1
|
Okada Y, Imendra KG, Miyazaki T, Hotokezaka H, Fujiyama R, Toda K. High extracellular Ca2+ stimulates Ca2+-activated Cl- currents in frog parathyroid cells through the mediation of arachidonic acid cascade. PLoS One 2011; 6:e19158. [PMID: 21559478 PMCID: PMC3084778 DOI: 10.1371/journal.pone.0019158] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Accepted: 03/21/2011] [Indexed: 01/28/2023] Open
Abstract
Elevation of extracellular Ca(2+) concentration induces intracellular Ca(2+) signaling in parathyroid cells. The response is due to stimulation of the phospholipase C/Ca(2+) pathways, but the direct mechanism responsible for the rise of intracellular Ca(2+) concentration has remained elusive. Here, we describe the electrophysiological property associated with intracellular Ca(2+) signaling in frog parathyroid cells and show that Ca(2+)-activated Cl(-) channels are activated by intracellular Ca(2+) increase through an inositol 1,4,5-trisphophate (IP(3))-independent pathway. High extracellular Ca(2+) induced an outwardly-rectifying conductance in a dose-dependent manner (EC(50) ∼6 mM). The conductance was composed of an instantaneous time-independent component and a slowly activating time-dependent component and displayed a deactivating inward tail current. Extracellular Ca(2+)-induced and Ca(2+) dialysis-induced currents reversed at the equilibrium potential of Cl(-) and were inhibited by niflumic acid (a specific blocker of Ca(2+)-activated Cl(-) channel). Gramicidin-perforated whole-cell recording displayed the shift of the reversal potential in extracellular Ca(2+)-induced current, suggesting the change of intracellular Cl(-) concentration in a few minutes. Extracellular Ca(2+)-induced currents displayed a moderate dependency on guanosine triphosphate (GTP). All blockers for phospholipase C, diacylglycerol (DAG) lipase, monoacylglycerol (MAG) lipase and lipoxygenase inhibited extracellular Ca(2+)-induced current. IP(3) dialysis failed to induce conductance increase, but 2-arachidonoylglycerol (2-AG), arachidonic acid and 12S-hydroperoxy-5Z,8Z,10E,14Z-eicosatetraenoic acid (12(S)-HPETE) dialysis increased the conductance identical to extracellular Ca(2+)-induced conductance. These results indicate that high extracellular Ca(2+) raises intracellular Ca(2+) concentration through the DAG lipase/lipoxygenase pathway, resulting in the activation of Cl(-) conductance.
Collapse
Affiliation(s)
- Yukio Okada
- Integrative Sensory Physiology, Graduate School of Biomedical Science, Nagasaki University, Nagasaki, Nagasaki, Japan.
| | | | | | | | | | | |
Collapse
|
2
|
Jiang YF, Zhang Z, Kifor O, Lane CR, Quinn SJ, Bai M. Protein kinase C (PKC) phosphorylation of the Ca2+ o-sensing receptor (CaR) modulates functional interaction of G proteins with the CaR cytoplasmic tail. J Biol Chem 2002; 277:50543-9. [PMID: 12409307 DOI: 10.1074/jbc.m205798200] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The extracellular calcium (Ca(2+)(o))-sensing receptor (CaR) activates Ca(2+) influx independent of the release of intracellular Ca(2+) stores. The latter can be negatively regulated by protein kinase C (PKC) through phosphorylation of Thr-888 of the CaR. In this study, we substituted Thr-888 with various amino acid residues or a stop codon to understand how PKC phosphorylation of the CaR inhibits receptor-mediated release of intracellular Ca(2+) stores. Substitutions of Thr-888 with hydrophobic and hydrophilic amino acid residues had various effects on CaR-mediated release of intracellular Ca(2+) stores as well as activation of Ca(2+) influx. Several point mutations, such as T888D, had marked negative effects on CaR-mediated release of intracellular Ca(2+) stores but not on phorbol myristate acetate-insensitive activation of Ca(2+) influx. Presumably, the negatively charged aspartate mimics phospho-threonine. Interestingly, truncating the receptor at 888 had an even more pronounced negative effect on CaR-elicited release of intracellular Ca(2+) stores without significantly affecting CaR-mediated activation of Ca(2+) influx. Therefore, truncation at position 888 of the CaR affects the activity of the receptor in a manner that resembles PKC phosphorylation of the CaR. This in turn suggests that PKC phosphorylation of the CaR prevents G protein subtypes from interacting with the region of the receptor critical for releasing Ca(2+) stores, which is missing in the truncated receptor.
Collapse
Affiliation(s)
- Yong-Feng Jiang
- Endocrine-Hypertension Division, Department of Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|
3
|
Diaz R, Fuleihan GE, Brown EM. Parathyroid Hormone and Polyhormones: Production and Export. Compr Physiol 2000. [DOI: 10.1002/cphy.cp070316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
4
|
Solban N, Jia HP, Richard S, Tremblay S, Devlin AM, Peng J, Gossard F, Guo DF, Morel G, Hamet P, Lewanczuk R, Tremblay J. HCaRG, a novel calcium-regulated gene coding for a nuclear protein, is potentially involved in the regulation of cell proliferation. J Biol Chem 2000; 275:32234-43. [PMID: 10918053 DOI: 10.1074/jbc.m001352200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Since a negative calcium balance is present in spontaneously hypertensive rats, we searched for the gene(s) involved in this dysregulation. A cDNA library was constructed from the spontaneously hypertensive rat parathyroid gland, which is a key regulator of serum-ionized calcium. From seven overlapping DNA fragments, a 1100-base pair novel cDNA containing an open reading frame of 224 codons was reconstituted. This novel gene, named HCaRG (hypertension-related, calcium-regulated gene), was negatively regulated by extracellular calcium concentration, and its basal mRNA levels were higher in hypertensive animals. The deduced protein showed no transmembrane domain, 67% alpha-helix content, a mutated calcium-binding site (EF-hand motif), four putative "leucine zipper" motifs, and a nuclear receptor-binding domain. At the subcellular level, HCaRG had a nuclear localization. We cloned the human homolog of this gene. Sequence comparison revealed 80% homology between rats and humans at the nucleotide and amino acid sequences. Tissue distribution showed a preponderance in the heart, stomach, jejunum, kidney (tubular fraction), liver, and adrenal gland (mainly in the medulla). HCaRG mRNA was significantly more expressed in adult than in fetal organs, and its levels were decreased in tumors and cancerous cell lines. We observed that after 60-min ischemia followed by reperfusion, HCaRG mRNA declined rapidly in contrast with an increase in c-myc mRNA. Its levels then rose steadily to exceed base line at 48 h of reperfusion. HEK293 cells stably transfected with HCaRG exhibited much lower proliferation, as shown by cell count and [(3)H]thymidine incorporation. Taken together, our results suggest that HCaRG is a nuclear protein potentially involved in the control of cell proliferation.
Collapse
Affiliation(s)
- N Solban
- Centre de recherche, Centre hospitalier de l'Université de Montréal, Montréal, Québec H2W 1T8, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Huang Z, Ritter C, Brown A, Finch J, Abu-Amer Y, Ross P, Slatopolsky E. Cloning and localization of Rab3 isoforms in bovine, rat, and human parathyroid glands. Biochem Biophys Res Commun 1999; 255:645-51. [PMID: 10049764 DOI: 10.1006/bbrc.1999.0226] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Rab3 proteins are small GTP-binding proteins known to play a role in regulated exocytosis processes. This study examines the expression of Rab3 mRNA and protein in bovine, rat and human parathyroid glands. mRNAs of several Rab3 isoforms were detected in bovine (Rab3A, Rab3B and Rab3C) and rat (Rab3A, Rab3B and Rab3D) parathyroid glands by RT-PCR and sequencing. Rab3A protein was detected in the cytosolic extract from bovine parathyroid gland by Western blotting using a monoclonal antibody for Rab3A. Rab3A protein was localized to parathyroid hormone-containing chief cells by immunohistochemical staining. Subcellular localization of Rab3A protein by immunogold electron microscopy revealed that the majority of Rab3A protein was not associated with dense-core vesicles, but localized in the cytosol of the chief cells. Altogether, our results demonstrate that Rab3 isoforms are expressed in parathyroid chief cells, suggesting that they may play a role in regulated exocytosis in these cells.
Collapse
Affiliation(s)
- Z Huang
- Department of Medicine, Renal Division, Washington University School of Medicine, Saint Louis, Missouri, 63110, USA.
| | | | | | | | | | | | | |
Collapse
|
6
|
Brown EM, Vassilev PM, Quinn S, Hebert SC. G-protein-coupled, extracellular Ca(2+)-sensing receptor: a versatile regulator of diverse cellular functions. VITAMINS AND HORMONES 1999; 55:1-71. [PMID: 9949679 DOI: 10.1016/s0083-6729(08)60933-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- E M Brown
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
7
|
Chang W, Chen TH, Pratt S, Shoback D. Regulation of extracellular calcium-activated cation currents by cAMP in parathyroid cells. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 275:E213-21. [PMID: 9688621 DOI: 10.1152/ajpendo.1998.275.2.e213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Parathyroid cells express Ca2+-sensing receptors that couple changes in the extracellular Ca2+ concentration ([Ca2+]o) to increases in the intracellular free Ca2+ concentration ([Ca2+]i) and to the suppression of parathyroid hormone secretion. Using whole cell patch clamping, we previously identified voltage-independent Ca2+-conducting currents in bovine parathyroid cells that increased with rising [Ca2+]o and were blocked by Cd2+ and nifedipine. Because cAMP-dependent phosphorylation regulates dihydropyridine-sensitive Ca2+ channels in other systems, we tested whether cAMP modulates these currents. At 0.7 mM Ca2+, nonselective Ca2+-conducting currents were suppressed by 30-50% when the recording pipette was perfused with cAMP. High-[Ca2+]o-induced increases in membrane currents were also abrogated. The effects of cAMP were reversible and dose dependent (3 x 10(-9) to 3 x 10(-3) M) and required ATP in the pipette solution. Perfusion of the cell interior with the catalytic subunit of protein kinase A mimicked the effects of cAMP, as did perfusion of the bath with the adenylate cyclase activator forskolin. These findings support the idea that cAMP-dependent phosphorylation suppresses high-[Ca2+]o-induced cation currents and may play a role in regulating ion fluxes in parathyroid cells.
Collapse
Affiliation(s)
- W Chang
- Endocrine Research Unit, Department of Veterans Affairs Medical Center, Department of Medicine, University of California, San Francisco, California 94121, USA
| | | | | | | |
Collapse
|
8
|
Bai M, Pearce SH, Kifor O, Trivedi S, Stauffer UG, Thakker RV, Brown EM, Steinmann B. In vivo and in vitro characterization of neonatal hyperparathyroidism resulting from a de novo, heterozygous mutation in the Ca2+-sensing receptor gene: normal maternal calcium homeostasis as a cause of secondary hyperparathyroidism in familial benign hypocalciuric hypercalcemia. J Clin Invest 1997; 99:88-96. [PMID: 9011580 PMCID: PMC507771 DOI: 10.1172/jci119137] [Citation(s) in RCA: 162] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
We characterized the in vivo, cellular and molecular pathophysiology of a case of neonatal hyperparathyroidism (NHPT) resulting from a de novo, heterozygous missense mutation in the gene for the extracellular Ca2+ (Ca2+(o))-sensing receptor (CaR). The female neonate presented with moderately severe hypercalcemia, markedly undermineralized bones, and multiple metaphyseal fractures. Subtotal parathyroidectomy was performed at 6 wk; hypercalcemia recurred rapidly but the bone disease improved gradually with reversion to an asymptomatic state resembling familial benign hypocalciuric hypercalcemia (FBHH). Dispersed parathyroid cells from the resected tissue showed a set-point (the level of Ca2+(o) half maximally inhibiting PTH secretion) substantially higher than for normal human parathyroid cells (approximately 1.8 vs. approximately 1.0 mM, respectively); a similar increase in set-point was observed in vivo. The proband's CaR gene showed a missense mutation (R185Q) at codon 185, while her normocalcemic parents were homozygous for wild type (WT) CaR sequence. Transient expression of the mutant R185Q CaR in human embryonic kidney (HEK293) cells revealed a substantially attenuated Ca2+(o)-evoked accumulation of total inositol phosphates (IP), while cotransfection of normal and mutant receptors showed an EC50 (the level of Ca2+(o) eliciting a half-maximal increase in IPs) 37% higher than for WT CaR alone (6.3+/-0.4 vs. 4.6+/-0.3 mM Ca2+(o), respectively). Thus this de novo, heterozygous CaR mutation may exert a dominant negative action on the normal CaR, producing NHPT and more severe hypercalcemia than typically seen with FBHH. Moreover, normal maternal calcium homeostasis promoted additional secondary hyperparathyroidism in the fetus, contributing to the severity of the NHPT in this case with FBHH.
Collapse
Affiliation(s)
- M Bai
- Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Pearce SH, Williamson C, Kifor O, Bai M, Coulthard MG, Davies M, Lewis-Barned N, McCredie D, Powell H, Kendall-Taylor P, Brown EM, Thakker RV. A familial syndrome of hypocalcemia with hypercalciuria due to mutations in the calcium-sensing receptor. N Engl J Med 1996; 335:1115-22. [PMID: 8813042 DOI: 10.1056/nejm199610103351505] [Citation(s) in RCA: 335] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
BACKGROUND The calcium-sensing receptor regulates the secretion of parathyroid hormone in response to changes in extracellular calcium concentrations, and mutations that result in a loss of function of the receptor are associated with familial hypocalciuric hypercalcemia. Mutations involving a gain of function have been associated with hypocalcemia in two kindreds. We examined the possibility that the latter type of mutation may result in a phenotype of familial hypocalcemia with hypercalciuria. METHODS We studied six kindreds given a diagnosis of autosomal dominant hypoparathyroidism on the basis of their hypocalcemia and normal serum parathyroid hormone concentrations, a combination that suggested a defect of the calcium-sensing receptor. The hypocalcemia was associated with hypercalciuria, and treatment with vitamin D resulted in increased hypercalciuria, nephrocalcinosis, and renal impairment. Mutations in the calcium-sensing-receptor gene were identified by DNA-sequence analysis and expressed in human embryonic kidney cells (HEK-293). RESULTS Five heterozygous missense mutations (Asn118Lys, Phe128Leu, Thr151Met, Glu191Lys, and Phe612Ser) were detected in the extracellular domain of the calcium-sensing-receptor gene and shown to cosegregate with the disease. Analysis of the functional expression of three of the mutant receptors in HEK-293 cells demonstrated shifts in the dose-response curves so that the extracellular calcium concentrations needed to produce half-maximal increases in total inositol phosphate in the cells were significantly (P=0.02 to P<0.001) lower than those required for the wild-type receptor. CONCLUSIONS Gain-of-function mutations in the calcium-sensing receptor are associated with a familial syndrome of hypocalcemia with hypercalciuria that needs to be distinguished from hypoparathyroidism.
Collapse
Affiliation(s)
- S H Pearce
- Medical Research Council Molecular Endocrinology Group, Royal Postgraduate Medical School, London, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
Due to the importance of Ca2+ in the regulation of vital cellular and tissue functions, the concentration of Ca2+ in body fluids is closely guarded by an efficient feedback control system. This system includes Ca(2+)-transporting subsystems (bone, and kidney), Ca2+ sensing, possibly by a calcium-sensing receptor, and calcium-regulating hormones (parathyroid hormone [PTH], calcitonin [CT], and 1,25-dihydroxyvitamin D3 [1,25(OH)2D3]). In humans and birds, acute Ca2+ perturbations are handled mainly by modulation of kidney Ca2+ reabsorption and by bone Ca2+ flow under PTH and possibly CT regulation, respectively. Chronic perturbations are also handled by the more sluggish but economic regulatory action of 1,25(OH2)D3 on intestinal calcium absorption. Peptide hormone secretion is modulated by Ca2+ and several secretagogues. The hormones' signal is produced by interaction with their respective receptors, which evokes the cAMP and phospholipase C-IP3-Ca2+ signal transduction pathways. 1,25 (OH)2D3 operates through a cytoplasmic receptor in controlling transcription and through a membrane receptor that activates the Ca2+ and phospholipase C messenger system. The calciotropic hormones also influence processes not directly associated with Ca2+ regulation, such as cell differentiation, and may thus affect the calcium-regulating subsystems also indirectly.
Collapse
Affiliation(s)
- S Hurwitz
- Institute of Animal Science, Agricultural Research Organization, Volcani Center, Bet Dagan, Israel
| |
Collapse
|
11
|
Carling T, Rastad J, Ridefelt P, Gobl A, Hellman P, Oberg K, Rask L, Larsson C, Juhlin C, Akerström G. Hyperparathyroidism of multiple endocrine neoplasia type 1: candidate gene and parathyroid calcium sensing protein expression. Surgery 1995; 118:924-30; discussion 930-1. [PMID: 7491535 DOI: 10.1016/s0039-6060(05)80095-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
BACKGROUND Hyperparathyroidism affects most patients with multiple endocrine neoplasia type 1 (MEN 1). This study investigates expression of the candidate MEN1 gene phospholipase C beta 3 (PLC beta 3) and expression and function of a putative calcium sensing protein (CAS) in hyperparathyroidism of MEN 1. METHODS In 31 parathyroid glands from 17 patients with MEN 1, CAS distribution was studied immunohistochemically and parallel sections were explored for PLC beta 3 mRNA expression by in situ hybridization. Enzymatically dispersed parathyroid cells were analyzed for cytoplasmic calcium concentrations [Ca2+]i and parathyroid hormone (PTH) release. RESULTS All glands exhibited a heterogeneously reduced CAS immunoreactivity, especially meager in nodularly assembled parathyroid cells. Calcium regulated [Ca2+]i and PTH release tended to be more deranged in the glands possessing the lowest immunostaining. Parathyroid PLC beta 3 invariably was homogeneously expressed, and this included even MEN 1 patients with reduced PLC beta 3 expression in endocrine pancreatic tumors. CONCLUSIONS The findings support variable calcium insensitivity of [Ca2+]i and PTH release in hyperparathyroidism of MEN 1, apparently coupled to heterogeneously reduced CAS expression. For clarification of the role of PLC beta 3 in MEN 1 parathyroid tumorigenesis further study of this protein is required.
Collapse
Affiliation(s)
- T Carling
- Department of Surgery, University Hospital, Uppsala, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Chang W, Chen TH, Gardner P, Shoback D. Regulation of Ca(2+)-conducting currents in parathyroid cells by extracellular Ca(2+) and channel blockers. THE AMERICAN JOURNAL OF PHYSIOLOGY 1995; 269:E864-77. [PMID: 7491938 DOI: 10.1152/ajpendo.1995.269.5.e864] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
High extracellular Ca2+ concentrations ([Ca2+]o) produce sustained intracellular Ca2+ responses in parathyroid cells that correlate with suppression of parathyroid hormone release. Using whole cell patch clamping, we identified two types of Ca(2+)-conducting currents in these cells. Type 1 currents were enhanced by raising [Ca2+]o and blocked by Cd2+ and nifedipine, whereas type 2 currents were resistant to blockade by these agents. Both types of membrane currents were cation nonselective, voltage independent over a broad range of membrane potentials, and blocked by the trivalent ions La3+ and Gd3+ (> 98%). Cd2+, La3+, and Gd3+ had biphasic effects on membrane conductance (Gm). At submicromolar concentrations, these ions increased Gm, whereas at higher concentrations they reduced Gm. In contrast to ionic channel blockers, nifedipine had only an inhibitory effect on the Ca(2+)-conducting currents that were sensitive to changes in [Ca2+]o (dose inhibiting 50% of maximal response = approximately 3-10 x 10(-8) M). Microfluorimetric ratio-imaging analysis of single parathyroid cells loaded with fura 2 showed that Gd3+ inhibited sustained intracellular Ca2+ responses to high [Ca2+]o. These findings suggest that the Ca(2+)-conducting currents identified in these studies may play a role in regulating intracellular Ca2+ responses in this system.
Collapse
Affiliation(s)
- W Chang
- Department of Medicine, Veterans Affairs Medical Center, San Francisco 94121, USA
| | | | | | | |
Collapse
|
13
|
Shoback D, Chen TH, Pratt S, Lattyak B. Thapsigargin stimulates intracellular calcium mobilization and inhibits parathyroid hormone release. J Bone Miner Res 1995; 10:743-50. [PMID: 7639110 DOI: 10.1002/jbmr.5650100511] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Ca2+ and other divalent cations like Sr2+, Ba2+, and Mg2+ stimulate rapid and sustained increases in intracellular Ca2+ ([Ca2+]i) and 1,4,5-inositol trisphosphate (1,4,5-InsP3) presumably by interacting with recently identified parathyroid cell membrane Ca2+ receptors. We used thapsigargin (THAPS), an inhibitor of the microsomal Ca(2+)-ATPase, to deplete InsP3-sensitive intracellular Ca2+ stores to determine whether sustained increases in [Ca2+]i due to divalent cations require intact cytosolic Ca2+ pools. In Fura 2-loaded parathyroid cells, THAPS produced a gradual increase in [Ca2+]i which reached a steady-state level by 2-3 minutes. The effect of THAPS (3 x 10(-6) M) was substantial with [Ca2+]i, rising from 281 +/- 27 nM at 0.5 mM Ca2+ to a peak value of 684 +/- 30 nM (p < 0.0001). The addition of Sr2+ to cells at 0.5 mM extracellular Ca2+ induced an immediate 2- to 3-fold increase in [Ca2+]i which stabilized at a [Ca2+]i above baseline for > or = 10 minutes. THAPS (3 x 10(-6) M) pretreatment for > or = 5 minutes blocked this sustained-phase increment in [Ca2+]i due to Sr2+. In the absence of extracellular Ca2+, there was a slight but nonsignificant effect of THAPS on [Ca2+]i. Incubation of cells with THAPS did not change the levels of 3H-inositol phosphates (InsP3, InsP2, and InsP1) or alter Sr(2+)-induced accumulation of InsP3, InsP2, and InsP1.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- D Shoback
- Endocrine Research Unit, Veterans Affairs Medical Center, San Francisco, California, USA
| | | | | | | |
Collapse
|
14
|
Racke FK, Hammerland LG, Dubyak GR, Nemeth EF. Functional expression of the parathyroid cell calcium receptor in Xenopus oocytes. FEBS Lett 1993; 333:132-6. [PMID: 8224151 DOI: 10.1016/0014-5793(93)80390-g] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Various studies suggest the existence of a plasma membrane receptor on parathyroid cells that senses changes in the concentration of extracellular Ca2+. To test this hypothesis, Xenopus laevis oocytes were injected with poly(A)(+)-enriched mRNA from bovine parathyroid cells and examined for their ability to respond to increases in the concentration of extracellular Ca2+ or other polycations. Cytosolic Ca2+ concentrations were measured indirectly by recording Cl- currents through the endogenous, cytosolic Ca(2+)-activated Cl- channel. Increasing the concentration of extracellular Ca2+ (from 0.7 to 5 mM) or Mg2+ (from 0.8 to 10 mM) elicited oscillatory increases in the Cl- current. Responses to either divalent cation were not observed in oocytes injected with water or with mRNA prepared from HL-60 cells or rat liver. Responses elicited by extracellular Mg2+ persisted when extracellular Ca2+ was reduced to low micromolar levels. La3+, Gd3+, or neomycin B also evoked oscillatory increases in the Cl- current in oocytes under conditions of low extracellular Ca2+ levels. These extracellular polycations all cause the mobilization of intracellular Ca2+ in oocytes injected with parathyroid cell mRNA like they do in intact parathyroid cells. The injection of parathyroid cell mRNA thus confers on oocytes the ability to detect and respond to changes in the concentration of extracellular polycations. The data provide compelling evidence for the existence of a cell surface Ca2+ receptor protein(s) on parathyroid cells that regulates cellular function.
Collapse
Affiliation(s)
- F K Racke
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106
| | | | | | | |
Collapse
|