1
|
Bei M, Cao Q, Zhao C, Xiao Y, Chen Y, Xiao H, Sun X, Tian F, Yang M, Wu X. Heterotopic ossification: Current developments and emerging potential therapies. Chin Med J (Engl) 2025:00029330-990000000-01404. [PMID: 39819765 DOI: 10.1097/cm9.0000000000003244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Indexed: 01/19/2025] Open
Abstract
ABSTRACT This review aimed to provide a comprehensive analysis of the etiology, epidemiology, pathology, and conventional treatment of heterotopic ossification (HO), especially emerging potential therapies. HO is the process of ectopic bone formation at non-skeletal sites. HO can be subdivided into two major forms, acquired and hereditary, with acquired HO predominating. Hereditary HO is a rare and life-threatening genetic disorder, but both forms can cause severe complications, such as peripheral nerve entrapment, pressure ulcers, and disability if joint ankylosis develops, which heavily contributes to a reduced quality of life. Modalities have been proposed to treat HO, but none have emerged as the gold standard. Surgical excision remains the only effective modality; however, the optimal timing is controversial and may cause HO recurrence. Recently, potential therapeutic strategies have emerged that focus on the signaling pathways involved in HO, and small molecule inhibitors have been shown to be promising. Moreover, additional specific targets, such as small interfering RNAs (siRNAs) and non-coding RNAs, could be used to effectively block HO or develop combinatorial therapies for HO.
Collapse
Affiliation(s)
- Mingjian Bei
- Department of Orthopedic Surgery, Beijing Jishuitan Hospital Affiliated to Capital Medical University, Beijing 100035, China
| | - Qiyong Cao
- Department of Orthopedic Surgery, Beijing Jishuitan Hospital Affiliated to Capital Medical University, Beijing 100035, China
| | - Chunpeng Zhao
- Department of Orthopedic Surgery, Beijing Jishuitan Hospital Affiliated to Capital Medical University, Beijing 100035, China
| | - Yaping Xiao
- Department of Orthopedic Surgery, Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuhan, Hubei 430000, China
| | - Yimin Chen
- Department of Orthopedic Surgery, Beijing Jishuitan Hospital Affiliated to Capital Medical University, Beijing 100035, China
| | - Honghu Xiao
- Department of Orthopedic Surgery, Beijing Jishuitan Hospital Affiliated to Capital Medical University, Beijing 100035, China
| | - Xu Sun
- Department of Orthopedic Surgery, Beijing Jishuitan Hospital Affiliated to Capital Medical University, Beijing 100035, China
| | - Faming Tian
- School Of Public Health, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Minghui Yang
- Department of Orthopedic Surgery, Beijing Jishuitan Hospital Affiliated to Capital Medical University, Beijing 100035, China
| | - Xinbao Wu
- Department of Orthopedic Surgery, Beijing Jishuitan Hospital Affiliated to Capital Medical University, Beijing 100035, China
- Beijing Research Institute of Traumatology and Orthopaedics, Beijing 100035, China
| |
Collapse
|
2
|
Yan M, Cai L, Duan X, Tycksen ED, Rai MF. Carbonic anhydrase 2 is important for articular chondrocyte function and metabolic homeostasis. Bone 2024; 190:117313. [PMID: 39488239 DOI: 10.1016/j.bone.2024.117313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 10/24/2024] [Accepted: 10/28/2024] [Indexed: 11/04/2024]
Abstract
OBJECTIVES Aberrant chondrocyte metabolism significantly contributes to cartilage degeneration and osteoarthritis (OA) genesis. However, the mechanisms driving the metabolic shift in OA chondrocytes remain unclear. Interestingly, carbonic anhydrase 2 (CA2) is implicated in metabolic regulation, and its expression dramatically increases in OA chondrocytes, but its exact role and mechanism are poorly understood. This study investigates the mechanistic role of CA2 in chondrocyte metabolic homeostasis under hypoxic and inflammatory conditions. METHODS RNA-seq was performed on CA2-deficient C28/I2 cells to identify pathways affected by the loss of CA2 function. We examined CA2's impact on chondrocyte metabolism, anabolism, and catabolism using C28/I2 cells and primary chondrocytes under normoxia and hypoxia and in a model of inflammatory OA. RESULTS RNA-seq revealed enrichment of glycolysis, apoptosis, and TNF signaling pathways in CA2-deficient cells. Under hypoxia, CA2 expression increased 10-fold in a HIF-1α-independent manner. Knockdown of CA2 reduced extracellular lactate production, increased ADP/ATP ratio, impaired glycolysis, reduced glycolytic capacity, and lowered expression of glycolysis rate-limiting enzymes but did not disrupt pHi and ROS production. CA2 deficiency altered chondrocyte anabolic and catabolic equilibrium by affecting PI3K/AKT and RELA/p65 signaling. CA2-deficient chondrocytes displayed impeded migration, suppressed proliferation, and cell cycle arrest at the G0/G1 phase. Forced expression of CA2 stabilized chondrocyte metabolism and restored cellular functions. CONCLUSIONS Our research uncovered a hitherto unknown mechanistic role for CA2 in regulating chondrocyte energy metabolism and inflammation, underscoring its potential as a critical mediator in OA pathogenesis. Further research using a murine model of experimental OA is warranted to capture the functional implications of CA2.
Collapse
Affiliation(s)
- Mingming Yan
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO, USA; Department of Orthopaedic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Lei Cai
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Xin Duan
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO, USA; Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Eric D Tycksen
- Genome Technology Access Center, McDonell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
| | - Muhammad Farooq Rai
- Department of Biological Sciences, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates; Center for Biotechnology, Khalifa University, Abu Dhabi, United Arab Emirates; Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA; Department of Biomedical Engineering, Saint Louis University School of Science and Engineering, St. Louis, MO, USA.
| |
Collapse
|
3
|
Qu Z, Shi L, Wu Z, Lin P, Zhang G, Cong X, Zhao X, Ge H, Yan S, Jiang L, Wu H. Kinesin light chain 1 stabilizes insulin receptor substrate 1 to regulate the IGF-1-AKT signaling pathway during myoblast differentiation. FASEB J 2024; 38:e23432. [PMID: 38300173 DOI: 10.1096/fj.202201065rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 12/19/2023] [Accepted: 01/04/2024] [Indexed: 02/02/2024]
Abstract
The IGF signaling pathway plays critical role in regulating skeletal myogenesis. We have demonstrated that KIF5B, the heavy chain of kinesin-1 motor, promotes myoblast differentiation through regulating IGF-p38MAPK activation. However, the roles of the kinesin light chain (Klc) in IGF pathway and myoblast differentiation remain elusive. In this study, we found that Klc1 was upregulated during muscle regeneration and downregulated in senescence mouse muscles and dystrophic muscles from mdx (X-linked muscular dystrophic) mice. Gain- and loss-of-function experiments further displayed that Klc1 promotes AKT-mTOR activity and positively regulates myogenic differentiation. We further identified that the expression levels of IRS1, the critical node of IGF-1 signaling, are downregulated in Klc1-depleted myoblasts. Coimmunoprecipitation study revealed that IRS1 interacted with the 88-154 amino acid sequence of Klc1 via its PTB domain. Notably, the reduced Klc1 levels were found in senescence and osteoporosis skeletal muscle samples from both mice and human. Taken together, our findings suggested a crucial role of Klc1 in the regulation of IGF-AKT pathway during myogenesis through stabilizing IRS1, which might ultimately influence the development of muscle-related disorders.
Collapse
Affiliation(s)
- Zihao Qu
- Department of Orthopaedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Linjing Shi
- Department of Orthopaedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhen Wu
- Department of Orthopaedic Surgery, The First Clinical Medical College of Zhejiang University of Traditional Chinese Medicine, Hangzhou, China
| | - Peng Lin
- Department of Orthopaedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Guangan Zhang
- Department of Biochemistry and Molecular Biology, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoxia Cong
- Department of Biochemistry and Molecular Biology, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiang Zhao
- Department of Orthopaedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Huiqing Ge
- Department of Respiratory Care, Regional Medical Center for the National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shigui Yan
- Department of Orthopaedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Liangjun Jiang
- Department of Orthopaedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Haobo Wu
- Department of Orthopaedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
4
|
Wang Z, Yi X, Jian C, Qi B, Liu Q, Li Z, Yu A. Sustained notch signaling inhibition with a gamma-secretase inhibitor prevents traumatic heterotopic ossification. J Orthop Translat 2023; 42:31-42. [PMID: 37575153 PMCID: PMC10415638 DOI: 10.1016/j.jot.2023.06.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/23/2023] [Accepted: 06/30/2023] [Indexed: 08/15/2023] Open
Abstract
Background Traumatic heterotopic ossification (THO) is a devastating sequela following traumatic injuries and orthopedic surgeries. To date, the exact molecular mechanism of THO formation is still unclear, which hinders the development of effective treatments. The process of THO formation is believed to recapitulate a series of spatiotemporal cellular and signaling events that occur during skeletal development. The Notch signaling pathway is a critical genetic regulator in embryological bone development and fracture healing. However, few data are available concerning whether Notch signaling regulates THO development and maturation. Methods We firstly detected the expressions of Notch target genes in both mouse and human THO samples with quantitative RT-PCR and immunohistochemistry (IHC). Then, tissue-resident mesenchymal progenitor cells (TMPCs) were isolated, and the abilities of the proliferation and osteogenic and chondrogenic differentiation of TMPCs were examined under the intervention of the gamma-secretase inhibitor-DAPT at different time points. Finally, DAPT was also administrated in THO mice by burn and Achilles tenotomy injury, and ectopic cartilage and bone formation were monitored by histology and micro-CT. Results Several Notch target genes were upregulated in both mouse and human THO tissues. Sustained Notch signaling inhibition by DAPT reduced proliferation, osteogenic and chondrogenic differentiation of TMPCs in a time-dependent manner. Moreover, DAPT administration within 3 weeks could inhibit ectopic cartilage and bone formation in a mouse THO model without affecting the total body bone mass. Conclusions The Notch signaling serves as an important therapeutic target during THO formation. And sustained gamma-secretase inhibition by DAPT has great potential in repressing chondrogenic and osteogenic differentiation of TMPCs, as well as inhibited ectopic cartilage and bone formation in vivo. The translational potential of this article Sustained Notch inhibition via systemic DAPT (or other similar gamma-secretase inhibitors) administration has promising clinical utility for inhibiting THO formation, providing new insight into THO prophylaxis and treatment.
Collapse
Affiliation(s)
- Zheng Wang
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Hubei Clinical Medical Research Center of Trauma and Microsurgery, Wuhan, Hubei, China
| | - Xinzeyu Yi
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Hubei Clinical Medical Research Center of Trauma and Microsurgery, Wuhan, Hubei, China
| | - Chao Jian
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Hubei Clinical Medical Research Center of Trauma and Microsurgery, Wuhan, Hubei, China
| | - Baiwen Qi
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Hubei Clinical Medical Research Center of Trauma and Microsurgery, Wuhan, Hubei, China
| | - Qiaoyun Liu
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Hubei Clinical Medical Research Center of Trauma and Microsurgery, Wuhan, Hubei, China
| | - Zonghuan Li
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Hubei Clinical Medical Research Center of Trauma and Microsurgery, Wuhan, Hubei, China
| | - Aixi Yu
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Hubei Clinical Medical Research Center of Trauma and Microsurgery, Wuhan, Hubei, China
| |
Collapse
|
5
|
The Kinesin Gene KIF26B Modulates the Severity of Post-Traumatic Heterotopic Ossification. Int J Mol Sci 2022; 23:ijms23169203. [PMID: 36012474 PMCID: PMC9409126 DOI: 10.3390/ijms23169203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/12/2022] [Accepted: 08/14/2022] [Indexed: 11/17/2022] Open
Abstract
The formation of pathological bone deposits within soft tissues, termed heterotopic ossification (HO), is common after trauma. However, the severity of HO formation varies substantially between individuals, from relatively isolated small bone islands through to extensive soft tissue replacement by bone giving rise to debilitating symptoms. The aim of this study was to identify novel candidate therapeutic molecular targets for severe HO. We conducted a genome-wide scan in men and women with HO of varying severity following hip replacement for osteoarthritis. HO severity was dichotomized as mild or severe, and association analysis was performed with adjustment for age and sex. We next confirmed expression of the gene encoded by the lead signal in human bone and in primary human mesenchymal stem cells. We then examined the effect of gene knockout in a murine model of osseous trans-differentiation, and finally we explored transcription factor phosphorylation in key pathways perturbed by the gene. Ten independent signals were suggestively associated with HO severity, with KIF26B as the lead. We subsequently confirmed KIF26B expression in human bone and upregulation upon BMP2-induced osteogenic differentiation in primary human mesenchymal stem cells, and also in a rat tendo-Achilles model of post-traumatic HO. CRISPR-Cas9 mediated knockout of Kif26b inhibited BMP2-induced Runx2, Sp7/Osterix, Col1A1, Alp, and Bglap/Osteocalcin expression and mineralized nodule formation in a murine myocyte model of osteogenic trans-differentiation. Finally, KIF26B deficiency inhibited ERK MAP kinase activation during osteogenesis, whilst augmenting p38 and SMAD 1/5/8 phosphorylation. Taken together, these data suggest a role for KIF26B in modulating the severity of post-traumatic HO and provide a potential novel avenue for therapeutic translation.
Collapse
|