1
|
Sharma P, Wajid MA, Fayaz M, Bhat S, Nautiyal AK, Jeet S, Yadav AK, Singh D, Shankar R, Gairola S, Misra P. Morphological, phytochemical, and transcriptome analyses provide insights into the biosynthesis of monoterpenes in Monarda citriodora. PLANTA 2023; 258:49. [PMID: 37480390 DOI: 10.1007/s00425-023-04207-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 07/13/2023] [Indexed: 07/24/2023]
Abstract
MAIN CONCLUSION Morphological, phytochemical, and transcriptome analyses revealed candidate genes involved in the biosynthesis of volatile monoterpenes and development of glandular trichomes in Monarda citriodora. Monarda citriodora Cerv. ex Lag. is a valuable aromatic plant due to the presence of monoterpenes as major constituents in its essential oil (EO). Thus, it is of sheer importance to gain knowledge about the site of the biosynthesis of these terpenoid compounds in M. citriodora, as well as the genes involved in their biosynthesis. In this study, we studied different types of trichomes and their relative densities in three different developmental stages of leaves, early stage of leaf development (L1), mid-stage of leaf development (L2), and later stage of leaf development (L3) and the histochemistry of trichomes for the presence of lipid and terpenoid compounds. Further, the phytochemical analysis of this plant through GC-MS indicated a higher content of monoterpenes (thymol, thymoquinone, γ-terpinene, p-cymene, and carvacrol) in the L1 stage with a substantial decrease in the L3 stage of leaf development. This considerable decrease in the content of monoterpenes was attributed to the decrease in the trichome density from L1 to L3. Further, we developed a de novo transcriptome assembly by carrying out RNA sequencing of different plant parts of M. citriodora. The transcriptome data revealed several putative unigenes involved in the biosynthesis of specialized terpenoid compounds, as well as regulatory genes involved in glandular trichome development. The data generated in the present study build a strong foundation for further improvement of M. citriodora, in terms of quantity and quality of its essential oil, through genetic engineering.
Collapse
Affiliation(s)
- Priyanka Sharma
- Plant Sciences and Agrotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Mir Abdul Wajid
- Plant Sciences and Agrotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Mohd Fayaz
- Plant Sciences and Agrotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sheetal Bhat
- Plant Sciences and Agrotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Abhishek Kumar Nautiyal
- Plant Sciences and Agrotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| | - Sabha Jeet
- Plant Sciences and Agrotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| | - Arvind Kumar Yadav
- Quality Management and Instrumentation Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| | - Deepika Singh
- Quality Management and Instrumentation Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| | - Ravi Shankar
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| | - Sumeet Gairola
- Plant Sciences and Agrotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Prashant Misra
- Plant Sciences and Agrotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
2
|
Liang J, Huang Y, Yang C, Huang S, Xie J, Nong X, Liu J, Zhang Y, Zhang Z. The effect of PPP2CA expression on the prognosis of patients with hepatocellular carcinoma and its molecular biological characteristics. J Gastrointest Oncol 2021; 12:3008-3021. [PMID: 35070426 PMCID: PMC8748071 DOI: 10.21037/jgo-21-720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/06/2021] [Indexed: 08/09/2023] Open
Abstract
BACKGROUND To investigate the role of the PPP2CA gene in the prognosis of patients with hepatocellular carcinoma (HCC) and its molecular biological characteristics. METHODS We performed comparison of the expression of PPP2CA in HCC and non-HCC tissues of HCC patients who underwent surgery for the first time in the Tumor Hospital of Guangxi Medical University from July 2017 to July 2019, and retrospectively analyzed the relevant clinical data and prognosis. The GSE76427 data set and bioinformatics and public databases were used to compare the expression of PPP2CA between HCC and non-cancer tissues. Gene Ontology (GO) analysis was performed of PPP2CA and its differential genes and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway. A protein-protein interaction (PPI) network of PPP2CA and its differentially expressed genes (DEGs) was constructed from the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) database and visualized by Cytoscape software. RESULTS The immunohistochemistry (IHC) of tissue sections confirmed that PPP2CA was highly expressed in most HCC tissues; the high expression of PPP2CA was significantly correlated with microvascular invasion (MVI) and portal vein tumor thrombi (P<0.05). Participants in the PPP2CA high expression group had worse overall survival (OS; P=0.04) and recurrence-free survival (RFS; P=0.019). The PPP2CA gene and 71 DEGs were mainly enriched in the nuclear division, organelle fission, nuclear chromosome separation, and chromatid separation process, and KEGG analysis revealed enrichment in drug metabolism-cytochrome metabolism of xenobiotics by P450 and cytochrome P450. Finally, through the PPI network, CCNA2, AURKB, TOP2A, NCAPG, MCM2, CDC20, CCMB2, AURKA, and MGST1 were identified as the top 9 highly connected hub genes. CONCLUSIONS The PPP2CA gene is highly expressed in HCC tissues. The high expression of PPP2CA is significantly associated with poor prognosis. Through the analysis of DEGs, GO and KEGG pathway analysis, it was found that PPP2CA may act on liver cancer through multiple targets and multiple pathways, and PPP2CA plays a promoting role in HCC.
Collapse
Affiliation(s)
- Jingchang Liang
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Yu Huang
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Chenglei Yang
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Shen Huang
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Jinlong Xie
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Xiang Nong
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Jianyong Liu
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Yumei Zhang
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Zhiming Zhang
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| |
Collapse
|
3
|
Stýblo M, Venkatratnam A, Fry RC, Thomas DJ. Origins, fate, and actions of methylated trivalent metabolites of inorganic arsenic: progress and prospects. Arch Toxicol 2021; 95:1547-1572. [PMID: 33768354 PMCID: PMC8728880 DOI: 10.1007/s00204-021-03028-w] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 03/11/2021] [Indexed: 12/16/2022]
Abstract
The toxic metalloid inorganic arsenic (iAs) is widely distributed in the environment. Chronic exposure to iAs from environmental sources has been linked to a variety of human diseases. Methylation of iAs is the primary pathway for metabolism of iAs. In humans, methylation of iAs is catalyzed by arsenic (+ 3 oxidation state) methyltransferase (AS3MT). Conversion of iAs to mono- and di-methylated species (MAs and DMAs) detoxifies iAs by increasing the rate of whole body clearance of arsenic. Interindividual differences in iAs metabolism play key roles in pathogenesis of and susceptibility to a range of disease outcomes associated with iAs exposure. These adverse health effects are in part associated with the production of methylated trivalent arsenic species, methylarsonous acid (MAsIII) and dimethylarsinous acid (DMAsIII), during AS3MT-catalyzed methylation of iAs. The formation of these metabolites activates iAs to unique forms that cause disease initiation and progression. Taken together, the current evidence suggests that methylation of iAs is a pathway for detoxification and for activation of the metalloid. Beyond this general understanding of the consequences of iAs methylation, many questions remain unanswered. Our knowledge of metabolic targets for MAsIII and DMAsIII in human cells and mechanisms for interactions between these arsenicals and targets is incomplete. Development of novel analytical methods for quantitation of MAsIII and DMAsIII in biological samples promises to address some of these gaps. Here, we summarize current knowledge of the enzymatic basis of MAsIII and DMAsIII formation, the toxic actions of these metabolites, and methods available for their detection and quantification in biomatrices. Major knowledge gaps and future research directions are also discussed.
Collapse
Affiliation(s)
- Miroslav Stýblo
- Department of Nutrition, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| | - Abhishek Venkatratnam
- Department of Nutrition, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Environmental Science and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Rebecca C Fry
- Department of Environmental Science and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - David J Thomas
- Chemical Characterization and Exposure Division, Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27709, USA.
| |
Collapse
|
4
|
Chen J, Liu C, Cen J, Liang T, Xue J, Zeng H, Zhang Z, Xu G, Yu C, Lu Z, Wang Z, Jiang J, Zhan X, Zeng J. KEGG-expressed genes and pathways in triple negative breast cancer: Protocol for a systematic review and data mining. Medicine (Baltimore) 2020; 99:e19986. [PMID: 32358373 PMCID: PMC7440132 DOI: 10.1097/md.0000000000019986] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 03/09/2020] [Accepted: 03/23/2020] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND The incidence of triple negative breast cancer (TNBC) is at a relatively high level, and our study aimed to identify differentially expressed genes (DEGs) in TNBC and explore the key pathways and genes of TNBC. METHODS The gene expression profiling (GSE86945, GSE86946 and GSE102088) data were obtained from Gene Expression Omnibus Datasets, DEGs were identified by using R software, Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses of DEGs were performed by the Database for Annotation, Visualization and Integrated Discovery (DAVID) tools, and the protein-protein interaction (PPI) network of the DEGs was constructed by the STRING database and visualized by Cytoscape software. Finally, the survival value of hub DEGs in breast cancer patients were performed by the Kaplan-Meier plotter online tool. RESULTS A total of 2998 DEGs were identified between TNBC and health breast tissue, including 411 up-regulated DEGs and 2587 down-regulated DEGs. GO analysis results showed that down-regulated DEGs were enriched in gene expression (BP), extracellular exosome (CC), and nucleic acid binding, and up-regulated were enriched in chromatin assembly (BP), nucleosome (CC), and DNA binding (MF). KEGG pathway results showed that DEGs were mainly enriched in Pathways in cancer and Systemic lupus erythematosus and so on. Top 10 hub genes were picked out from PPI network by connective degree, and 7 of top 10 hub genes were significantly related with adverse overall survival in breast cancer patients (P < .05). Further analysis found that only EGFR had a significant association with the prognosis of triple-negative breast cancer (P < .05). CONCLUSIONS Our study showed that DEGs were enriched in pathways in cancer, top 10 DEGs belong to up-regulated DEGs, and 7 gene connected with poor prognosis in breast cancer, including HSP90AA1, SRC, HSPA8, ESR1, ACTB, PPP2CA, and RPL4. These can provide some guidance for our research on the diagnosis and prognosis of TNBC, and further research is needed to evaluate their value in the targeted therapy of TNBC.
Collapse
Affiliation(s)
| | - Chong Liu
- Department of Spine and Osteopathy Ward
| | | | - Tuo Liang
- Department of Spine and Osteopathy Ward
| | - Jiang Xue
- Department of Spine and Osteopathy Ward
| | | | | | | | | | | | | | - Jie Jiang
- Department of Spine and Osteopathy Ward
| | | | - Jian Zeng
- Department of Gastrointestinal Gland Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| |
Collapse
|
5
|
Shao DW, Yang CY, Liu B, Chen W, Wang H, Ru HX, Zhang M, Wang Y. Bioinformatics Analysis of Potential Candidates for Therapy of TDRD7 Deficiency-Induced Congenital Cataract. Ophthalmic Res 2015; 54:10-7. [PMID: 25997407 DOI: 10.1159/000381478] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 03/05/2015] [Indexed: 11/19/2022]
Abstract
AIMS The aim of this study was to identify potential candidates and explore the possible mechanism in congenital cataract induced by tudor domain-containing 7 (TDRD7) deficiency. METHODS The gene expression profile GSE25812 generated from 18 samples was downloaded from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) between disease and normal groups were identified. Then, gene ontology and pathway enrichment analysis of DEGs were performed. The protein-protein interaction (PPI) network and transcription factor (TF) regulatory network were constructed. The modules in the PPI network were identified. Significant target genes were selected from the TF regulatory network. RESULTS A total of 329 DEGs were obtained, and downregulated DEGs were significantly enriched in biological processes including defense response and immune response. In the PPI network, high-degree genes of complement component 1, q subcomponent, A/B/C chain (C1QA/C1QB/C1QC), lymphocyte antigen 86 (LY86) and neuroblastoma RAS viral oncogene homolog (NRAS) were identified. From the TF regulatory network, the heat shock 27 kDa protein 1 (HSPB1) was the target of the estrogen receptor 1, and LY86 was the target of the v-myc avian myelocytomatosis viral oncogene homolog. CONCLUSION HSPB1, NRAS, immune response, defense response and the related genes LY86, C1QA/C1QB/C1QC may play an important role in the development of congenital cataract induced by TDRD7 deficiency. However, further experiments are still needed.
Collapse
Affiliation(s)
- De-Wang Shao
- Department of Ophthalmology, Air Force General Hospital of PLA, Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Huang T, Barnett JV, Camenisch TD. Cardiac epithelial-mesenchymal transition is blocked by monomethylarsonous acid (III). Toxicol Sci 2014; 142:225-38. [PMID: 25145660 DOI: 10.1093/toxsci/kfu170] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Arsenic exposure during embryonic development can cause ischemic heart pathologies later in adulthood which may originate from impairment in proper blood vessel formation. The arsenic-associated detrimental effects are mediated by arsenite (iAs(III)) and its most toxic metabolite, monomethylarsonous acid [MMA (III)]. The impact of MMA (III) on coronary artery development has not yet been studied. The key cellular process that regulates coronary vessel development is the epithelial-mesenchymal transition (EMT). During cardiac EMT, activated epicardial progenitor cells transform to mesenchymal cells to form the cellular components of coronary vessels. Smad2/3 mediated TGFβ2 signaling, the key regulator of cardiac EMT, is disrupted by arsenite exposure. In this study, we compared the cardiac toxicity of MMA (III) with arsenite. Epicardial progenitor cells are 15 times more sensitive to MMA (III) cytotoxicity when compared with arsenite. MMA (III) caused a significant blockage in epicardial cellular transformation and invasion at doses 10 times lower than arsenite. Key EMT genes including TGFβ ligands, TβRIII, Has2, CD44, Snail1, TBX18, and MMP2 were down regulated by MMA (III) exposure. MMA (III) disrupted Smad2/3 activation at a dose 20 times lower than arsenite. Both arsenite and MMA (III) significantly inhibited Erk1/2 and Erk5 phosphorylation. Nuclear translocation of Smad2/3 and Erk5 was also blocked by arsenical exposure. However, p38 activation, as well as smooth muscle differentiation, was refractory to the inhibition by the arsenicals. Collectively, these findings revealed that MMA (III) is a selective disruptor of cardiac EMT and as such may predispose to arsenic-associated cardiovascular disorders.
Collapse
Affiliation(s)
- Tianfang Huang
- Department of Pharmacology and Toxicology College of Pharmacy, University of Arizona, Tucson, Arizona 85721
| | - Joey V Barnett
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232
| | - Todd D Camenisch
- Department of Pharmacology and Toxicology College of Pharmacy, University of Arizona, Tucson, Arizona 85721 Southwest Environmental Health Sciences Center, University of Arizona, Tucson, Arizona 85721 Steele Children's Research Center, University of Arizona, Tucson, Arizona 85724 Sarver Heart Center Bio5 Institute, University of Arizona, Tucson, Arizona 85721
| |
Collapse
|
7
|
Kulkarni RM, Kutcher LW, Stuart WD, Carson DJ, Leonis MA, Waltz SE. Ron receptor-dependent gene regulation in a mouse model of endotoxin-induced acute liver failure. Hepatobiliary Pancreat Dis Int 2012; 11:383-92. [PMID: 22893465 PMCID: PMC4102423 DOI: 10.1016/s1499-3872(12)60196-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Prior experimentation has shown that loss of the tyrosine kinase (TK) signaling domain of the Ron receptor leads to marked hepatocyte protection in a model of lipopolysaccharide-induced acute liver failure (ALF) in D-galactosamine (GalN)-sensitized mice. The aim of this study was to identify the role of Ron in the regulation of hepatic gene expression. METHODS Microarray analyses were performed on liver RNA isolated sequentially from wild-type (WT) and TK-/- mice during the progression of ALF. Gene array data were validated using Western and immunohistochemistry analyses as well as with ex vivo culture systems. RESULTS At baseline, 101 genes were differentially expressed between WT and TK-/- livers, which regulate processes involved in hypoxia, proliferation, apoptosis and metabolism. One hour after ALF induction, WT livers exhibited increased cytokine expression compared to TK-/- livers, and after 4 hours, an induction of suppressor of cytokine signaling (SOCS) genes as well as JAK-STAT pathway activation were prominent in TK-/- livers compared to controls. CONCLUSION Our studies suggest a novel hepato-protective mechanism in Ron TK-/- mice wherein increased and sustained SOCS production and JAK-STAT activation in the hepatocyte may inhibit the destructive proinflammatory milieu and promote survival factors which blunt hepatic death and the ensuing development of ALF.
Collapse
Affiliation(s)
- Rishikesh M. Kulkarni
- Department of Cancer and Cell Biology, University of Cincinnati, Cincinnati, OH 45267-0521
| | - Louis W. Kutcher
- Department of Biology, University of Cincinnati, Cincinnati, OH 45267-0521
| | - William D. Stuart
- Department of Cancer and Cell Biology, University of Cincinnati, Cincinnati, OH 45267-0521
| | - Daniel J. Carson
- Department of Biology, University of Cincinnati, Cincinnati, OH 45267-0521
| | - Mike A. Leonis
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229
| | - Susan E. Waltz
- Department of Cancer and Cell Biology, University of Cincinnati, Cincinnati, OH 45267-0521,Departments of Research, Shriner’s Hospital for Children, Cincinnati, OH 45267-0521,Cincinnati Veterans Affairs Medical Center, Cincinnati, OH 45267-0521,Corresponding Author: Susan E. Waltz, Ph.D., Department of Cancer and Cell Biology, 3125 Eden Ave., University of Cincinnati College of Medicine, Cincinnati, OH 45267-0521, Telephone: (513) 558-8675,
| |
Collapse
|
8
|
Medeiros M, Zheng X, Novak P, Wnek SM, Chyan V, Escudero-Lourdes C, Gandolfi AJ. Global gene expression changes in human urothelial cells exposed to low-level monomethylarsonous acid. Toxicology 2011; 291:102-12. [PMID: 22108045 DOI: 10.1016/j.tox.2011.11.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Revised: 10/13/2011] [Accepted: 11/08/2011] [Indexed: 02/06/2023]
Abstract
Bladder cancer has been associated with chronic arsenic exposure. Monomethylarsonous acid [MMA(III)] is a metabolite of inorganic arsenic and has been shown to transform an immortalized urothelial cell line (UROtsa) at concentrations 20-fold less than arsenite. MMA(III) was used as a model arsenical to examine the mechanisms of arsenical-induced transformation of urothelium. A microarray analysis was performed to assess the transcriptional changes in UROtsa during the critical window of chronic 50nM MMA(III) exposure that leads to transformation at 3 months of exposure. The analysis revealed only minor changes in gene expression at 1 and 2 months of exposure, contrasting with substantial changes observed at 3 months of exposure. The gene expression changes at 3 months were analyzed showing distinct alterations in biological processes and pathways such as a response to oxidative stress, enhanced cell proliferation, anti-apoptosis, MAPK signaling, as well as inflammation. Twelve genes selected as markers of these particular biological processes were used to validate the microarray and these genes showed a time-dependent changes at 1 and 2 months of exposure, with the most substantial changes occurring at 3 months of exposure. These results indicate that there is a strong association between the acquired phenotypic changes that occur with chronic MMA(III) exposure and the observed gene expression patterns that are indicative of a malignant transformation. Although the substantial changes that occur at 3 months of exposure may be a consequence of transformation, there are common occurrences of altered biological processes between the first 2 months of exposure and the third, which may be pivotal in driving transformation.
Collapse
Affiliation(s)
- Matthew Medeiros
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ 85721, United States.
| | | | | | | | | | | | | |
Collapse
|