1
|
Potential Active Constituents from Opophytum forsskalii (Hochst. ex Boiss.) N.E.Br against Experimental Gastric Lesions in Rats. Pharmaceuticals (Basel) 2022; 15:ph15091089. [PMID: 36145310 PMCID: PMC9502456 DOI: 10.3390/ph15091089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/26/2022] [Accepted: 08/27/2022] [Indexed: 11/17/2022] Open
Abstract
Opophytum forsskalii (O. forsskalii) is a desert plant that belongs to the Aizoaceae family. Although it is a natural food source for Bedouin tribes in northern Saudi Arabia, there is little information on its active metabolites. Therefore, the secondary metabolites of the hydroalcoholic extract from the leaves of this species were analyzed by liquid chromatography-mass chromatography (LC-MS). LC-MS identified a total of 30 secondary metabolites. These compounds represented two main categories among sixteen classes. Among them, flavonoids represented the largest proportion with eleven metabolites while fatty acids provided seven compounds. In addition, the extract was evaluated for its gastroprotective effect against gastric lesions induced by different models, such as indomethacin, stress, and necrotizing agents (80% ethanol, 0.2 mol/L NaOH, and 25% NaCl), in rats. For each method, group 1 was used as the control group while groups 2 and 3 received the leaf extract at doses of 200 and 400 mg/kg, respectively. The ulcer index (UI) and intraluminal bleeding score (IBS) were measured for each method. In addition, gastric tissue from the ethanol method was used for the analysis of nonprotein sulfhydrates (NP-SH), malondialdehyde (MDA), total protein (TP), and histopathologic evaluation. Pretreatment with O. forsskalii significantly decreased UI (p < 0.01) and IBS (p < 0.01) at 400 mg/kg. Pretreatment with O. forsskalii significantly improved total protein levels (p < 0.01) and NP-SH (p < 0.001) compared to the ethanol ulcer groups. MDA levels increased from 0.5 to 5.8 nmol/g in the normal groups compared to the ethanol groups and decreased to 2.34 nmol/g in the O. forsskalii pretreatment. In addition to the gastroprotective markers, histopathological examination of gastric tissue confirmed the gastroprotective potential of O. forsskalii extract against ethanol.
Collapse
|
2
|
Suroowan S, Abdallah HH, Mahomoodally MF. Herb-drug interactions and toxicity: Underscoring potential mechanisms and forecasting clinically relevant interactions induced by common phytoconstituents via data mining and computational approaches. Food Chem Toxicol 2021; 156:112432. [PMID: 34293424 DOI: 10.1016/j.fct.2021.112432] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 06/28/2021] [Accepted: 07/17/2021] [Indexed: 01/05/2023]
Abstract
Herbals in the form of medicine are employed extensively around the world. Herbal and conventional medicine combination is a potentially dangerous practice mainly in comorbid, hepato insufficient and frail patients leading to perilous herb-drug interactions (HDI) and toxicity. This study features potential HDI of 15 globally famous plant species through data mining and computational methods. Several plant species were found to mimic warfarin. Phytochemicals from M. charantia induced hypoglycemica. M. chamomila and G. biloba possessed anticoagulant activities. S. hispanica reduces postprandial glycemia. R. officinalis has been reported to inhibit the efflux of anticancer substrates while A. sativum can boost the clearance of anticancer agents. P. ginseng can alter blood coagulation. A cross link of the biological and in silico data revealed that a plethora of herbal metabolites such as ursolic and rosmarinic acid among others are possible/probable inhibitors of specific CYP450 enzymes. Consequently, plant species/metabolites with a given pharmacological property/metabolizing enzyme should not be mixed with drugs having the same pharmacological property/metabolizing enzyme. Even if combined with drugs, herbal medicines must be used at low doses for a short period of time and under the supervision of a healthcare professional to avoid potential adverse and toxic effects.
Collapse
Affiliation(s)
- Shanoo Suroowan
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, Réduit, Mauritius
| | - Hassan Hadi Abdallah
- Department of Chemistry, College of Education, Salahaddin University-Erbil, Erbīl, Iraq
| | - Mohamad Fawzi Mahomoodally
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, Réduit, Mauritius.
| |
Collapse
|
3
|
Kampschulte N, Alasmer A, Empl MT, Krohn M, Steinberg P, Schebb NH. Dietary Polyphenols Inhibit the Cytochrome P450 Monooxygenase Branch of the Arachidonic Acid Cascade with Remarkable Structure-Dependent Selectivity and Potency. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:9235-9244. [PMID: 32786866 DOI: 10.1021/acs.jafc.0c04690] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The products of the cytochrome P450 monooxygenase (CYP)-catalyzed oxidation of arachidonic acid (AA), that is, epoxy- and hydroxy-fatty acids, play a crucial role in the homeostasis of several physiological processes. In a liver microsome-based multienzyme assay using AA as natural substrate, we investigated how polyphenols inhibit different oxylipin-forming CYP in parallel but independently from each other. The ω-hydroxylating CYP4F2 and CYP4A11 were investigated, as well as the epoxidizing CYP2C-subfamily and CYP3A4 along with the (ω-n)-hydroxylating CYP1A1 and CYP2E1. The oxylipin formation was inhibited by several polyphenols with a remarkable selectivity and a potency comparable to known CYP inhibitors. The flavone apigenin inhibited the epoxidation, ω-hydroxylation, and (ω-n)-hydroxylation of AA with IC50 values of 4.4-9.8, 2.9-10, and 10-25 μM, respectively. Other flavones such as wogonin selectively inhibited CYP1A1-catalyzed (ω-n)-hydroxylation with an IC50 value of 0.10-0.22 μM, while the isoflavone genistein was a selective ω-hydroxylase inhibitor (IC50: 5.5-46 μM). Of note, the flavanone naringenin and the anthocyanidin perlargonidin did not inhibit CYPs of the AA cascade. Moderate permeability of apigenin as tested in the Caco-2 model of intestinal absorption (Papp: 4.5 ± 1 × 10-6 cm/s) and confirmation of the inhibition of 20-HETE formation by apigenin in the colorectal cancer-derived cell line HCT 116 (IC50: 1.5-8.8 μM) underline the possible in vivo relevance of these effects. Further research is needed to better understand how polyphenols impact human health by this newly described molecular mode of action.
Collapse
Affiliation(s)
- Nadja Kampschulte
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Gaussstr. 20, 42119 Wuppertal, Germany
| | - Ayah Alasmer
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Gaussstr. 20, 42119 Wuppertal, Germany
| | - Michael T Empl
- Institute for Food Toxicology, University of Veterinary Medicine Hannover, Bischofsholer Damm 15, 30173 Hannover, Germany
| | - Michael Krohn
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Gaussstr. 20, 42119 Wuppertal, Germany
| | - Pablo Steinberg
- Institute for Food Toxicology, University of Veterinary Medicine Hannover, Bischofsholer Damm 15, 30173 Hannover, Germany
| | - Nils Helge Schebb
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Gaussstr. 20, 42119 Wuppertal, Germany
- Institute for Food Toxicology, University of Veterinary Medicine Hannover, Bischofsholer Damm 15, 30173 Hannover, Germany
| |
Collapse
|
4
|
Cusinato DAC, Martinez EZ, Cintra MTC, Filgueira GCO, Berretta AA, Lanchote VL, Coelho EB. Evaluation of potential herbal-drug interactions of a standardized propolis extract (EPP-AF®) using an in vivo cocktail approach. JOURNAL OF ETHNOPHARMACOLOGY 2019; 245:112174. [PMID: 31442620 DOI: 10.1016/j.jep.2019.112174] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 08/14/2019] [Accepted: 08/19/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Propolis has been employed extensively in many cultures since ancient times as antiseptic, wound healing, anti-pyretic and others due to its biological and pharmacological properties, such as immunomodulatory, antitumor, anti-inflammatory, antioxidant, antibacterial, antiviral, antifungal, antiparasite activities. But despite its broad and traditional use, there is little knowledge about its potential interaction with prescription drugs. AIM OF THE STUDY The main objective of this work was to study the potential herbal-drug interactions (HDIs) of EPP-AF® using an in vivo assay with a cocktail approach. MATERIALS AND METHODS Subtherapeutic doses of caffeine, losartan, omeprazole, metoprolol, midazolam and fexofenadine were used. Sixteen healthy adult volunteers were investigated before and after exposure to orally administered 125 mg/8 h (375 mg/day) EPP-AF® for 15 days. Pharmacokinetic parameters were calculated based on plasma concentration versus time (AUC) curves. RESULTS After exposure to EPP-AF®, it was observed decrease in the AUC0-∞ of fexofenadine, caffeine and losartan of approximately 18% (62.20 × 51.00 h.ng/mL), 8% (1085 × 999 h.ng/mL) and 13% (9.01 × 7.86 h.ng/mL), respectively, with all 90% CIs within the equivalence range of 0.80-1.25. On the other hand, omeprazole and midazolam exhibited an increase in AUC0-∞ of, respectively, approximately 18% (18.90 × 22.30 h.ng/mL) and 14% (1.25 × 1.43 h.ng/mL), with the upper bounds of 90% CIs slightly above 1.25. Changes in pharmacokinetics of metoprolol or its metabolite α-hydroxymetoprolol were not statistically significant and their 90% CIs were within the equivalence range of 0.80-1.25. CONCLUSIONS In conclusion, our study shows that EPP-AF® does not clinically change CYP1A2, CYP2C9, CYP2C19, CYP2D6 and CYP3A activities, once, despite statistical significant, the magnitude of the changes in AUC values after EPP-AF® were all below 20% and therefore may be considered safe regarding potential interactions involving these enzymes. Besides, to the best of our knowledge this is the first study to assess potential HDIs with propolis.
Collapse
Affiliation(s)
- Diego A C Cusinato
- School of Pharmaceutical Sciences of Ribeirão Preto, Department of Clinical Analysis, Toxicology and Food Science, University of São Paulo, Brazil
| | - Edson Z Martinez
- Ribeirão Preto Medical School, Department of Social Medicine, University of São Paulo Ribeirão Preto, Brazil
| | - Mônica T C Cintra
- General Clinical Research Center, Teaching Hospital Ribeirão Preto, Brazil
| | - Gabriela C O Filgueira
- Medical School, University of São Paulo Medical School, Department of Obstetrics and Gynecology, University of São Paulo, Brazil
| | - Andresa A Berretta
- Laboratório de Pesquisa, Desenvolvimento & Inovação, Apis Flora Indl. Coml. Ltda., Ribeirão Preto, SP, Brazil
| | - Vera L Lanchote
- School of Pharmaceutical Sciences of Ribeirão Preto, Department of Clinical Analysis, Toxicology and Food Science, University of São Paulo, Brazil
| | - Eduardo B Coelho
- School of Pharmaceutical Sciences of Ribeirão Preto, Department of Clinical Analysis, Toxicology and Food Science, University of São Paulo, Brazil; Ribeirão Preto Medical School, Department of Internal Medicine, University of São Paulo, Brazil.
| |
Collapse
|
5
|
Begas E, Bounitsi M, Kilindris T, Kouvaras E, Makaritsis K, Kouretas D, Asprodini EK. Effects of short-term saffron (Crocus sativus L.) intake on the in vivo activities of xenobiotic metabolizing enzymes in healthy volunteers. Food Chem Toxicol 2019; 130:32-43. [PMID: 31082462 DOI: 10.1016/j.fct.2019.05.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 05/08/2019] [Accepted: 05/09/2019] [Indexed: 12/30/2022]
Abstract
Crocus sativus L., a perennial plant grown mainly around the Mediterranean and Iran, has many medicinal properties including anti-inflammatory, anti-depressive and cancer preventing properties. Aqueous herbal extracts may affect the activity of Phase I and II enzymes involved in xenobiotic metabolism. The present study was designed to determine whether C. sativus infusion alters the activity of CYP1A2, CYP2A6, XO and NAT2 enzymes in humans. Thirty-four healthy volunteers consumed infusion prepared from C. sativus stigmata for six days. Enzyme phenotyping was assessed in saliva and urine using caffeine metabolite ratios as follows: CYP1A2: 17X/137Χ (saliva) and CYP1A2: (AFMU+1U+1X)/17U, CYP2A6: 17U/(17U + 17X), XO: 1U/(1U+1X) and NAT2: AFMU/(AFMU+1U+1X) (urine). Following C. sativus intake, CYP1A2 index was reduced by ∼13.7% in saliva (before: 0.51 ± 0.22, after: 0.44 ± 0.14; p = 0.002) and ∼6.0% in urine (before: 3.81 ± 1.20, after: 3.58 ± 0.92; p = 0.054). CYP1A2 index was significantly reduced only in males (saliva, before: 0.65 ± 0.22, after: 0.51 ± 0.16; p = 0.0001; urine, before: 4.53 ± 1.19, after: 4.03 ± 0.87; p = 0.017) suggesting sexual dimorphism in CYP1A2 inhibition. There was no effect of C. sativus intake on CYP2A6, XO or NAT2 indices. Short-term consumption of C. sativus infusion is unlikely to result in significant herb-drug interactions involving the enzymes studied, with the exception of potential herb-CYP1A2 substrate interaction in males.
Collapse
Affiliation(s)
- Elias Begas
- Laboratory of Pharmacology, University of Thessaly, 41500, Biopolis, Larissa, Greece.
| | - Maria Bounitsi
- Laboratory of Pharmacology, University of Thessaly, 41500, Biopolis, Larissa, Greece.
| | - Thomas Kilindris
- Laboratory of Medical Informatics, University of Thessaly, 41500, Biopolis, Larissa, Greece.
| | - Evangelos Kouvaras
- Laboratory of Pharmacology, University of Thessaly, 41500, Biopolis, Larissa, Greece.
| | - Konstantinos Makaritsis
- Department of Internal Medicine, Faculty of Medicine, University of Thessaly, 41500, Biopolis, Larissa, Greece.
| | - Demetrios Kouretas
- Laboratory of Animal Physiology - Toxicology, Department of Biochemistry-Biotechnology, University of Thessaly, 41500, Biopolis, Larissa, Greece.
| | - Eftihia K Asprodini
- Laboratory of Pharmacology, University of Thessaly, 41500, Biopolis, Larissa, Greece.
| |
Collapse
|
6
|
Karlik W, Chłopecka M, Bamburowicz-Klimkowska M, Mendel M. Modulations of bovine hepatic microsomal metabolism of benzimidazoles by secondary plant metabolites. J Vet Pharmacol Ther 2018; 42:222-229. [PMID: 30474118 DOI: 10.1111/jvp.12727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 09/11/2018] [Accepted: 09/21/2018] [Indexed: 10/27/2022]
Abstract
The study was aimed to estimate the effect of plant secondary metabolites present in ruminants diet and phytogenic feed additives on liver microsomal metabolism of albendazole and fenbendazole. The selected phytocompounds comprised of flavonoids (apigenin, quercetin) and saponins (hederagenin, medicagenic acid). The experiments were performed on liver microsomal fraction obtained from routinely slaughtered cows. The intensity of albendazole and fenbendazole metabolism in the presence of flavonoids and saponins was analyzed in equimolar concentration (100 μM). The obtained results revealed that both flavonoids and saponins intensify the metabolism of albendazole and fenbendazole in bovine microsomes. In the case of albendazole, apigenin and quercetin doubled the amount of degraded drug and the amount of produced albendazole sulfoxide. Additionally, both flavonoids increased the amount of produced albendazole sulfone. Saponins, hederagenin, and medicagenic acid intensified the degradation of albendazole (1.8-fold) and the production of albendazole sulfoxide (twofold). Medicagenic acid inhibited the production of albendazole sulfone. In the case of fenbendazole, the degradation of the drug and the production of oxfendazole were increased four and five times in the presence of saponins and flavonoids, respectively. The enhancement of benzimidazoles' metabolism caused by the studied plant metabolites could change pharmacokinetics and the efficacy of benzimidazoles' treatment in cattle.
Collapse
Affiliation(s)
- Wojciech Karlik
- Division of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - Magdalena Chłopecka
- Division of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | | | - Marta Mendel
- Division of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| |
Collapse
|
7
|
Tan S, Dong Z, Zhang J, Efferth T, Fu Y, Hua X. Cytochrome P450 reaction phenotyping and inhibition and induction studies of pinostrobin in human liver microsomes and hepatocytes. Biomed Chromatogr 2017; 31. [DOI: 10.1002/bmc.3888] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 10/24/2016] [Accepted: 11/01/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Shengnan Tan
- Key Laboratory of Forest Plant Ecology, Ministry of Education; Northeast Forestry University; 150040 Harbin PR China
- Engineering Research Center of Forest Bio-preparation, Ministry of Education; Northeast Forestry University; 150040 Harbin PR China
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration in Oil Field, Ministry of Education; Northeast Forestry University; Harbin PR China
| | - Zhimin Dong
- Tianjin Animal Science and Veterinary Research Institute; Tianjin PR China
- Veteria Veterinary Research Institute; Tianjin PR China
| | - Jiashuo Zhang
- College of Life Science; Northeast Forestry University; Harbin PR China
| | - Thomas Efferth
- Department of Pharmaceutical Biology; Institute of Pharmacy, University of Mainz; Mainz Germany
| | - Yujie Fu
- Key Laboratory of Forest Plant Ecology, Ministry of Education; Northeast Forestry University; 150040 Harbin PR China
- Engineering Research Center of Forest Bio-preparation, Ministry of Education; Northeast Forestry University; 150040 Harbin PR China
| | - Xin Hua
- Division of Bacterial Diseases, State Key Laboratory of Veterinary Biotechnology; Harbin Veterinary Research Institute,Chinese Academy of Agricultural Sciences; Harbin PR China
| |
Collapse
|
8
|
Ryu CS, Oh SJ, Oh JM, Lee JY, Lee SY, Chae JW, Kwon KI, Kim SK. Inhibition of Cytochrome P450 by Propolis in Human Liver Microsomes. Toxicol Res 2016; 32:207-13. [PMID: 27437087 PMCID: PMC4946414 DOI: 10.5487/tr.2016.32.3.207] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 05/20/2016] [Accepted: 05/23/2016] [Indexed: 12/05/2022] Open
Abstract
Although propolis is one of the most popular functional foods for human health, there have been no comprehensive studies of herb-drug interactions through cytochrome P450 (CYP) inhibition. The purpose of this study was to determine the inhibitory effects of propolis on the activities of CYP1A2, 2A6, 2B6, 2C9, 2C19, 2D6, 2E1 and 3A4 using pooled human liver microsomes (HLMs). Propolis inhibited CYP1A2, CYP2E1 and CYP2C19 with an IC50 value of 6.9, 16.8, and 43.1 μg/mL, respectively, whereas CYP2A6, 2B6, 2C9, 2D6, and 3A4 were unaffected. Based on half-maximal inhibitory concentration shifts between microsomes incubated with and without nicotinamide adenine dinucleotide phosphate, propolis-induced CYP1A2, CYP2C19, and CYP2E1 inhibition was metabolism-independent. To evaluate the interaction potential between propolis and therapeutic drugs, the effects of propolis on metabolism of duloxetine, a serotonin-norepinephrine reuptake inhibitor, were determined in HLMs. CYP1A2 and CYP2D6 are involved in hydroxylation of duloxetine to 4-hydroxy duloxetine, the major metabolite, which was decreased following propolis addition in HLMs. These results raise the possibility of interactions between propolis and therapeutic drugs metabolized by CYP1A2.
Collapse
Affiliation(s)
- Chang Seon Ryu
- College of Pharmacy, Chungnam National University, Daejeon, Korea
| | - Soo Jin Oh
- Bio-Evaluation Center, Korea Research Institute of Bioscience and Biotechnology, Ochang, Korea
| | - Jung Min Oh
- College of Pharmacy, Chungnam National University, Daejeon, Korea
| | - Ji-Yoon Lee
- College of Pharmacy, Chungnam National University, Daejeon, Korea
| | - Sang Yoon Lee
- College of Pharmacy, Chungnam National University, Daejeon, Korea
| | - Jung-Woo Chae
- College of Pharmacy, Chungnam National University, Daejeon, Korea
| | - Kwang-Il Kwon
- College of Pharmacy, Chungnam National University, Daejeon, Korea
| | - Sang Kyum Kim
- College of Pharmacy, Chungnam National University, Daejeon, Korea
| |
Collapse
|
9
|
Kaserer T, Höferl M, Müller K, Elmer S, Ganzera M, Jäger W, Schuster D. In Silico Predictions of Drug - Drug Interactions Caused by CYP1A2, 2C9 and 3A4 Inhibition - a Comparative Study of Virtual Screening Performance. Mol Inform 2015; 34:431-57. [DOI: 10.1002/minf.201400192] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 03/10/2015] [Indexed: 12/11/2022]
|
10
|
Lu D, Ma Z, Zhang T, Zhang X, Wu B. Metabolism of the anthelmintic drug niclosamide by cytochrome P450 enzymes and UDP-glucuronosyltransferases: metabolite elucidation and main contributions from CYP1A2 and UGT1A1. Xenobiotica 2015; 46:1-13. [DOI: 10.3109/00498254.2015.1047812] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
11
|
The effect of apigenin on pharmacokinetics of imatinib and its metabolite N-desmethyl imatinib in rats. BIOMED RESEARCH INTERNATIONAL 2013; 2013:789184. [PMID: 24369535 PMCID: PMC3863468 DOI: 10.1155/2013/789184] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 10/30/2013] [Indexed: 01/13/2023]
Abstract
The purpose of this study was to determine the effect of apigenin on the pharmacokinetics of imatinib and N-desmethyl imatinib in rats. Healthy male SD rats were randomly divided into four groups: A group (the control group), B group (the long-term administration of 165 mg/kg apigenin for 15 days), C group (a single dose of 165 mg/kg apigenin), and D group (a single dose of 252 mg/kg apigenin). The serum concentrations of imatinib and N-desmethyl imatinib were measured by HPLC, and pharmacokinetic parameters were calculated using DAS 3.0 software. The parameters of AUC(0−t), AUC(0−∞), Tmax, Vz/F, and CLz/F for imatinib in group B were different from those in group A (P < 0.05). Besides, MRT(0−t) and MRT(0−∞) in groups C and D differed distinctly from those in group A as well. The parameters of AUC(0−t) and Cmax for N-desmethyl imatinib in group C were significantly lower than those in group A (P < 0.05); however, compared with groups B and D, the magnitude of effect was modest. Those results indicated that apigenin in the short-term study inhibited the metabolism of imatinib and its metabolite N-desmethyl imatinib, while in the long-term study the metabolism could be accelerated.
Collapse
|
12
|
Wang P, Pan X, Chen G, Li J, Liu L, Liu X, Jin S, Xie L, Wang G. Increased exposure of vitamin A by Chrysanthemum morifolium Ramat extract in rat was not via induction of CYP1A1, CYP1A2, and CYP2B1. J Food Sci 2012; 77:H121-7. [PMID: 22671526 DOI: 10.1111/j.1750-3841.2012.02732.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The aim of this study was to investigate the effect of Chrysanthemum morifolium Ramat (CM) extract on the pharmacokinetics of retinol and activities of cytochrome P450s (CYP450s) related to retinoid metabolism. Rats were treated with CM extract for 15 d. Plasma concentrations of retinol were measured following oral administration of retinol (45 mg/kg). Basal levels of retinol and retinoic acid in serum and liver were also measured. 7-Ethoxyresorufin-O-deethylase activity, phenacetin-O-deethylase activity, and 7-pentoxyresorufin-O-deethylase activities were used to assay the activities of CYP1A1, CYP1A2, and CYP2B1 in hepatic microsomes of rats, respectively. Protein expressions of the 3 CYP450s were measured by western blot. Our studies demonstrated that CM extract dose-dependently increased basal level of retinol in serum. In pharmacokinetic experiment, CM extract dose-dependently increased plasma concentrations of retinol after oral administration of retinol to rats treated with CM extract. But activities and expressions of CYP1A1, CYP1A2, and CYP2B1 in hepatic microsomes of rats were also induced by CM extract.
Collapse
Affiliation(s)
- Ping Wang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical Univ, Nanjing, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|