustrated that the synonymous mutation altered the IGF-1 gene expression in individual mice and suggested that the synonymous mutation affected the IGF-1 expression and biological function through the transcription and translation processes.
Collapse
Affiliation(s)
- S.Y. Wang
- College of Animal Science, Jilin University, Changchun 130062, China
- Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Y.Y. Cheng
- Ministry of Health Key Laboratory of Radiobiology, College of Public Health, Jilin University, Changchun, Jilin 130021, China
| | - S.C. Liu
- College of Animal Science, Jilin University, Changchun 130062, China
| | - Y.X. Xu
- College of Animal Science, Jilin University, Changchun 130062, China
| | - Y. Gao
- College of Animal Science, Jilin University, Changchun 130062, China
| | - C.L. Wang
- College of Animal Science, Jilin University, Changchun 130062, China
| | - Z.G. Wang
- College of Animal Science, Jilin University, Changchun 130062, China
| | - T.Q. Feng
- College of Animal Science, Jilin University, Changchun 130062, China
| | - G.H. Lu
- College of Animal Science, Jilin University, Changchun 130062, China
| | - J. Song
- College of Animal Science, Jilin University, Changchun 130062, China
| | - P.J. Xia
- College of Animal Science, Jilin University, Changchun 130062, China
| | - L.L. Hao
- College of Animal Science, Jilin University, Changchun 130062, China
- Corresponding author: Linlin Hao, College of Animal Science, Jilin University, Changchun 130062, China.
| |
Collapse
|
14
|
Xu K, Lu C, Ren X, Wang J, Xu P, Zhang Y. Overexpression of HIF-1α enhances the protective effect of mitophagy on steroid-induced osteocytes apoptosis. ENVIRONMENTAL TOXICOLOGY 2021; 36:2123-2137. [PMID: 34310007 DOI: 10.1002/tox.23327] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 07/01/2021] [Accepted: 07/07/2021] [Indexed: 06/13/2023]
Abstract
Glucocorticoid (GC; dexamethasone, DEX) -induced osteonecrosis of the femoral head (GIOFH) is a challenging orthopedic disease, and its underlying mechanism remains not clear. This study exposed murine long bone osteocyte-Y4 (MLO-Y4) cells to DEX below normoxic or hypoxic circumstances and found that cell autophagy have been reduced. At the same time, flow cytometry analysis showed increased apoptosis, which was more pronounced in hypoxic environments. Recent research also claimed that GC induces osteoporosis after osteocyte apoptosis, and subsequent microfractures lead to ischemia and hypoxia of the femoral head, resulted in GIOFH. Presently, we found that both mitophagy-related protein hypoxia-inducible factor-1α (HIF-1α) and BNIP3 were up-regulated in the hypoxic environment, and their expression was down-regulated when exposed to DEX. Besides, we demonstrated that overexpressing HIF-1α resisted DEX-induced apoptosis in a hypoxic environment. Here, we demonstrated that overexpression of HIF-1α, through its downstream marker BNIP3, reduced the suppression of DEX on mitophagy induced by hypoxia and protected bone cells from apoptosis. Also, these findings may provide a direction of the promising application for better GIOFH treatment shortly.
Collapse
Affiliation(s)
- Ke Xu
- Department of Orthopaedics of the First Affiliated Hospital, Medical School, Xi'an Jiaotong University, Xi'an, China
| | - Chao Lu
- Department of Joint Surgery, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Xiaoyu Ren
- Department of Joint Surgery, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Jing Wang
- Department of Orthopaedics of the First Affiliated Hospital, Medical School, Xi'an Jiaotong University, Xi'an, China
| | - Peng Xu
- Department of Joint Surgery, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Yingang Zhang
- Department of Orthopaedics of the First Affiliated Hospital, Medical School, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
15
|
Wang K, Ren Y, Lin S, Jing Y, Ma C, Wang J, Yuan XB, Han X, Zhao H, Wang Z, Zheng M, Xiao Y, Chen L, Olsen BR, Feng JQ. Osteocytes but not osteoblasts directly build mineralized bone structures. Int J Biol Sci 2021; 17:2430-2448. [PMID: 34326685 PMCID: PMC8315029 DOI: 10.7150/ijbs.61012] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/21/2021] [Indexed: 02/05/2023] Open
Abstract
Bone-forming osteoblasts have been a cornerstone of bone biology for more than a century. Most research toward bone biology and bone diseases center on osteoblasts. Overlooked are the 90% of bone cells, called osteocytes. This study aims to test the hypothesis that osteocytes but not osteoblasts directly build mineralized bone structures, and that defects in osteocytes lead to the onset of hypophosphatemia rickets. The hypothesis was tested by developing and modifying multiple imaging techniques, including both in vivo and in vitro models plus two types of hypophosphatemia rickets models (Dmp1-null and Hyp, Phex mutation mice), and Dmp1-Cre induced high level of β-catenin models. Our key findings were that osteocytes (not osteoblasts) build bone similar to the construction of a high-rise building, with a wire mesh frame (i.e., osteocyte dendrites) and cement (mineral matrices secreted from osteocytes), which is a lengthy and slow process whose mineralization direction is from the inside toward the outside. When osteoblasts fail to differentiate into osteocytes but remain highly active in Dmp-1-null or Hyp mice, aberrant and poor bone mineralization occurs, caused by a sharp increase in Wnt-β-catenin signaling. Further, the constitutive expression of β-catenin in osteocytes recaptures a similar osteomalacia phenotype as shown in Dmp1 null or Hyp mice. Thus, we conclude that osteocytes directly build bone, and osteoblasts with a short life span serve as a precursor to osteocytes, which challenges the existing dogma.
Collapse
Affiliation(s)
- Ke Wang
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX 75246, USA
| | - Yinshi Ren
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX 75246, USA.,Center for Excellence in Hip Disorders, Texas Scottish Rite Hospital for Children, Dallas, TX 75219 USA
| | - Shuxian Lin
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX 75246, USA.,Laboratory of Oral Biomedical Science and Translational Medicine, School of Stomatology, Tongji University, Shanghai, 200092, China
| | - Yan Jing
- Department of Orthodontics, Texas A&M University College of Dentistry, Dallas, TX 75246, USA
| | - Chi Ma
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX 75246, USA.,Center for Excellence in Hip Disorders, Texas Scottish Rite Hospital for Children, Dallas, TX 75219 USA
| | - Jun Wang
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX 75246, USA.,State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - X Baozhi Yuan
- Angitia Biopharmaceuticals, Guangzhou, 510000, China
| | - Xianglong Han
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX 75246, USA.,State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Hu Zhao
- Department of Restorative Dentistry, Texas A&M University College of Dentistry, Dallas, TX 75246, USA
| | - Zheng Wang
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX 75246, USA
| | - Minghao Zheng
- Centre for Orthopaedic Research, School of Surgery, The University of Western Australia, Perth, 6009, Australia
| | - Yin Xiao
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, 4059, Australia
| | - Lin Chen
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Bjorn Reino Olsen
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA 02115, USA
| | - Jian Q Feng
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX 75246, USA
| |
Collapse
|
16
|
Fan J, Wang Y, Chen YE. Genetically Modified Rabbits for Cardiovascular Research. Front Genet 2021; 12:614379. [PMID: 33603774 PMCID: PMC7885269 DOI: 10.3389/fgene.2021.614379] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 01/04/2021] [Indexed: 12/21/2022] Open
Abstract
Rabbits are one of the most used experimental animals for investigating the mechanisms of human cardiovascular disease and lipid metabolism because they are phylogenetically closer to human than rodents (mice and rats). Cholesterol-fed wild-type rabbits were first used to study human atherosclerosis more than 100 years ago and are still playing an important role in cardiovascular research. Furthermore, transgenic rabbits generated by pronuclear microinjection provided another means to investigate many gene functions associated with human disease. Because of the lack of both rabbit embryonic stem cells and the genome information, for a long time, it has been a dream for scientists to obtain knockout rabbits generated by homologous recombination-based genomic manipulation as in mice. This obstacle has greatly hampered using genetically modified rabbits to disclose the molecular mechanisms of many human diseases. The advent of genome editing technologies has dramatically extended the applications of experimental animals including rabbits. In this review, we will update genetically modified rabbits, including transgenic, knock-out, and knock-in rabbits during the past decades regarding their use in cardiovascular research and point out the perspectives in future.
Collapse
Affiliation(s)
- Jianglin Fan
- Department of Pathology, Xi'an Medical University, Xi'an, China.,Department of Molecular Pathology, Faculty of Medicine, Graduate School of Interdisciplinary Research, University of Yamanashi, Yamanashi, Japan.,School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
| | - Yanli Wang
- Department of Pathology, Xi'an Medical University, Xi'an, China
| | - Y Eugene Chen
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, Ann Arbor, MI, United States
| |
Collapse
|
17
|
Ma C, Jing Y, Li H, Wang K, Wang Z, Xu C, Sun X, Kaji D, Han X, Huang A, Feng J. Scx Lin cells directly form a subset of chondrocytes in temporomandibular joint that are sharply increased in Dmp1-null mice. Bone 2021; 142:115687. [PMID: 33059101 PMCID: PMC7749445 DOI: 10.1016/j.bone.2020.115687] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/16/2020] [Accepted: 10/08/2020] [Indexed: 02/07/2023]
Abstract
It has been assumed that the secondary cartilage in the temporomandibular joint (TMJ), which is the most complex and mystery joint and expands rapidly after birth, is formed by periochondrium-derived chondrocytes. The TMJ condyle has rich attachment sites of tendon, which is thought to be solely responsible for joint movement with a distinct cell lineage. Here, we used a Scx-Cre ERT2 mouse line (the tracing line for progenitor and mature tendon cells) to track the fate of tendon cells during TMJ postnatal growth. Our data showed a progressive differentiation of Scx lineage cells started at tendon and the fibrous layer, to cells at the prechondroblasts (Sox9 -/Col I +), and then to cells at the chondrocytic layer (Sox9 +/Col I -). Importantly, the Scx + chondrocytes remained as "permanent" chondrocytes to maintain cartilage mass with no further cell trandifferentiation to bone cells. This notion was substantiated in an assessment of these cells in Dmp1 -null mice (a hypophosphatemic rickets model), where there was a significant increase in the number of Scx lineage cells in response to hypophosphatemia. In addition, we showed the origin of disc, which is derived from Scx + cells. Thus, we propose Scx lineage cells play an important role in TMJ postnatal growth by forming the disc and a new subset of Scx + chondrocytes that do not undergo osteogenesis as the Scx - chondrocytes and are sensitive to the level of phosphorous.
Collapse
Affiliation(s)
- Chi Ma
- Department of Orthopaedic Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yan Jing
- Department of Orthodontics, Texas A&M College of Dentistry, Dallas, TX, USA
- Corresponding authors Yan Jing, Assistant professor, Department of Orthodontics, Texas A&M College of Dentistry, 3302 Gaston Ave, Dallas, Tx, USA, , 2143707237, Jian Feng, Professor, Department of Biomedical sciences, Texas A&M College of Dentistry, Texas A&M College of Dentistry, 3302 Gaston Ave, Dallas, Tx, USA, , 2143707235
| | - Hui Li
- Department of Biomedical Sciences, Texas A&M College of Dentistry, Dallas, TX, USA
| | - Ke Wang
- Department of Biomedical Sciences, Texas A&M College of Dentistry, Dallas, TX, USA
| | - Zheng Wang
- Department of Biomedical Sciences, Texas A&M College of Dentistry, Dallas, TX, USA
| | - Chunmei Xu
- Department of Biomedical Sciences, Texas A&M College of Dentistry, Dallas, TX, USA
| | - Xiaolin Sun
- Department of Biomedical Sciences, Texas A&M College of Dentistry, Dallas, TX, USA; Zhongshan Affiliated Hospital of Dalian University, Dalian, China
| | - Deepak Kaji
- Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Xianglong Han
- Department of Orthodontics & Pediatric Dentistry, West China School of Stomatology, State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, China
| | - Alice Huang
- Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Jian Feng
- Department of Biomedical Sciences, Texas A&M College of Dentistry, Dallas, TX, USA
- Corresponding authors Yan Jing, Assistant professor, Department of Orthodontics, Texas A&M College of Dentistry, 3302 Gaston Ave, Dallas, Tx, USA, , 2143707237, Jian Feng, Professor, Department of Biomedical sciences, Texas A&M College of Dentistry, Texas A&M College of Dentistry, 3302 Gaston Ave, Dallas, Tx, USA, , 2143707235
| |
Collapse
|
18
|
Siqueira R, Ferreira JA, Rizzante FAP, Moura GF, Mendonça DBS, de Magalhães D, Cimões R, Mendonça G. Hydrophilic titanium surface modulates early stages of osseointegration in osteoporosis. J Periodontal Res 2020; 56:351-362. [PMID: 33368275 DOI: 10.1111/jre.12827] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 10/16/2020] [Accepted: 11/24/2020] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Using a mouse osteoporotic model, this study aimed to determine the influence of hydrophilic titanium surfaces on gene expression and bone formation during the osseointegration process. BACKGROUND Based on the previous evidence, it is plausible to assume that osteoporotic bone has a different potential of bone healing. Therefore, implant surface modification study that aims at enhancing bone formation to further improve short- and long-term clinical outcomes in osteoporosis is necessary. MATERIAL AND METHODS Fifty female, 3-month-old mice were included in this study. Osteoporosis was induced by ovariectomy (OVX, test group) in 25 mice. The further 25 mice had ovaries exposed but not removed (SHAM, control group). Seven weeks following the ovariectomy procedures, one customized implant (0.7 × 8 mm) of each surface was placed in each femur for both groups. Implants had either a hydrophobic surface (SAE) or a hydrophilic treatment surface (SAE-HD). Calcium (Ca) and phosphorus (P) content was measured by energy-dispersive X-ray spectroscopy (EDS) after 7 days. The femurs were analyzed for bone-to-implant contact (BIC) and bone volume fraction (BV) by nano-computed tomography (nano-CT) after 14 and 28 days. Same specimens were further submitted to histological analysis. Additionally, after 3 and 7 days, implants were removed and cells were collected around the implant to access gene expression profile of key osteogenic (Runx2, Alp, Sp7, Bsp, Sost, Ocn) and inflammatory genes (IL-1β, IL-10, Tnf-α, and Nos2) by qRT-PCR assay. Statistical analysis was performed by ANOVA and paired t test with significance at P < .05. RESULTS The amount of Ca and P deposited on the surface due to the mineralization process was higher for SAE-HD compared to SAE on the intra-group analysis. Nano-CT and histology revealed more BV and BIC for SAE-HD in SHAM and OVX groups compared to SAE. Analysis in OVX group showed that most genes (ie, ALP, Runx2) involved in the bone morphogenetic protein (BMP) signaling were significantly activated in the hydrophilic treatment. CONCLUSION Both surfaces were able to modulate bone responses toward osteoblast differentiation. SAE-HD presented a faster response in terms of bone formation and osteogenic gene expression compared to SAE. Hydrophilic surface in situations of osteoporosis seems to provide additional benefits in the early stages of osseointegration.
Collapse
Affiliation(s)
- Rafael Siqueira
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Jessica Afonso Ferreira
- Department of Periodontology and Implant Dentistry, School of Dentistry, Federal University of Uberlandia, Uberlândia, Brazil.,Department of Biological and Material Sciences & Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Fábio Antônio Piola Rizzante
- Department of Comprehensive Care, School of Dental Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Guilherme Faria Moura
- Department of Periodontology and Implant Dentistry, School of Dentistry, Federal University of Uberlandia, Uberlândia, Brazil.,Department of Biological and Material Sciences & Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | | | - Denildo de Magalhães
- Department of Periodontology and Implant Dentistry, School of Dentistry, Federal University of Uberlandia, Uberlândia, Brazil
| | - Renata Cimões
- Department of Prosthesis and Maxillofacial Surgery, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - Gustavo Mendonça
- Department of Biological and Material Sciences & Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| |
Collapse
|
19
|
Xu Y, Li Z. CRISPR-Cas systems: Overview, innovations and applications in human disease research and gene therapy. Comput Struct Biotechnol J 2020; 18:2401-2415. [PMID: 33005303 PMCID: PMC7508700 DOI: 10.1016/j.csbj.2020.08.031] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 08/31/2020] [Accepted: 08/31/2020] [Indexed: 02/08/2023] Open
Abstract
Genome editing is the modification of genomic DNA at a specific target site in a wide variety of cell types and organisms, including insertion, deletion and replacement of DNA, resulting in inactivation of target genes, acquisition of novel genetic traits and correction of pathogenic gene mutations. Due to the advantages of simple design, low cost, high efficiency, good repeatability and short-cycle, CRISPR-Cas systems have become the most widely used genome editing technology in molecular biology laboratories all around the world. In this review, an overview of the CRISPR-Cas systems will be introduced, including the innovations, the applications in human disease research and gene therapy, as well as the challenges and opportunities that will be faced in the practical application of CRISPR-Cas systems.
Collapse
Affiliation(s)
- Yuanyuan Xu
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Science, Jilin University, Changchun 130062, China
| | - Zhanjun Li
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Science, Jilin University, Changchun 130062, China
| |
Collapse
|
20
|
Jing Y, Wang Z, Li H, Ma C, Feng J. Chondrogenesis Defines Future Skeletal Patterns Via Cell Transdifferentiation from Chondrocytes to Bone Cells. Curr Osteoporos Rep 2020; 18:199-209. [PMID: 32219639 PMCID: PMC7717675 DOI: 10.1007/s11914-020-00586-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
PURPOSE OF REVIEW The goal of this review is to obtain a better understanding of how chondrogenesis defines skeletal development via cell transdifferentiation from chondrocytes to bone cells. RECENT FINDINGS A breakthrough in cell lineage tracing allows bone biologists to trace the cell fate and demonstrate that hypertrophic chondrocytes can directly transdifferentiate into bone cells during endochondral bone formation. However, there is a knowledge gap for the biological significance of this lineage extension and the mechanisms controlling this process. This review first introduces the history of the debate on the cell fate of chondrocytes in endochondral bone formation; then summarizes key findings obtained in recent years, which strongly support a new theory: the direct cell transdifferentiation from chondrocytes to bone cells precisely connects chondrogenesis (for providing a template of the future skeleton, classified as phase I) and osteogenesis (for finishing skeletal construction, or phase II) in a continuous lineage-linked process of endochondral bone formation and limb elongation; and finally outlines nutrition factors and molecules that regulate the cell transdifferentiation process during the relay from chondrogenesis to osteogenesis.
Collapse
Affiliation(s)
- Yan Jing
- Department of Orthodontics, Texas A&M University College of Dentistry, 3302 Gaston ave, Dallas, TX, 75246, USA.
| | - Zheng Wang
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX, USA
| | - Hui Li
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX, USA
- State Key Laboratory of Oral Diseases, Department of Traumatic and Plastic Surgery, , West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Chi Ma
- Department of Research, Texas Scottish Rite Hospital for Children, Dallas, TX, USA
| | - Jian Feng
- Department of Orthodontics, Texas A&M University College of Dentistry, 3302 Gaston ave, Dallas, TX, 75246, USA.
| |
Collapse
|
21
|
Whyte MP, Amalnath SD, McAlister WH, McKee MD, Veis DJ, Huskey M, Duan S, Bijanki VN, Alur S, Mumm S. Hypophosphatemic osteosclerosis, hyperostosis, and enthesopathy associated with novel homozygous mutations of DMP1 encoding dentin matrix protein 1 and SPP1 encoding osteopontin: The first digenic SIBLING protein osteopathy? Bone 2020; 132:115190. [PMID: 31843680 PMCID: PMC7271119 DOI: 10.1016/j.bone.2019.115190] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/10/2019] [Accepted: 12/12/2019] [Indexed: 01/20/2023]
Abstract
The SIBLINGs are a subfamily of the secreted calcium-binding phosphoproteins and comprise five small integrin-binding ligand N-linked glycoproteins [dentin matrix protein-1 (DMP1), secreted phosphoprotein-1 (SPP1) also called osteopontin (OPN), integrin-binding sialoprotein (IBSP) also called bone sialoprotein (BSP), matrix extracellular phosphoglycoprotein (MEPE), and dentin sialophosphoprotein (DSPP)]. Each SIBLING has at least one "acidic, serine- and aspartic acid-rich motif" (ASARM) and multiple Ser-x-Glu/pSer sequences that when phosphorylated promote binding of the protein to hydroxyapatite for regulation of biomineralization. Mendelian disorders from loss-of-function mutation(s) of the genes that encode the SIBLINGs thus far involve DSPP causing various autosomal dominant dysplasias of dentin but without skeletal disease, and DMP1 causing autosomal recessive hypophosphatemic rickets, type 1 (ARHR1). No diseases have been reported from gain-of-function mutation(s) of DSPP or DMP1 or from alterations of SPP1, IBSP, or MEPE. Herein, we describe severe hypophosphatemic osteosclerosis and hyperostosis associated with skeletal deformity, short stature, enthesopathy, tooth loss, and high circulating FGF23 levels in a middle-aged man and young woman from an endogamous family living in southern India. Both shared novel homozygous mutations within two genes that encode a SIBLING protein: stop-gain ("nonsense") DMP1 (c.556G>T,p.Glu186Ter) and missense SPP1 (c.769C>T,p.Leu266Phe). The man alone also carried novel heterozygous missense variants within two additional genes that condition mineral homeostasis and are the basis for autosomal recessive disorders: CYP27B1 underlying vitamin D dependent rickets, type 1, and ABCC6 underlying both generalized arterial calcification of infancy, type 2 and pseudoxanthoma elasticum (PXE). By immunochemistry, his bone contained high amounts of OPN, particularly striking surrounding osteocytes. We review how our patients' disorder may represent the first digenic SIBLING protein osteopathy.
Collapse
Affiliation(s)
- Michael P Whyte
- Center for Metabolic Bone Disease and Molecular Research, Shriners Hospitals for Children - St. Louis, St. Louis, MO 63110, USA; Division of Bone and Mineral Diseases, Department of Internal Medicine, Washington University School of Medicine at Barnes-Jewish Hospital, St. Louis, MO 63110, USA.
| | - S Deepak Amalnath
- Department of Medicine, Jawaharlal Institute of Postgraduate Medical Education and Research, Pondicherry 605006, India
| | - William H McAlister
- Mallinckrodt Institute of Radiology, Washington University School of Medicine at St. Louis Children's Hospital, St. Louis, MO 63110, USA.
| | - Marc D McKee
- Faculty of Dentistry and Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A 0C7, Canada.
| | - Deborah J Veis
- Center for Metabolic Bone Disease and Molecular Research, Shriners Hospitals for Children - St. Louis, St. Louis, MO 63110, USA; Division of Bone and Mineral Diseases, Department of Internal Medicine, Washington University School of Medicine at Barnes-Jewish Hospital, St. Louis, MO 63110, USA.
| | - Margaret Huskey
- Division of Bone and Mineral Diseases, Department of Internal Medicine, Washington University School of Medicine at Barnes-Jewish Hospital, St. Louis, MO 63110, USA.
| | - Shenghui Duan
- Division of Bone and Mineral Diseases, Department of Internal Medicine, Washington University School of Medicine at Barnes-Jewish Hospital, St. Louis, MO 63110, USA.
| | - Vinieth N Bijanki
- Center for Metabolic Bone Disease and Molecular Research, Shriners Hospitals for Children - St. Louis, St. Louis, MO 63110, USA.
| | - Suhas Alur
- Department of Medicine, Jawaharlal Institute of Postgraduate Medical Education and Research, Pondicherry 605006, India
| | - Steven Mumm
- Center for Metabolic Bone Disease and Molecular Research, Shriners Hospitals for Children - St. Louis, St. Louis, MO 63110, USA; Division of Bone and Mineral Diseases, Department of Internal Medicine, Washington University School of Medicine at Barnes-Jewish Hospital, St. Louis, MO 63110, USA.
| |
Collapse
|
22
|
Li H, Jing Y, Zhang R, Zhang Q, Wang J, Martin A, Feng JQ. Hypophosphatemic rickets accelerate chondrogenesis and cell trans-differentiation from TMJ chondrocytes into bone cells via a sharp increase in β-catenin. Bone 2020; 131:115151. [PMID: 31751752 PMCID: PMC6930687 DOI: 10.1016/j.bone.2019.115151] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 11/06/2019] [Accepted: 11/08/2019] [Indexed: 02/05/2023]
Abstract
Dentin matrix protein 1 (DMP1) is primarily expressed in osteocytes, although a low level of DMP1 is also detected in chondrocytes. Removing Dmp1 in mice or a mutation in humans leads to hypophosphatemic rickets (identical to X-linked hypophosphatemia). The deformed skeletons were currently thought to be a consequence of an inhibition of chondrogenesis (leading to an accumulation of hypertrophic chondrocytes and a failure in the replacement of cartilage by bone). To precisely study the mechanisms by which DMP1 and phosphorus control temporomandibular condyle formation, we first showed severe malformed condylar phenotypes in Dmp1-null mice (great expansions of deformed cartilage layers and subchondral bone), which worst as aging. Next, we excluded the direct role of DMP1 in condylar hypertrophic-chondrogenesis by conditionally deleting Dmp1 in hypertrophic chondrocytes using Col10a1-Cre and Dmp1 loxP mice (displaying no apparent phosphorous changes and condylar phenotype). To address the mechanism by which the onset of endochondral phenotypes takes place, we generated two sets of tracing lines in the Dmp1 KO background: AggrecanCreERT2-ROSA-tdTomato and Col 10a1-Cre-ROSA-tdTomato, respectively. Both tracing lines displayed an acceleration of chondrogenesis and cell trans-differentiation from chondrocytes into bone cells in the Dmp1 KO. Next, we showed that administrations of neutralizing fibroblast growth factor 23 (FGF23) antibodies in Dmp1-null mice restored hypophosphatemic condylar cartilage phenotypes. In further addressing the rescue mechanism, we generated compound mice containing Col10a1-Cre with ROSA-tdTomato and Dmp1 KO lines with and without a high Pi diet starting at day 10 for 39 days. We demonstrated that hypophosphatemia leads to an acceleration of chondrogenesis and trans-differentiation of chondrocytes to bone cells, which were largely restored under a high Pi diet. Finally, we identified the causative molecule (β-catenin). Together, this study demonstrates that the Dmp1-null caused hypophosphatemia, leading to acceleration (instead of inhibition) of chondrogenesis and bone trans-differentiation from chondrocytes but inhibition of bone cell maturation due to a sharp increase in β-catenin. These findings will aid in the future treatment of hypophosphatemic rickets with FGF23 neutralizing antibodies.
Collapse
Affiliation(s)
- Hui Li
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX 75246, USA; State Key Laboratory of Oral Diseases, Department of Traumatic and Plastic Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yan Jing
- Department of Orthodontics, Texas A&M University College of Dentistry, Dallas, TX 75246, USA
| | - Rong Zhang
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX 75246, USA; Faculty of Medicine, Northwest University, #229 Taibai North Rd, Xi'an, Shaanxi, 710069, China
| | - Qi Zhang
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX 75246, USA; Laboratory of Oral Biomedical Science and Translational Medicine, Department of Endodontics, School of Stomatology, Tongji University, Shanghai, China
| | - Jun Wang
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX 75246, USA; State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Aline Martin
- Center for Translational Metabolism and Health, Division of Nephrology/Hypertension, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Jian Q Feng
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX 75246, USA.
| |
Collapse
|