1
|
Lai JC, Chang GRL, Tu MY, Cidem A, Chen IC, Chen CM. Potential of Kefir-Derived Peptides, Probiotics, and Exopolysaccharides for Osteoporosis Management. Curr Osteoporos Rep 2025; 23:18. [PMID: 40192921 PMCID: PMC11976759 DOI: 10.1007/s11914-025-00910-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/26/2025] [Indexed: 04/10/2025]
Abstract
PURPOSE OF REVIEW Osteoporosis is a prevalent skeletal disorder in postmenopausal women and older adults. Kefir has gained attention for its potent antioxidative, anti-inflammatory, and immunomodulatory properties. This review consolidates findings on kefir-derived peptides' interventions in osteoporosis models and evaluates the therapeutic potential of kefir components in preventing osteoporosis, thereby enhancing its application in clinical nutrition strategies for osteoporosis management. RECENT FINDINGS Kefir-derived peptides exhibit osteoprotective potential in various animal models of osteoporosis, in which several antioxidative and ACE-inhibitory peptides have been shown to promote osteoblast differentiation and mineralization. In addition, emerging evidence supports the role of kefir-derived probiotics and exopolysaccharides (kefiran) in mitigating bone loss. Kefir holds significant promise in the management of osteoporosis due to its unique composition of bioactive components promoting bone health. While research is still in its early stages, evidence suggests kefir's potential as a natural approach to osteoporosis prevention and management.
Collapse
Affiliation(s)
- Jen-Chieh Lai
- Department of Life Sciences, Doctoral Program in Translational Medicine, National Chung Hsing University, Taichung, 402, Taiwan
- Department of Orthopedic Surgery, Taichung Armed Forces General Hospital, Taichung, 411, Taiwan
| | - Gary Ro-Lin Chang
- Department of Life Sciences, Doctoral Program in Translational Medicine, National Chung Hsing University, Taichung, 402, Taiwan
| | - Min-Yu Tu
- Department of Life Sciences, Doctoral Program in Translational Medicine, National Chung Hsing University, Taichung, 402, Taiwan
- Department of Orthopedic Surgery, Taichung Armed Forces General Hospital, Taichung, 411, Taiwan
| | - Abdulkadir Cidem
- Department of Life Sciences, Doctoral Program in Translational Medicine, National Chung Hsing University, Taichung, 402, Taiwan
- Department of Molecular Biology and Genetics, Erzurum Technical University, Erzurum, 25250, Turkey
| | - I-Chien Chen
- Department of Life Sciences, Doctoral Program in Translational Medicine, National Chung Hsing University, Taichung, 402, Taiwan
| | - Chuan-Mu Chen
- Department of Life Sciences, Doctoral Program in Translational Medicine, National Chung Hsing University, Taichung, 402, Taiwan.
- The iEGG and Animal Biotechnology Research Center, National Chung Hsing University, Taichung, 402, Taiwan.
- Rong Hsing Research Center for Translational Medicine, Taichung Veterans General Hospital, Taichung, 407, Taiwan.
- Center for General Educational, National Quemoy University, Kinmen, 892, Taiwan.
| |
Collapse
|
2
|
Li HM, Gao YR, Chang Q, Pei XY, Sun JH, Lin YJ, Tian YN, Qiang-Wang, Zhao B, Xie HQ, Ma HM, Xu HM. BP-3 exposure at environmentally relevant concentrations induced male developmental reproductive toxicity via ER/CCL27/ROS pathway in mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 290:117556. [PMID: 39689453 DOI: 10.1016/j.ecoenv.2024.117556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/19/2024] [Accepted: 12/13/2024] [Indexed: 12/19/2024]
Abstract
BP-3 is the most widely used ultraviolet absorber, but its toxic effects and mechanisms far from being elucidated. This study evaluated the male developmental reproductive toxicities and mechanism of low-doses of BP-3. The results indicated that BP-3 (2.28 and 228 μg/L) led to a decrease in sperm quantity, quality and testosterone level, impaired blood-testis barrier (BTB) integrity and cytoskeleton, accompanied by aggravated oxidative stress in testes of mice on postnatal day 56 (PND 56). Notably, chemokine CCL27, a driver of oxidative stress, was significantly upregulated induced by BP-3. Similar disrupted effects were detected in testes of mice on PND14, which could be antagonized by ICI 182780 (estrogen receptor antagonist). Mechanistically, BP-3 directly interacted with ER, which boosted CCL27 expression, reactive oxygen species (ROS) accumulation, and BTB and cytoskeleton impairment. In vitro, si-CCL27 and/or ROS scavenger treatment significantly antagonized BP-3-induced oxidative stress and the decrease of BTB and cytoskeleton related genes in TM4 cells. These findings demonstrate that prolonged exposure to low-doses of BP-3 resulted in detrimental effects on testicular development through activation of the ER/CCL27/ROS axis. This study provides a novel perspective understanding the male reproductive toxicity risk caused by BPs exposure at low-doses.
Collapse
Affiliation(s)
- Hong-Mei Li
- The Key Laboratory of Fertility Preservation and Maintenance of the Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia 750004, China; School of Basic Medicine, Ningxia Medical University, Yinchuan, Ningxia 750004, China; School of Public Health, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Yan-Rong Gao
- The Key Laboratory of Fertility Preservation and Maintenance of the Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia 750004, China; School of Basic Medicine, Ningxia Medical University, Yinchuan, Ningxia 750004, China; School of Public Health, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Qing Chang
- The Key Laboratory of Fertility Preservation and Maintenance of the Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia 750004, China; School of Basic Medicine, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Xiu-Ying Pei
- The Key Laboratory of Fertility Preservation and Maintenance of the Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia 750004, China; School of Basic Medicine, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Jia-He Sun
- The Key Laboratory of Fertility Preservation and Maintenance of the Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia 750004, China; School of Basic Medicine, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Yu-Jia Lin
- School of Public Health, Ningxia Medical University, Yinchuan, Ningxia 750004, China; The Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Ya-Nan Tian
- The Key Laboratory of Fertility Preservation and Maintenance of the Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia 750004, China; School of Basic Medicine, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Qiang-Wang
- Medical Science and Technology Research Center, Yinchuan, Ningxia 750004, China
| | - Bin Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Heidi Qunhui Xie
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Hui-Ming Ma
- The Key Laboratory of Fertility Preservation and Maintenance of the Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia 750004, China; School of Basic Medicine, Ningxia Medical University, Yinchuan, Ningxia 750004, China.
| | - Hai-Ming Xu
- The Key Laboratory of Fertility Preservation and Maintenance of the Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia 750004, China; School of Public Health, Ningxia Medical University, Yinchuan, Ningxia 750004, China; The Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan, Ningxia 750004, China.
| |
Collapse
|
3
|
Hao G, Han S, Xiao Z, Shen J, Zhao Y, Hao Q. Synovial mast cells and osteoarthritis: Current understandings and future perspectives. Heliyon 2024; 10:e41003. [PMID: 39720069 PMCID: PMC11665477 DOI: 10.1016/j.heliyon.2024.e41003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 10/29/2024] [Accepted: 12/04/2024] [Indexed: 12/26/2024] Open
Abstract
Osteoarthritis (OA) is a prevalent joint disease worldwide that significantly impacts the quality of life of individuals, particularly those in middle-aged and elderly populations. OA was initially considered as non-inflammatory arthritis, but recent studies have identified a substantial number of immune responses in OA, leading to the recognition of inflammation as a key factor in its pathogenesis. An increasing number of studies have found that mast cell (MC) and MC-secreted inflammatory mediators and cytokines are notably increased in the synovial fluid of OA patients, indicating a potential association between MCs and the onset and progression of synovial inflammation. The present review aims to summarize the significance and mechanism of MCs in the pathogenesis of OA. Meanwhile, we also discuss the clinical potential of using MCs as therapeutic target for OA therapy. Modulating the activities of MCs or the mediators of MCs in the synovial fluid inflammatory microenvironment will be promising new options for the treatment of OA.
Collapse
Affiliation(s)
- Guanghui Hao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Southwest Medical University, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Shanqian Han
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Southwest Medical University, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Southwest Medical University, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Southwest Medical University, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Southwest Medical University, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Qi Hao
- Department of Joint Surgery, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
- The Third People's Hospital of Longmatan District, Luzhou, Sichuan, China
| |
Collapse
|
4
|
Ullah A, Chen Y, Singla RK, Cao D, Shen B. Exploring cytokines dynamics: Uncovering therapeutic concepts for metabolic disorders in postmenopausal women- diabetes, metabolic bone diseases, and non-alcohol fatty liver disease. Ageing Res Rev 2024; 101:102505. [PMID: 39307315 DOI: 10.1016/j.arr.2024.102505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/18/2024] [Accepted: 09/12/2024] [Indexed: 09/26/2024]
Abstract
Menopause is an age-related change that persists for around one-third of a woman's life. Menopause increases the risk of metabolic illnesses such as diabetes, osteoporosis (OP), and nonalcoholic fatty liver disease (NAFLD). Immune mediators (pro-inflammatory cytokines), such as interleukin-1 (IL-1), IL-6, IL-17, transforming growth factor (TGF), and tumor necrosis factor (TNF), exacerbate the challenges of a woman undergoing menopause by causing inflammation and contributing to the development of these metabolic diseases in postmenopausal women. Furthermore, studies have shown that anti-inflammatory cytokines such as interleukin-1 receptor antagonists (IL-1Ra), IL-2, and IL-10 have a double-edged effect on diabetes and OP. Likewise, several interferon (IFN) members are double-edged swords in the OP. Therefore, addressing these immune mediators precisely may be an approach to improving the health of postmenopausal women. Hence, considering the significant changes in these cytokines, the present review focuses on the latest findings concerning the molecular mechanisms by which pro- and anti-inflammatory cytokines (interleukins) impact postmenopausal women with diabetes, OP, and NAFLD. Furthermore, we comprehensively discuss the therapeutic approaches that identify cytokines as therapeutic targets, such as hormonal therapy, physical activities, natural inhibitors (drugs), and others. Finally, this review aims to provide valuable insights into the role of cytokines in postmenopausal women's diabetes, OP, and NAFLD. Deeply investigating the mechanisms and therapeutic interventions involved will address the characteristics of immune mediators (cytokines) and improve the management of these illnesses, thereby enhancing the general quality of life and health of the corresponding populations of women.
Collapse
Affiliation(s)
- Amin Ullah
- Department of Abdominal Oncology, Cancer Center of West China Hospital and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yongxiu Chen
- Gynecology Department, Guangdong Women and Children Hospital, No. 521, Xingnan Road, Panyu District, Guangzhou 511442, China
| | - Rajeev K Singla
- Department of Abdominal Oncology, Cancer Center of West China Hospital and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China; School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Dan Cao
- Department of Abdominal Oncology, Cancer Center of West China Hospital and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Bairong Shen
- Department of Abdominal Oncology, Cancer Center of West China Hospital and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
5
|
Liu Y, Guo F, Han Z, Yin Y, Chen G, Zhang Y, Tang Q, Chen L. Neutrophils inhibit bone formation by directly contacting osteoblasts and suppressing osteogenic differentiation. Bone 2024; 190:117310. [PMID: 39477179 DOI: 10.1016/j.bone.2024.117310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/15/2024] [Accepted: 10/25/2024] [Indexed: 11/08/2024]
Abstract
Neutrophils have been extensively studied for their critical roles in supporting immune defense mechanisms, initiating bone regeneration, and promoting angiogenesis. Nonetheless, the influence of neutrophils on physiological conditions, particularly in the context of bone development, remains incompletely understood. In this study, we examined the effects of non-inflammatory neutrophils on bone physiology by depleting Ly6G+ neutrophils and inducing neutropenia through myelosuppression. Our results demonstrated a notable increase in bone mass and a decrease in the bone marrow cavity upon depletion of the neutrophils. These effects were attributed to the direct interaction between neutrophils and osteoblasts, independent of reduced secretion of typical inflammatory cytokines or diminished osteoclast differentiation. This observation suggests a non-inflammatory function of neutrophils within the endosteal microenvironment, where they regulate osteogenic differentiation to preserve optimal bone mass, shape healthy three-dimensional bone trabecular structures, and create ample space for hematopoietic niche development.
Collapse
Affiliation(s)
- Yijun Liu
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Fengyuan Guo
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Zhenshuo Han
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Ying Yin
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Guangjin Chen
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Yifan Zhang
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Qingming Tang
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China.
| | - Lili Chen
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China.
| |
Collapse
|
6
|
Wang Z, Wu Y, Yi W, Yu Y, Fang X, Li Z, Yu A. Estrogen Deficiency Exacerbates Traumatic Heterotopic Ossification in Mice. J Inflamm Res 2024; 17:5587-5598. [PMID: 39193123 PMCID: PMC11348928 DOI: 10.2147/jir.s477382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/16/2024] [Indexed: 08/29/2024] Open
Abstract
Background Traumatic heterotopic ossification (HO) is a devastating sequela of orthopedic surgeries and traumatic injuries; however, few studies have explored the effects of the estrogen-deficient state on HO formation. In the present study, we investigated the impact of estrogen deficiency on ectopic cartilage and bone formation in tendon after Achilles tenotomy in an ovariectomized mouse model. Methods A total of 45 female C57BL/6 mice were randomly divided into three groups: sham-operated (control), estrogen depletion by ovariectomy (OVX) and OVX with 17β-estradiol supplementation (OVX + E2), with 15 animals in each group. Three weeks after OVX, all mice were subjected to an Achilles tenotomy using a posterior midpoint approach to induce HO. At 1, 3 and 9 weeks after tenotomy, the left hind limbs were harvested for histology, immunohistochemistry and immunofluorescence evaluations. The volume of ectopic bone was assessed by micro-CT. Results Mice in the OVX group formed more ectopic cartilage 3 weeks after tenotomy, as well as ectopic bone 9 weeks after tenotomy, compared to the control group. Estrogen deficiency resulted in more severe inflammatory infiltration at the injury sites 1 week after tenotomy, involving the recruitment of more macrophages and mast cells, as well as increasing the expressions of pro-inflammatory mediators, including IL-1β, IL-6, and TNF-α. Moreover, the local TGF-β/SMAD signaling pathway was dysregulated after OVX, which manifested as upregulated expressions of TGF-β and pSMAD2/3. E2 supplementation protected against OVX-induced HO deterioration, inhibited inflammatory infiltration, and downregulated the TGF-β/SMAD signaling pathway. Conclusion Estrogen deficiency exacerbated HO formation in the Achilles tenotomy model. These findings might be attributable to the disturbance of the inflammatory response and the activation of TGF-β/SMAD signaling at the injury sites during the early stages of HO development.
Collapse
Affiliation(s)
- Zheng Wang
- Department of Orthopedic Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
- Hubei Clinical Medical Research Center of Trauma and Microsurgery, Wuhan, Hubei, People’s Republic of China
| | - Yifan Wu
- Department of Orthopedic Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
- Hubei Clinical Medical Research Center of Trauma and Microsurgery, Wuhan, Hubei, People’s Republic of China
| | - Wanrong Yi
- Department of Orthopedic Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
- Hubei Clinical Medical Research Center of Trauma and Microsurgery, Wuhan, Hubei, People’s Republic of China
| | - Yifeng Yu
- Department of Orthopedic Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
- Hubei Clinical Medical Research Center of Trauma and Microsurgery, Wuhan, Hubei, People’s Republic of China
| | - Xue Fang
- Department of Orthopedic Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
- Hubei Clinical Medical Research Center of Trauma and Microsurgery, Wuhan, Hubei, People’s Republic of China
| | - Zonghuan Li
- Department of Orthopedic Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
- Hubei Clinical Medical Research Center of Trauma and Microsurgery, Wuhan, Hubei, People’s Republic of China
| | - Aixi Yu
- Department of Orthopedic Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
- Hubei Clinical Medical Research Center of Trauma and Microsurgery, Wuhan, Hubei, People’s Republic of China
| |
Collapse
|
7
|
Meyer C, Brockmueller A, Ruiz de Porras V, Shakibaei M. Microbiota and Resveratrol: How Are They Linked to Osteoporosis? Cells 2024; 13:1145. [PMID: 38994996 PMCID: PMC11240679 DOI: 10.3390/cells13131145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/18/2024] [Accepted: 06/30/2024] [Indexed: 07/13/2024] Open
Abstract
Osteoporosis (OP), which is characterized by a decrease in bone density and increased susceptibility to fractures, is closely linked to the gut microbiota (GM). It is increasingly realized that the GM plays a key role in the maintenance of the functioning of multiple organs, including bone, by producing bioactive metabolites such as short-chain fatty acids (SCFA). Consequently, imbalances in the GM, referred to as dysbiosis, have been identified with a significant reduction in beneficial metabolites, such as decreased SCFA associated with increased chronic inflammatory processes, including the activation of NF-κB at the epigenetic level, which is recognized as the main cause of many chronic diseases, including OP. Furthermore, regular or long-term medications such as antibiotics and many non-antibiotics such as proton pump inhibitors, chemotherapy, and NSAIDs, have been found to contribute to the development of dysbiosis, highlighting an urgent need for new treatment approaches. A promising preventive and adjuvant approach is to combat dysbiosis with natural polyphenols such as resveratrol, which have prebiotic functions and ensure an optimal microenvironment for beneficial GM. Resveratrol offers a range of benefits, including anti-inflammatory, anti-oxidant, analgesic, and prebiotic effects. In particular, the GM has been shown to convert resveratrol, into highly metabolically active molecules with even more potent beneficial properties, supporting a synergistic polyphenol-GM axis. This review addresses the question of how the GM can enhance the effects of resveratrol and how resveratrol, as an epigenetic modulator, can promote the growth and diversity of beneficial GM, thus providing important insights for the prevention and co-treatment of OP.
Collapse
Affiliation(s)
- Christine Meyer
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilians-University Munich, Pettenkoferstr. 11, D-80336 Munich, Germany; (C.M.); (A.B.)
| | - Aranka Brockmueller
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilians-University Munich, Pettenkoferstr. 11, D-80336 Munich, Germany; (C.M.); (A.B.)
| | - Vicenç Ruiz de Porras
- CARE Program, Germans Trias i Pujol Research Institute (IGTP), Camí de les Escoles, s/n, Badalona, 08916 Barcelona, Spain;
- Badalona Applied Research Group in Oncology (B⋅ARGO), Catalan Institute of Oncology, Camí de les Escoles, s/n, Badalona, 08916 Barcelona, Spain
- GRET and Toxicology Unit, Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
| | - Mehdi Shakibaei
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilians-University Munich, Pettenkoferstr. 11, D-80336 Munich, Germany; (C.M.); (A.B.)
| |
Collapse
|
8
|
Molitoris KH, Huang M, Baht GS. Osteoimmunology of Fracture Healing. Curr Osteoporos Rep 2024; 22:330-339. [PMID: 38616228 PMCID: PMC11186872 DOI: 10.1007/s11914-024-00869-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/26/2024] [Indexed: 04/16/2024]
Abstract
PURPOSE OF REVIEW The purpose of this review is to summarize what is known in the literature about the role inflammation plays during bone fracture healing. Bone fracture healing progresses through four distinct yet overlapping phases: formation of the hematoma, development of the cartilaginous callus, development of the bony callus, and finally remodeling of the fracture callus. Throughout this process, inflammation plays a critical role in robust bone fracture healing. RECENT FINDINGS At the onset of injury, vessel and matrix disruption lead to the generation of an inflammatory response: inflammatory cells are recruited to the injury site where they differentiate, activate, and/or polarize to secrete cytokines for the purposes of cell signaling and cell recruitment. This process is altered by age and by sex. Bone fracture healing is heavily influenced by the presence of inflammatory cells and cytokines within the healing tissue.
Collapse
Affiliation(s)
- Kristin Happ Molitoris
- Department of Orthopaedic Surgery, Duke Molecular Physiology Institute, Duke University, 300 North Duke Street, Durham, NC, 27701, USA
| | - Mingjian Huang
- Department of Orthopaedic Surgery, Duke Molecular Physiology Institute, Duke University, 300 North Duke Street, Durham, NC, 27701, USA
| | - Gurpreet Singh Baht
- Department of Orthopaedic Surgery, Duke Molecular Physiology Institute, Duke University, 300 North Duke Street, Durham, NC, 27701, USA.
| |
Collapse
|
9
|
Lu F, Verleg SMNE, Groven RVM, Poeze M, van Griensven M, Blokhuis TJ. Is there a role for N1-N2 neutrophil phenotypes in bone regeneration? A systematic review. Bone 2024; 181:117021. [PMID: 38253189 DOI: 10.1016/j.bone.2024.117021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/02/2024] [Accepted: 01/17/2024] [Indexed: 01/24/2024]
Abstract
PURPOSE This review aims to provide an overview of the multiple functions of neutrophils, with the recognition of the inflammatory (N1) and regenerative (N2) phenotypes, in relation to fracture healing. METHODS A literature search was performed using the PubMed database. The quality of the articles was evaluated using critical appraisal checklists. RESULTS Thirty one studies were included in this review. These studies consistently support that neutrophils exert both beneficial and detrimental effects on bone regeneration, influenced by Tumor Necrosis Factor-α (TNF-α), Interleukin 8 (IL-8), mast cells, and macrophages. The N2 phenotype has recently emerged as one promoter of bone healing. The N1 phenotype has progressively been connected with inflammatory neutrophils during fracture healing. CONCLUSIONS This review has pinpointed various aspects and mechanisms of neutrophil influence on bone healing. The recognition of N1 and N2 neutrophil phenotypes potentially shed new light on the dynamic shifts taking place within the Fracture Hematoma (FH).
Collapse
Affiliation(s)
- Fangzhou Lu
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, the Netherlands; Division of Trauma Surgery, Department of Surgery, Maastricht University Medical Center, P. Debyelaan 25, 6229 HX Maastricht, the Netherlands.
| | - Samai M N E Verleg
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, the Netherlands; Division of Trauma Surgery, Department of Surgery, Maastricht University Medical Center, P. Debyelaan 25, 6229 HX Maastricht, the Netherlands.
| | - Rald V M Groven
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, the Netherlands; Division of Trauma Surgery, Department of Surgery, Maastricht University Medical Center, P. Debyelaan 25, 6229 HX Maastricht, the Netherlands.
| | - Martijn Poeze
- Division of Trauma Surgery, Department of Surgery, Maastricht University Medical Center, P. Debyelaan 25, 6229 HX Maastricht, the Netherlands.
| | - Martijn van Griensven
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, the Netherlands.
| | - Taco J Blokhuis
- Division of Trauma Surgery, Department of Surgery, Maastricht University Medical Center, P. Debyelaan 25, 6229 HX Maastricht, the Netherlands.
| |
Collapse
|
10
|
Li Z, Wang B, Wang R, Zhang Z, Xiong J, Wang X, Ma Y, Han L. Identification of PKM2 as a pyroptosis-related key gene aggravates senile osteoporosis via the NLRP3/Caspase-1/GSDMD signaling pathway. Int J Biochem Cell Biol 2024; 169:106537. [PMID: 38342404 DOI: 10.1016/j.biocel.2024.106537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/16/2023] [Accepted: 01/23/2024] [Indexed: 02/13/2024]
Abstract
BACKGROUNDS Senile osteoporosis-alternatively labeled as skeletal aging-encompasses age-induced bone deterioration and loss of bone microarchitecture. Recent studies have indicated a potential association between senile osteoporosis and chronic systemic inflammation, and pyroptosis in bone marrow-derived mesenchymal stem cells is speculated to contribute to bone loss and osteoporosis. Therefore, targeting pyroptosis in stem cells may be a potential therapeutic strategy for treating osteoporosis. METHODS Initially, we conducted bioinformatics analysis to screen the GEO databases to identify the key gene associated with pyroptosis in senile osteoporosis. Next, we analyzed the relationship between altered proteins and clinical data. In vitro experiments were then performed to explore whether the downregulation of PKM2 expression could inhibit pyroptosis. Additionally, an aging-related mouse model of osteoporosis was established to validate the efficacy of a PKM2 inhibitor in alleviating osteoporosis progression. RESULTS We identified PKM2 as a key gene implicated in pyroptosis in senile osteoporosis patients through bioinformatics analysis. Further analyses of bone marrow and stem cells demonstrated significant PKM2 overexpression in senile osteoporosis patients. Silencing PKM2 expression inhibited pyroptosis in senile stem cells, of which the osteogenesis potential and angiogenic function were also primarily promoted. Moreover, the results in vivo demonstrated that administering PKM2 inhibitors suppressed pyroptosis in senile osteoporosis mice and mitigated senile osteoporosis progression. CONCLUSION Our study uncovered PKM2, a key pyroptosis marker of bone marrow mesenchymal stem cells in senile osteoporosis. Shikonin, a PKM2 inhibitor, was then identified as a potential drug candidate for the treatment of osteoporosis.
Collapse
Affiliation(s)
- Zilin Li
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Wang
- Department of Rehabilitation, Wuhan No. 1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ruoyu Wang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhichao Zhang
- Department of Rehabilitation, Wuhan No. 1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jian Xiong
- Department of Rehabilitation, Wuhan No. 1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoyun Wang
- Department of Rehabilitation, Wuhan No. 1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Ma
- Department of Rehabilitation, Wuhan No. 1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Lizhi Han
- Department of Orthopedics, The First Affiliated Hospital of Bengbu Medical College, Anhui Key Laboratory of Tissue Transformation, Bengbu Medical College, Bengbu 233000, Anhui Province, China.
| |
Collapse
|
11
|
Lechner J, McMahon RE, Bouquot JE, Notter F, Schick F. Is preexisting inflamed jaw marrow a "hidden" co-morbidity affecting outcomes of COVID-19 infections? - Clinical comparative study. Int J Immunopathol Pharmacol 2024; 38:3946320241265265. [PMID: 38889772 PMCID: PMC11186393 DOI: 10.1177/03946320241265265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 06/08/2024] [Indexed: 06/20/2024] Open
Abstract
Introduction: Exceedingly high levels of the chemokine CCL5/RANTES have been found in fatty degenerated osteonecrotic alveolar bone cavities (FDOJ) and aseptic ischemic osteolysis of the jaw (AIOJ) from toothless regions. Because CCL5/RANTES seems to have a prominent role in creating the COVID-19 "cytokine storm", some researchers have used the monoclonal antibody Leronlimab to block the CCR5 on inflammatory cells.Objective: Is preexisting FDOJ/AIOJ jaw marrow pathology a "hidden" co-morbidity affecting some COVID-19 infections? To what extent does the chronic CCL5/RANTES expression from preexisting FDOJ/AIOJ areas contribute to the progression of the acute cytokine storm in COVID-19 patients?Methods: Authors report on reducing the COVID-19 "cytokine storm" by treating infected patients through targeting the chemokine receptor 5 (CCR5) with Leronlimab and interrupting the activation of CCR5 by high CCL5/RANTES signaling, thus dysregulating the inflammatory phase of the viremia. Surgical removal of FDOJ/AIOJ lesions with high CCL5/RANTES from patients with inflammatory diseases may be classified as a co-morbid disease.Results: Both multiplex analysis of 249 FDOJ/AIOJ bone tissue samples as well as serum levels of CCL5/RANTES displayed exceedingly high levels in both specimens.Discussion: By the results the authors hypothesize that chronic CCL5/RANTES induction from FDOJ/AIOJ areas may sensitize CCR5 throughout the immune system, thus, enabling it to amplify its response when confronted with the virus. As conventional intraoral radiography does little to assess the quality of the alveolar bone, ultrasonography units are available to help dentists locate the FDOJ/AIOJ lesions in an office setting.Conclusion: The authors propose a new approach to containment of the COVID-19 cytokine storm by a prophylactic focus for future viral-related pandemics, which may be early surgical clean-up of CCL5/RANTES expression sources in the FDOJ/AIOJ areas, thus diminishing a possible pre-sensitization of CCR5. A more complete dental examination includes trans-alveolar ultrasono-graphy (TAU) for hidden FDOJ/AIOJ lesions.
Collapse
Affiliation(s)
| | - Robert E McMahon
- Residual Infection In Bone (RIIB) Project, Indiana University, Indianapolis, IN, USA
| | - Jerry E Bouquot
- Department of Diagnostic & Biomedical Sciences, School of Dentistry, University of Texas, Houston, TX USA
| | - Florian Notter
- Dental Surgeon, Clinic for Integrative Dentistry, Munich, Germany
| | - Fabian Schick
- Dental Surgeon, Clinic for Integrative Dentistry, Munich, Germany
| |
Collapse
|
12
|
Granata V, Strina D, Schiavone ML, Bottazzi B, Mantovani A, Inforzato A, Sobacchi C. Genetic Deficiency of the Long Pentraxin 3 Affects Osteogenesis and Osteoclastogenesis in Homeostatic and Inflammatory Conditions. Int J Mol Sci 2023; 24:16648. [PMID: 38068970 PMCID: PMC10706359 DOI: 10.3390/ijms242316648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/13/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
The long pentraxin 3 (PTX3) is a soluble glycoprotein made by immune and nonimmune cells endowed with pleiotropic functions in innate immunity, inflammation, and tissue remodeling. PTX3 has recently emerged as a mediator of bone turnover in both physiological and pathological conditions, with direct and indirect effects on osteoblasts and osteoclasts. This notwithstanding, its role in bone biology, with major regard to the osteogenic potential of osteoblasts and their interplay with osteoclasts, is at present unclear. Here, we investigated the contribution of this pentraxin to bone deposition in the osteogenic lineage by assessing collagen production, mineralization capacity, osteoblast maturation, extracellular matrix gene expression, and inflammatory mediators' production in primary osteoblasts from the calvaria of wild-type (WT) and Ptx3-deficient (Ptx3-/-) mice. Also, we evaluated the effect of PTX3 on osteoclastogenesis in cocultures of primary osteoblasts and bone marrow-derived osteoclasts. Our investigations were carried out both in physiological and inflammatory conditions to recapitulate in vitro aspects of inflammatory diseases of the bone. We found that primary osteoblasts from WT animals constitutively expressed low levels of the protein in osteogenic noninflammatory conditions, and genetic ablation of PTX3 in these cells had no major impact on collagen and hydroxyapatite deposition. However, Ptx3-/- osteoblasts had an increased RANKL/OPG ratio and CD44 expression, which resulted in in enhanced osteoclastogenesis when cocultured with bone marrow monocytes. Inflammation (modelled through administration of tumor necrosis factor-α, TNF-α) boosted the expression and accumulation of PTX3 and inflammatory mediators in WT osteoblasts. In these conditions, Ptx3 genetic depletion was associated with reduced collagen deposition and immune modulators' production. Our study shed light on the role of PTX3 in osteoblast and osteoclast biology and identified a major effect of inflammation on the bone-related properties of this pentraxin, which might be relevant for therapeutic and/or diagnostic purposes in musculoskeletal pathology.
Collapse
Affiliation(s)
- Valentina Granata
- IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy; (V.G.); (D.S.); (M.L.S.); (B.B.); (A.M.)
| | - Dario Strina
- IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy; (V.G.); (D.S.); (M.L.S.); (B.B.); (A.M.)
- Milan Unit, Institute for Genetic and Biomedical Research (IRGB), National Research Council (CNR), 20138 Milan, Italy
| | - Maria Lucia Schiavone
- IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy; (V.G.); (D.S.); (M.L.S.); (B.B.); (A.M.)
| | - Barbara Bottazzi
- IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy; (V.G.); (D.S.); (M.L.S.); (B.B.); (A.M.)
| | - Alberto Mantovani
- IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy; (V.G.); (D.S.); (M.L.S.); (B.B.); (A.M.)
- Department of Biomedical Sciences, Humanitas University, 20072 Pieve Emanuele, Italy
- The William Harvey Research Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | - Antonio Inforzato
- IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy; (V.G.); (D.S.); (M.L.S.); (B.B.); (A.M.)
- Department of Biomedical Sciences, Humanitas University, 20072 Pieve Emanuele, Italy
| | - Cristina Sobacchi
- IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy; (V.G.); (D.S.); (M.L.S.); (B.B.); (A.M.)
- Milan Unit, Institute for Genetic and Biomedical Research (IRGB), National Research Council (CNR), 20138 Milan, Italy
| |
Collapse
|
13
|
Riegger J, Schoppa A, Ruths L, Haffner-Luntzer M, Ignatius A. Oxidative stress as a key modulator of cell fate decision in osteoarthritis and osteoporosis: a narrative review. Cell Mol Biol Lett 2023; 28:76. [PMID: 37777764 PMCID: PMC10541721 DOI: 10.1186/s11658-023-00489-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 09/11/2023] [Indexed: 10/02/2023] Open
Abstract
During aging and after traumatic injuries, cartilage and bone cells are exposed to various pathophysiologic mediators, including reactive oxygen species (ROS), damage-associated molecular patterns, and proinflammatory cytokines. This detrimental environment triggers cellular stress and subsequent dysfunction, which not only contributes to the development of associated diseases, that is, osteoporosis and osteoarthritis, but also impairs regenerative processes. To counter ROS-mediated stress and reduce the overall tissue damage, cells possess diverse defense mechanisms. However, cellular antioxidative capacities are limited and thus ROS accumulation can lead to aberrant cell fate decisions, which have adverse effects on cartilage and bone homeostasis. In this narrative review, we address oxidative stress as a major driver of pathophysiologic processes in cartilage and bone, including senescence, misdirected differentiation, cell death, mitochondrial dysfunction, and impaired mitophagy by illustrating the consequences on tissue homeostasis and regeneration. Moreover, we elaborate cellular defense mechanisms, with a particular focus on oxidative stress response and mitophagy, and briefly discuss respective therapeutic strategies to improve cell and tissue protection.
Collapse
Affiliation(s)
- Jana Riegger
- Division for Biochemistry of Joint and Connective Tissue Diseases, Department of Orthopedics, Ulm University Medical Center, 89081, Ulm, Germany.
| | - Astrid Schoppa
- Institute of Orthopedic Research and Biomechanics, Ulm University Medical Center, 89081, Ulm, Germany
| | - Leonie Ruths
- Division for Biochemistry of Joint and Connective Tissue Diseases, Department of Orthopedics, Ulm University Medical Center, 89081, Ulm, Germany
| | - Melanie Haffner-Luntzer
- Institute of Orthopedic Research and Biomechanics, Ulm University Medical Center, 89081, Ulm, Germany
| | - Anita Ignatius
- Institute of Orthopedic Research and Biomechanics, Ulm University Medical Center, 89081, Ulm, Germany
| |
Collapse
|
14
|
Mi B, Xiong Y, Zha K, Cao F, Zhou W, Abbaszadeh S, Ouyang L, Liao Y, Hu W, Dai G, Zhao Z, Feng Q, Shahbazi MA, Liu G. Immune homeostasis modulation by hydrogel-guided delivery systems: a tool for accelerated bone regeneration. Biomater Sci 2023; 11:6035-6059. [PMID: 37522328 DOI: 10.1039/d3bm00544e] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
Immune homeostasis is delicately mediated by the dynamic balance between effector immune cells and regulatory immune cells. Local deviations from immune homeostasis in the microenvironment of bone fractures, caused by an increased ratio of effector to regulatory cues, can lead to excessive inflammatory conditions and hinder bone regeneration. Therefore, achieving effective and localized immunomodulation of bone fractures is crucial for successful bone regeneration. Recent research has focused on developing localized and specific immunomodulatory strategies using local hydrogel-based delivery systems. In this review, we aim to emphasize the significant role of immune homeostasis in bone regeneration, explore local hydrogel-based delivery systems, discuss emerging trends in immunomodulation for enhancing bone regeneration, and address the limitations of current delivery strategies along with the challenges of clinical translation.
Collapse
Affiliation(s)
- Bobin Mi
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China.
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Yuan Xiong
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China.
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Kangkang Zha
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China.
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Faqi Cao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China.
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Wu Zhou
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China.
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Samin Abbaszadeh
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Lizhi Ouyang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China.
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Yuheng Liao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China.
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Weixian Hu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China.
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Guandong Dai
- Department of Orthopedic Surgery, Pingshan District People's Hospital of Shenzhen, Pingshan General Hospital of Southern Medical University, Shenzhen 518118, China
| | - Zhiming Zhao
- Department of Orthopedics, Suizhou Hospital, Hubei University of Medicine, Suizhou 441300, China
| | - Qian Feng
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing 400044, China.
| | - Mohammad-Ali Shahbazi
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
- W.J. Kolff Institute for Biomedical Engineering and Materials Science, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands.
| | - Guohui Liu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China.
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| |
Collapse
|
15
|
Fischer V, Bülow JM, Krüger BT, Ragipoglu D, Vikman A, Haffner-Luntzer M, Katsoulis-Dimitriou K, Dudeck A, Ignatius A. Role of Mast-Cell-Derived RANKL in Ovariectomy-Induced Bone Loss in Mice. Int J Mol Sci 2023; 24:ijms24119135. [PMID: 37298085 DOI: 10.3390/ijms24119135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/17/2023] [Accepted: 05/20/2023] [Indexed: 06/12/2023] Open
Abstract
Mast cells may contribute to osteoporosis development, because patients with age-related or post-menopausal osteoporosis exhibit more mast cells in the bone marrow, and mastocytosis patients frequently suffer from osteopenia. We previously showed that mast cells crucially regulated osteoclastogenesis and bone loss in ovariectomized, estrogen-depleted mice in a preclinical model for post-menopausal osteoporosis and found that granular mast cell mediators were responsible for these estrogen-dependent effects. However, the role of the key regulator of osteoclastogenesis, namely, receptor activator of NFκB ligand (RANKL), which is secreted by mast cells, in osteoporosis development has, to date, not been defined. Here, we investigated whether mast-cell-derived RANKL participates in ovariectomy (OVX)-induced bone loss by using female mice with a conditional Rankl deletion. We found that this deletion in mast cells did not influence physiological bone turnover and failed to protect against OVX-induced bone resorption in vivo, although we demonstrated that RANKL secretion was significantly reduced in estrogen-treated mast cell cultures. Furthermore, Rankl deletion in mast cells did not influence the immune phenotype in non-ovariectomized or ovariectomized mice. Therefore, other osteoclastogenic factors released by mast cells might be responsible for the onset of OVX-induced bone loss.
Collapse
Affiliation(s)
- Verena Fischer
- Institute of Orthopedic Research and Biomechanics, University Medical Center Ulm, 89081 Ulm, Germany
| | - Jasmin Maria Bülow
- Institute of Orthopedic Research and Biomechanics, University Medical Center Ulm, 89081 Ulm, Germany
| | - Benjamin Thilo Krüger
- Institute of Orthopedic Research and Biomechanics, University Medical Center Ulm, 89081 Ulm, Germany
| | - Deniz Ragipoglu
- Institute of Orthopedic Research and Biomechanics, University Medical Center Ulm, 89081 Ulm, Germany
| | - Anna Vikman
- Institute of Orthopedic Research and Biomechanics, University Medical Center Ulm, 89081 Ulm, Germany
| | - Melanie Haffner-Luntzer
- Institute of Orthopedic Research and Biomechanics, University Medical Center Ulm, 89081 Ulm, Germany
| | - Konstantinos Katsoulis-Dimitriou
- Institute for Molecular and Clinical Immunology, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
| | - Anne Dudeck
- Institute for Molecular and Clinical Immunology, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
| | - Anita Ignatius
- Institute of Orthopedic Research and Biomechanics, University Medical Center Ulm, 89081 Ulm, Germany
| |
Collapse
|
16
|
Haeusner S, Jauković A, Kupczyk E, Herrmann M. Review: cellularity in bone marrow autografts for bone and fracture healing. Am J Physiol Cell Physiol 2023; 324:C517-C531. [PMID: 36622067 DOI: 10.1152/ajpcell.00482.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The use of autografts, as primary cell and tissue source, is the current gold standard approach to treat critical size bone defects and nonunion defects. The unique mixture of the autografts, containing bony compartments and bone marrow (BM), delivers promising results. Although BM mesenchymal stromal cells (BM-MSCs) still represent a major target for various healing approaches in current preclinical research and respective clinical trials, their occurrence in the human BM is typically low. In vitro expansion of this cell type is regulatory challenging as well as time and cost intensive. Compared with marginal percentages of resident BM-MSCs in BM, BM mononuclear cells (BM-MNCs) contained in BM aspirates, concentrates, and bone autografts represent a readily available abundant cell source, applicable within hours during surgical procedures without the need for time-consuming and regulatory challenging cell expansion. This benefit is one reason why autografting has become a clinical standard procedure. However, the exact anatomy and cellularity of BM-MNCs in humans, which is strongly correlated to their unique mode of action and wide application range remains to be elucidated. The aim of this review was to present an overview of the current knowledge on these specific cell types found in human BM, emphasize the contribution of BM-MNCs in bone healing, highlight donor site dependence, and discuss limitations in the current isolation and subsequent characterization procedures. Hereby, the most recent and relevant examples of human BM-MNC cell characterization, flow cytometric analyses, and findings are summarized, with a strong focus on bone therapy.
Collapse
Affiliation(s)
- S Haeusner
- IZKF Group Tissue Regeneration in Musculoskeletal Diseases, University Hospital of Wuerzburg, Wuerzburg, Germany.,Bernhard-Heine-Center for Locomotion Research, University of Wuerzburg, Wuerzburg, Germany
| | - A Jauković
- Group for Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, Belgrade, Serbia
| | - E Kupczyk
- Department of Trauma, Hand, Plastic and Reconstructive Surgery, University Hospital of Wuerzburg, Wuerzburg, Germany
| | - M Herrmann
- IZKF Group Tissue Regeneration in Musculoskeletal Diseases, University Hospital of Wuerzburg, Wuerzburg, Germany.,Bernhard-Heine-Center for Locomotion Research, University of Wuerzburg, Wuerzburg, Germany
| |
Collapse
|
17
|
Li J, Ma J, Feng Q, Xie E, Meng Q, Shu W, Wu J, Bian L, Han F, Li B. Building Osteogenic Microenvironments with a Double-Network Composite Hydrogel for Bone Repair. RESEARCH 2023; 6:0021. [PMID: 37040486 PMCID: PMC10076009 DOI: 10.34133/research.0021] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 11/17/2022] [Indexed: 01/13/2023]
Abstract
The critical factor determining the in vivo effect of bone repair materials is the microenvironment, which greatly depends on their abilities to promote vascularization and bone formation. However, implant materials are far from ideal candidates for guiding bone regeneration due to their deficient angiogenic and osteogenic microenvironments. Herein, a double-network composite hydrogel combining vascular endothelial growth factor (VEGF)-mimetic peptide with hydroxyapatite (HA) precursor was developed to build an osteogenic microenvironment for bone repair. The hydrogel was prepared by mixing acrylated β-cyclodextrins and octacalcium phosphate (OCP), an HA precursor, with gelatin solution, followed by ultraviolet photo-crosslinking. To improve the angiogenic potential of the hydrogel, QK, a VEGF-mimicking peptide, was loaded in acrylated β-cyclodextrins. The QK-loaded hydrogel promoted tube formation of human umbilical vein endothelial cells and upregulated the expression of angiogenesis-related genes, such as
Flt1
,
Kdr
, and
VEGF
, in bone marrow mesenchymal stem cells. Moreover, QK could recruit bone marrow mesenchymal stem cells. Furthermore, OCP in the composite hydrogel could be transformed into HA and release calcium ions facilitating bone regeneration. The double-network composite hydrogel integrated QK and OCP showed obvious osteoinductive activity. The results of animal experiments showed that the composite hydrogel enhanced bone regeneration in skull defects of rats, due to perfect synergistic effects of QK and OCP on vascularized bone regeneration. In summary, improving the angiogenic and osteogenic microenvironments by our double-network composite hydrogel shows promising prospects for bone repair.
Collapse
Affiliation(s)
- Jiaying Li
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215006, China
| | - Jinjin Ma
- Orthopedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Qian Feng
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - En Xie
- Orthopedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Qingchen Meng
- Orthopedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Wenmiao Shu
- Department of Biomedical Engineering, University of Strathclyde, Glasgow G1 1QE, UK
| | - Junxi Wu
- Department of Biomedical Engineering, University of Strathclyde, Glasgow G1 1QE, UK
| | - Liming Bian
- School of Biomedical Sciences and Engineering,South China University of Technology, Guangzhou International Campus, Guangzhou 511442, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510006, China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, China
| | - Fengxuan Han
- Orthopedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Bin Li
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215006, China
- Orthopedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
18
|
Haffner-Luntzer M, Weber B, Morioka K, Lackner I, Fischer V, Bahney C, Ignatius A, Kalbitz M, Marcucio R, Miclau T. Altered early immune response after fracture and traumatic brain injury. Front Immunol 2023; 14:1074207. [PMID: 36761764 PMCID: PMC9905106 DOI: 10.3389/fimmu.2023.1074207] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 01/10/2023] [Indexed: 01/26/2023] Open
Abstract
Introduction Clinical and preclinical data suggest accelerated bone fracture healing in subjects with an additional traumatic brain injury (TBI). Mechanistically, altered metabolism and neuro-endocrine regulations have been shown to influence bone formation after combined fracture and TBI, thereby increasing the bone content in the fracture callus. However, the early inflammatory response towards fracture and TBI has not been investigated in detail so far. This is of great importance, since the early inflammatory phase of fracture healing is known to be essential for the initiation of downstream regenerative processes for adequate fracture repair. Methods Therefore, we analyzed systemic and local inflammatory mediators and immune cells in mice which were exposed to fracture only or fracture + TBI 6h and 24h after injury. Results We found a dysregulated systemic immune response and significantly fewer neutrophils and mast cells locally in the fracture hematoma. Further, local CXCL10 expression was significantly decreased in the animals with combined trauma, which correlated significantly with the reduced mast cell numbers. Discussion Since mast cells and mast cell-derived CXCL10 have been shown to increase osteoclastogenesis, the reduced mast cell numbers might contribute to higher bone content in the fracture callus of fracture + TBI mice due to decreased callus remodeling.
Collapse
Affiliation(s)
- Melanie Haffner-Luntzer
- Institute of Orthopaedic Research and Biomechanics, University Medical Center Ulm, Ulm, Germany.,Department of Orthopaedic Surgery, Orthopaedic Trauma Institute, University of California, San Francisco, San Francisco, CA, United States
| | - Birte Weber
- Department of Orthopaedic Surgery, Orthopaedic Trauma Institute, University of California, San Francisco, San Francisco, CA, United States.,Department of Traumatology, Hand-, Plastic- and Reconstructive Surgery, University Medical Center Ulm, Ulm, Germany.,Department of Trauma-, Hand- and Reconstructive Surgery, University Hospital Frankfurt, Goethe-University, Frankfurt am Main, Germany
| | - Kazuhito Morioka
- Department of Orthopaedic Surgery, Orthopaedic Trauma Institute, University of California, San Francisco, San Francisco, CA, United States.,Department of Neurological Surgery, Weill Institute for Neurosciences, Brain and Spinal Injury Center (BASIC), University of California, San Francisco (UCSF), San Francisco, CA, United States
| | - Ina Lackner
- Department of Traumatology, Hand-, Plastic- and Reconstructive Surgery, University Medical Center Ulm, Ulm, Germany
| | - Verena Fischer
- Institute of Orthopaedic Research and Biomechanics, University Medical Center Ulm, Ulm, Germany
| | - Chelsea Bahney
- Department of Orthopaedic Surgery, Orthopaedic Trauma Institute, University of California, San Francisco, San Francisco, CA, United States.,Steadman Phillipon Research Institute, Vail, CO, United States
| | - Anita Ignatius
- Institute of Orthopaedic Research and Biomechanics, University Medical Center Ulm, Ulm, Germany
| | - Miriam Kalbitz
- Department of Traumatology, Hand-, Plastic- and Reconstructive Surgery, University Medical Center Ulm, Ulm, Germany
| | - Ralph Marcucio
- Department of Orthopaedic Surgery, Orthopaedic Trauma Institute, University of California, San Francisco, San Francisco, CA, United States
| | - Theodore Miclau
- Department of Orthopaedic Surgery, Orthopaedic Trauma Institute, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
19
|
Livshits G, Kalinkovich A. Targeting chronic inflammation as a potential adjuvant therapy for osteoporosis. Life Sci 2022; 306:120847. [PMID: 35908619 DOI: 10.1016/j.lfs.2022.120847] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/07/2022] [Accepted: 07/26/2022] [Indexed: 11/16/2022]
Abstract
Systemic, chronic, low-grade inflammation (SCLGI) underlies the pathogenesis of various widespread diseases. It is often associated with bone loss, thus connecting chronic inflammation to the pathogenesis of osteoporosis. In postmenopausal women, osteoporosis is accompanied by SCLGI development, likely owing to estrogen deficiency. We propose that SCGLI persistence in osteoporosis results from failed inflammation resolution, which is mainly mediated by specialized, pro-resolving mediators (SPMs). In corroboration, SPMs demonstrate encouraging therapeutic effects in various preclinical models of inflammatory disorders, including bone pathology. Since numerous data implicate gut dysbiosis in osteoporosis-associated chronic inflammation, restoring balanced microbiota by supplementing probiotics and prebiotics could contribute to the efficient resolution of SCGLI. In the present review, we provide evidence for this hypothesis and argue that efficient SCGLI resolution may serve as a novel approach for treating osteoporosis, complementary to traditional anti-osteoporotic medications.
Collapse
Affiliation(s)
- Gregory Livshits
- Adelson School of Medicine, Ariel University, Ariel 4077625, Israel; Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 6905126, Israel.
| | - Alexander Kalinkovich
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 6905126, Israel
| |
Collapse
|
20
|
Ragipoglu D, Bülow J, Hauff K, Voss M, Haffner-Luntzer M, Dudeck A, Ignatius A, Fischer V. Mast Cells Drive Systemic Inflammation and Compromised Bone Repair After Trauma. Front Immunol 2022; 13:883707. [PMID: 35558068 PMCID: PMC9086903 DOI: 10.3389/fimmu.2022.883707] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 03/31/2022] [Indexed: 11/13/2022] Open
Abstract
There is evidence that mast cells contribute to inflammation induced by hemorrhagic shock, severe tissue injury or sepsis. Mast cells are highly responsive to alarm signals generated after trauma, and release many inflammatory mediators including interleukin-6, a key mediator of posttraumatic inflammation. An overwhelming posttraumatic inflammation causes compromised bone healing; however, the underlying cellular and molecular mechanisms are poorly understood. Recently, we found that mast cells trigger local and systemic inflammation after isolated fracture leading to uneventful bone repair. Here, we investigated whether mast cells critically contribute to trauma-induced compromised bone healing. Male Mcpt5-Cre+ R-DTA mice, which lack connective tissue type mast cells, and their mast cell-competent Cre- littermates underwent a femur fracture with/without thoracic trauma. Posttraumatic systemic and local inflammation and bone repair were assessed 3 h and 21 d post injury. Both, the systemic and pulmonary inflammation was significantly increased in mast cell-competent mice upon combined trauma compared to isolated fracture. In mast cell-deficient mice, the increase of inflammatory mediators in the circulation induced by the severe trauma was abolished. In the bronchoalveolar lavage fluid, the trauma-induced increase of inflammatory cytokines was not reduced, but the neutrophil invasion into the lungs was significantly diminished in the absence of mast cells. Locally in the fracture hematoma, mast cell-competent mice displayed reduced inflammatory mediator concentrations after combined trauma compared to isolated fracture, which was abolished in mast cell-deficient mice. Notably, while combined trauma resulted in compromised bone repair in mast cell-competent mice, indicated by significantly reduced bone and increased cartilage fracture callus contents, this was abolished in Mcpt5-Cre+ R-DTA mice. Therefore, mast cells contribute to trauma-induced compromised bone repair and could be a potential target for new treatment options to improve fracture healing in multiply injured patients.
Collapse
Affiliation(s)
- Deniz Ragipoglu
- Institute of Orthopedic Research and Biomechanics, Trauma Research Center Ulm (ZTF), Ulm University Medical Center, Ulm, Germany
| | - Jasmin Bülow
- Institute of Orthopedic Research and Biomechanics, Trauma Research Center Ulm (ZTF), Ulm University Medical Center, Ulm, Germany
| | - Kristin Hauff
- Institute of Orthopedic Research and Biomechanics, Trauma Research Center Ulm (ZTF), Ulm University Medical Center, Ulm, Germany
| | - Martin Voss
- Medical Faculty, Institute for Molecular and Clinical Immunology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Melanie Haffner-Luntzer
- Institute of Orthopedic Research and Biomechanics, Trauma Research Center Ulm (ZTF), Ulm University Medical Center, Ulm, Germany
| | - Anne Dudeck
- Medical Faculty, Institute for Molecular and Clinical Immunology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Anita Ignatius
- Institute of Orthopedic Research and Biomechanics, Trauma Research Center Ulm (ZTF), Ulm University Medical Center, Ulm, Germany
| | - Verena Fischer
- Institute of Orthopedic Research and Biomechanics, Trauma Research Center Ulm (ZTF), Ulm University Medical Center, Ulm, Germany
| |
Collapse
|
21
|
Srivastava RK, Sapra L. The Rising Era of “Immunoporosis”: Role of Immune System in the Pathophysiology of Osteoporosis. J Inflamm Res 2022; 15:1667-1698. [PMID: 35282271 PMCID: PMC8906861 DOI: 10.2147/jir.s351918] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/10/2022] [Indexed: 12/21/2022] Open
Abstract
Discoveries in the last few years have emphasized the existence of an enormous breadth of communication between bone and the immune system in maintaining skeletal homeostasis. Originally, the discovery of various factors was assigned to the immune system viz. interleukin (IL)-6, IL-10, IL-17, tumor necrosis factor (TNF)-α, receptor activator of nuclear factor kappa B ligand (RANKL), nuclear factor of activated T cells (NFATc1), etc., but now these factors have also been shown to have a significant impact on osteoblasts (OBs) and osteoclasts (OCs) biology. These discoveries led to an alteration in the approach for the treatment of several bone pathologies including osteoporosis. Osteoporosis is an inflammatory bone anomaly affecting more than 500 million people globally. In 2018, to highlight the importance of the immune system in the pathophysiology of osteoporosis, our group coined the term “immunoporosis”. In the present review, we exhaustively revisit the characteristics, mechanism of action, and function of both innate and adaptive immune cells with the goal of understanding the potential of immune cells in osteoporosis. We also highlight the Immunoporotic role of gut microbiota (GM) for the treatment and management of osteoporosis. Importantly, we further discuss whether an immune cell-based strategy to treat and manage osteoporosis is feasible and relevant in clinical settings.
Collapse
Affiliation(s)
- Rupesh K Srivastava
- Immunoporosis Lab, Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi, 110029, India
- Correspondence: Rupesh K Srivastava, Tel +91 11-26593548, Email ;
| | - Leena Sapra
- Immunoporosis Lab, Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi, 110029, India
| |
Collapse
|
22
|
Kuhn MR, Haffner-Luntzer M, Kempter E, Reber SO, Ichinose H, Vacher J, Ignatius A, Tschaffon-Müller MEA. Myeloid cell-derived catecholamines influence bone turnover and regeneration in mice. Front Endocrinol (Lausanne) 2022; 13:997745. [PMID: 36187089 PMCID: PMC9520980 DOI: 10.3389/fendo.2022.997745] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/30/2022] [Indexed: 12/03/2022] Open
Abstract
Catecholamine signaling is known to influence bone tissue as reuptake of norepinephrine released from sympathetic nerves into bone cells declines with age leading to osteoporosis. Further, β-adrenoceptor-blockers like propranolol provoke osteoprotective effects in osteoporotic patients. However, besides systemic adrenal and sympathetic catecholamine production, it is also known that myeloid cells can synthesize catecholamines, especially under inflammatory conditions. To investigate the effects of catecholamines produced by CD11b+ myeloid cells on bone turnover and regeneration, a mouse line with specific knockout of tyrosine hydroxylase, the rate-limiting enzyme of catecholamine synthesis, in CD11b+ myeloid cells (THflox/flox/CD11b-Cre+, referred to as THCD11b-Cre) was generated. For bone phenotyping, male mice were sacrificed at eight and twelve weeks of age and harvested bones were subjected to bone length measurement, micro-computed tomography, fluorescence-activated cell sorting of the bone marrow, gene expression analysis, histology and immunohistochemistry. Support for an age-dependent influence of myeloid cell-derived catecholamines on bone homeostasis is provided by the fact that twelve-week-old, but not eight-week-old THCD11b-Cre mice, developed an osteopenic phenotype and showed increased numbers of neutrophils and T lymphocytes in the bone marrow, while CCL2, IL-6, IL-4 and IL-10 mRNA expression was reduced in sorted myeloid bone marrow cells. To investigate the influence of myeloid cell-derived catecholamines on fracture healing, mice received a diaphyseal femur osteotomy. Three days post-fracture, immunohistochemistry revealed an increased number of macrophages, neutrophils and cytotoxic T lymphocytes in the fracture hematoma of THCD11b-Cre mice. Micro-computed tomography on day 21 showed a decreased tissue mineral density, a reduced bone volume and less trabeculae in the fracture callus indicating delayed fracture healing, probably due to the increased presence of inflammatory cells in THCD11b-Cre mice. This indicates a crucial role of myeloid cell-derived catecholamines in immune cell-bone cell crosstalk and during fracture healing.
Collapse
Affiliation(s)
- Melanie R. Kuhn
- Institute of Orthopedic Research and Biomechanics, University Medical Center Ulm, Ulm, Germany
| | - Melanie Haffner-Luntzer
- Institute of Orthopedic Research and Biomechanics, University Medical Center Ulm, Ulm, Germany
- *Correspondence: Melanie Haffner-Luntzer, ; Miriam E. A. Tschaffon-Müller,
| | - Elena Kempter
- Laboratory for Molecular Psychosomatics, Department of Psychosomatic Medicine and Psychotherapy, University Ulm, Ulm, Germany
| | - Stefan O. Reber
- Laboratory for Molecular Psychosomatics, Department of Psychosomatic Medicine and Psychotherapy, University Ulm, Ulm, Germany
| | - Hiroshi Ichinose
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Jean Vacher
- Department of Medicine, Institut de Recherches Cliniques de Montréal, Montréal, QC, Canada
| | - Anita Ignatius
- Institute of Orthopedic Research and Biomechanics, University Medical Center Ulm, Ulm, Germany
| | - Miriam E. A. Tschaffon-Müller
- Institute of Orthopedic Research and Biomechanics, University Medical Center Ulm, Ulm, Germany
- *Correspondence: Melanie Haffner-Luntzer, ; Miriam E. A. Tschaffon-Müller,
| |
Collapse
|