1
|
Wang Z, Xiao Z, Xu H, Pan T, Liao J, Tian Y. A near-infrared lysosomal probe for dynamic sulfur dioxide monitoring in inflammation. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 320:124647. [PMID: 38880075 DOI: 10.1016/j.saa.2024.124647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/20/2024] [Accepted: 06/10/2024] [Indexed: 06/18/2024]
Abstract
Inflammation is a complex physiological response involving various cellular and molecular events. Sulfur dioxide (SO2), recognized as both an endogenous signaling molecule and anti-inflammatory agent, plays a crucial role in modulating inflammation and maintaining cellular homeostasis. To gain deeper insights into the dynamics of inflammation-related processes, real-time monitoring of SO2 concentrations within cellular organelles is imperative. Here, we developed a near-infrared fluorescent probe, R2, equipped with lysosomal targeting features. R2 effectively monitors dynamic SO2 concentration changes during inflammation. The fluorescence intensity at 703 nm of R2 shows a strong linear correlation with the concentration of SO2, displaying a rapid response time to SO2 within 10 s and maintaining excellent photostability. The successful application of R2 in elucidating dynamic SO2 concentration changes in lysosomal during cellular and rat inflammatory processes underscores its significant potential as a tool for understanding the pathogenesis of inflammation-related diseases.
Collapse
Affiliation(s)
- Ziqiang Wang
- School of Medicine, Southern University of Science and Technology, No 1088 Xueyuan Blvd, Xili, Nanshan District, Shenzhen, Guangdong 518055, China
| | - Ziyu Xiao
- Department of Materials Science and Engineering, Southern University of Science and Technology, No 1088 Xueyuan Blvd, Xili, Nanshan District, Shenzhen, Guangdong 518055, China
| | - Hanyu Xu
- Department of Materials Science and Engineering, Southern University of Science and Technology, No 1088 Xueyuan Blvd, Xili, Nanshan District, Shenzhen, Guangdong 518055, China
| | - Tingting Pan
- Department of Pediatric Neurology, Shenzhen Children's Hospital, 7019 Yitian Road, Shenzhen 518038, China.
| | - Jianxiang Liao
- Department of Pediatric Neurology, Shenzhen Children's Hospital, 7019 Yitian Road, Shenzhen 518038, China.
| | - Yanqing Tian
- Department of Materials Science and Engineering, Southern University of Science and Technology, No 1088 Xueyuan Blvd, Xili, Nanshan District, Shenzhen, Guangdong 518055, China.
| |
Collapse
|
2
|
Sun X, Mao C, Wang J, Wu S, Qu Y, Xie Y, Sun F, Jiang D, Song Y. Unveiling the Potential of Sulfur-Containing Gas Signaling Molecules in Acute Lung Injury: A Promising Therapeutic Avenue. Curr Issues Mol Biol 2024; 46:7147-7168. [PMID: 39057067 PMCID: PMC11275821 DOI: 10.3390/cimb46070426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/30/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
Acute lung injury (ALI) and its most severe form, acute respiratory distress syndrome (ARDS), are pulmonary conditions that cause significant morbidity and mortality. The common etiologies of these conditions include pneumonia, pulmonary contusion, fat embolism, smoke inhalation, sepsis, shock, and acute pancreatitis. Inflammation, oxidative stress, apoptosis, and autophagy are key pathophysiological mechanisms underlying ALI. Hydrogen sulfide (H2S) and sulfur dioxide (SO2) are sulfur-containing gas signaling molecules that can mitigate these pathogenic processes by modulating various signaling pathways, such as toll-like receptor 4 (TLR4)/nod-like receptor protein 3 (NLRP3), extracellular signal-regulating protein kinase 1/2 (ERK1/2), mitogen-activated protein kinase (MAPK), phosphatidyl inositol 3 kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR), and nuclear factor kappa B (NF-κB), thereby conferring protection against ALI. Given the limited clinical effectiveness of prevailing ALI treatments, investigation of the modulation of sulfur-containing gas signaling molecules (H2S and SO2) in ALI is imperative. This article presents an overview of the regulatory pathways of sulfur-containing gas signaling molecules in ALI animal models induced by various stimuli, such as lipopolysaccharide, gas inhalation, oleic acid, and ischemia-reperfusion. Furthermore, this study explored the therapeutic prospects of diverse H2S and SO2 donors for ALI, stemming from diverse etiologies. The aim of the present study was to establish a theoretical framework, in order to promote the new treatment of ALI.
Collapse
Affiliation(s)
- Xutao Sun
- Department of Typhoid, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin 150040, China;
| | - Caiyun Mao
- Department of Pharmacology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (C.M.); (S.W.); (Y.Q.)
| | - Jiaxin Wang
- Department of Synopsis Golden Chamber, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (J.W.); (Y.X.)
| | - Siyu Wu
- Department of Pharmacology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (C.M.); (S.W.); (Y.Q.)
| | - Ying Qu
- Department of Pharmacology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (C.M.); (S.W.); (Y.Q.)
| | - Ying Xie
- Department of Synopsis Golden Chamber, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (J.W.); (Y.X.)
| | - Fengqi Sun
- Department of Pathology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin 150040, China;
| | - Deyou Jiang
- Department of Synopsis Golden Chamber, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (J.W.); (Y.X.)
| | - Yunjia Song
- Department of Pharmacology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (C.M.); (S.W.); (Y.Q.)
| |
Collapse
|
3
|
Lyu J, Wang C, Zhang X. Rational Construction of a Mitochondria-Targeted Reversible Fluorescent Probe with Intramolecular FRET for Ratiometric Monitoring Sulfur Dioxide and Formaldehyde. BIOSENSORS 2022; 12:bios12090715. [PMID: 36140101 PMCID: PMC9496144 DOI: 10.3390/bios12090715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 08/26/2022] [Accepted: 08/30/2022] [Indexed: 12/16/2022]
Abstract
Sulfur dioxide (SO2) and formaldehyde (FA) are important species that maintain redox homeostasis in life and are closely related to many physiological and pathological processes. Therefore, it is of great significance to realize the reversible monitoring of them at the intracellular level. Here, we synthesized a reversible ratiometric fluorescent probe through a reasonable design, which can sensitively monitor SO2 derivatives and FA, and the detection limit can reach 0.16 μM. The probe can specifically target mitochondria and successfully monitor the fluctuations of SO2 and FA in living cells. It also works well in the detection of SO2 and FA in zebrafish. This high-performance probe is expected to find broad in vitro and in vivo applications.
Collapse
Affiliation(s)
- Jinxiao Lyu
- Cancer Centre and Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau SAR 999078, China
| | - Chunfei Wang
- Cancer Centre and Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau SAR 999078, China
| | - Xuanjun Zhang
- Cancer Centre and Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau SAR 999078, China
- MOE Frontiers Science Center for Precision Oncology, University of Macau, Macau SAR 999078, China
- Correspondence:
| |
Collapse
|
4
|
Zeng H, Jian Y, Xie Y, Fan Q, Chang Q, Zheng B, Zhang Y. Edible bird's nest inhibits the inflammation and regulates the immunological balance of lung injury mice by SO
2. FOOD FRONTIERS 2022. [DOI: 10.1002/fft2.146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Hongliang Zeng
- College of Food Science Fujian Agriculture and Forestry University Fuzhou China
| | - Yeye Jian
- College of Food Science Fujian Agriculture and Forestry University Fuzhou China
| | - Yong Xie
- College of Pharmacy Fujian University of Traditional Chinese Medicine Fuzhou China
| | | | - Qing Chang
- College of Food Science Fujian Agriculture and Forestry University Fuzhou China
| | - Baodong Zheng
- College of Food Science Fujian Agriculture and Forestry University Fuzhou China
| | - Yi Zhang
- College of Food Science Fujian Agriculture and Forestry University Fuzhou China
| |
Collapse
|
5
|
Huang Y, Zhang H, Lv B, Tang C, Du J, Jin H. Sulfur Dioxide: Endogenous Generation, Biological Effects, Detection, and Therapeutic Potential. Antioxid Redox Signal 2022; 36:256-274. [PMID: 34538110 DOI: 10.1089/ars.2021.0213] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Significance: Previously, sulfur dioxide (SO2) was recognized as an air pollutant. However, it is found to be endogenously produced in mammalian tissues. As a new gasotransmitter, SO2 is involved in regulating the structure and function of blood vessels, heart, lung, gastrointestinal tract, nervous system, etc.Recent Advances: Increasing evidence showed that endogenous SO2 regulates cardiovascular physiological processes, such as blood pressure control, vasodilation, maintenance of the normal vascular structure, and cardiac negative inotropy. Under pathological conditions including hypertension, atherosclerosis, vascular calcification, aging endothelial dysfunction, myocardial injury, myocardial hypertrophy, diabetic myocardial fibrosis, sepsis-induced cardiac dysfunction, pulmonary hypertension, acute lung injury, colitis, epilepsy-related brain injury, depression and anxiety, and addictive drug reward memory consolidation, endogenous SO2 protects against the pathological changes via different molecular mechanisms and the disturbed SO2/aspartate aminotransferase pathway is likely involved in the mechanisms for the earlier mentioned pathologic processes. Critical Issues: A comprehensive understanding of the biological effects of endogenous SO2 is extremely important for the development of novel SO2 therapy. In this review, we summarized the biological effects, mechanism of action, SO2 detection methods, and its related prodrugs. Future Directions: Further studies should be conducted to understand the effects of endogenous SO2 in various physiological and pathophysiological processes and clarify its underlying mechanisms. More efficient and accurate SO2 detection methods, as well as specific and effective SO2-releasing systems should be designed for the treatment and prevention of clinical related diseases. The translation from SO2 basic medical research to its clinical application is also worthy of further study. Antioxid. Redox Signal. 36, 256-274.
Collapse
Affiliation(s)
- Yaqian Huang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Heng Zhang
- Department of Endocrinology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Boyang Lv
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Chaoshu Tang
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China
| | - Junbao Du
- Department of Pediatrics, Peking University First Hospital, Beijing, China.,Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China
| | - Hongfang Jin
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| |
Collapse
|
6
|
Lu Q, Lu T, Xu M, Yang L, Song Y, Li N. SO2 prodrug doped nanorattles with extra-high drug payload for “collusion inside and outside” photothermal/pH triggered - gas therapy. Biomaterials 2020; 257:120236. [DOI: 10.1016/j.biomaterials.2020.120236] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 06/22/2020] [Accepted: 07/13/2020] [Indexed: 01/11/2023]
|
7
|
Zhu Z, Zhang L, Chen Q, Li K, Yu X, Tang C, Kong W, Jin H, Du J, Huang Y. Macrophage-derived sulfur dioxide is a novel inflammation regulator. Biochem Biophys Res Commun 2020; 524:916-922. [PMID: 32057367 DOI: 10.1016/j.bbrc.2020.02.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 02/03/2020] [Indexed: 12/17/2022]
Abstract
Macrophage-mediated inflammation is a key pathophysiological component of cardiovascular diseases, but the underlying mechanisms by which the macrophage regulates inflammation have been unclear. In our study, we, for the first time, showed an endogenous sulfur dioxide (SO2) production in RAW267.4 macrophages by using HPLC and SO2-specific fluorescent probe assays. Moreover, the endogenous SO2 generating enzyme aspartate aminotransferase (AAT) was found to be expressed by the macrophages. Furthermore, we showed that AAT2 knockdown triggered spontaneous macrophage-mediated inflammation, as represented by the increased TNF-α and IL-6 levels and the enhanced macrophage chemotaxis; these effects could be reversed by the treatment with a SO2 donor. Mechanistically, AAT2 knockdown activated the NF-κB signaling pathway in macrophages, while SO2 successfully rescued NF-κB activation. In contrast, forced AAT2 expression reversed AngII-induced NF-κB activation and subsequent macrophage inflammation. Moreover, treatment with a SO2 donor also alleviated macrophage infiltration in AngII-treated mouse hearts. Collectively, our data suggest that macrophage-derived SO2 is an important regulator of macrophage activation and it acts as an endogenous "on-off switch" in the control of macrophage activation. This knowledge might enable a new therapeutic strategy for cardiovascular diseases.
Collapse
Affiliation(s)
- Zhigang Zhu
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Lulu Zhang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Qinghua Chen
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Kun Li
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, China
| | - Xiaoqi Yu
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, China
| | - Chaoshu Tang
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China; Key Laboratory of Molecular Cardiology, Ministry of Education, Beijing, China
| | - Wei Kong
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China; Key Laboratory of Molecular Cardiology, Ministry of Education, Beijing, China
| | - Hongfang Jin
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Junbao Du
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Yaqian Huang
- Department of Pediatrics, Peking University First Hospital, Beijing, China.
| |
Collapse
|
8
|
Huang J, Pan X, Guo X, Li G. Impacts of air pollution wave on years of life lost: A crucial way to communicate the health risks of air pollution to the public. ENVIRONMENT INTERNATIONAL 2018; 113:42-49. [PMID: 29421406 DOI: 10.1016/j.envint.2018.01.022] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 01/07/2018] [Accepted: 01/22/2018] [Indexed: 06/08/2023]
Abstract
Limited studies have explored the impacts of exposure to sustained high levels of air pollution (air pollution wave) on mortality. Given that the frequency, intensity and duration of air pollution wave has been increasing in highly polluted regions recently, understanding the impacts of air pollution wave is crucial. In this study, air pollution wave was defined as 2 or more consecutive days with air pollution index (API) > 100. The impacts of air pollution wave on years of life lost (YLL) due to non-accidental, cardiovascular and respiratory deaths were evaluated by considering both consecutive days with high levels of air pollution and daily air pollution levels in Tianjin, China, from 2006 to 2011. The results showed the durational effect of consecutive days with high levels of air pollution was substantial in addition to the effect of daily air pollution. For instance, the durational effect was related to an increase in YLL of 116.6 (95% CI: 4.8, 228.5) years from non-accidental deaths when the air pollution wave was sustained for 4 days, while the corresponding daily air pollution's effect was 121.2 (95% CI: 55.2, 187.1) years. A better interpretation of the health risks of air pollution wave is crucial for air pollution control policy making and public health interventions.
Collapse
Affiliation(s)
- Jing Huang
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing, China
| | - Xiaochuan Pan
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing, China
| | - Xinbiao Guo
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing, China
| | - Guoxing Li
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing, China.
| |
Collapse
|
9
|
Zhao YR, Lv WR, Zhou JL. Role of carbonyl sulfide in acute lung injury following limb ischemia/reperfusion in rats. Eur J Med Res 2017; 22:12. [PMID: 28351415 PMCID: PMC5371182 DOI: 10.1186/s40001-017-0255-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Accepted: 03/23/2017] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE To investigate the effect of carbonyl sulfide (COS) on limb ischemia/reperfusion (I/R)-induced acute lung injury (ALI) and the associated mechanism in rats. METHODS ALI was induced by bilateral hind limb I/R in Sprague-Dawley (SD) rats. Sixty-four SD rats were randomly divided into the control group, I/R group, I/R + COS group, and I/R + AIR group. We observed the survival rate of the rats and the morphological changes of lung tissues, and we measured the change in the lung coefficient, the expression levels of the intercellular adhesion factor-1 (ICAM-1) protein in lung tissue, the expression of tumor necrosis factor (TNF)-α, interleukin (IL)-lβ, and interleukin (IL)-6 in both lung tissue and serum, and cell apoptosis. RESULTS Limb I/R caused significant lung tissue damage. The number of polymorphonuclear neutrophil in alveolar septa, the expression level of the ICAM-1 protein in lung tissue, the expression levels of TNF-α, IL-1, and IL-6 in lung tissue and serum, the lung coefficient, and cell apoptosis all increased. When a low dose of COS gas was administered prior to limb I/R, the variation of the above indicators was significantly reduced, while an increase in the dose of COS did not reduce the lung injury but rather increased the mortality rate. CONCLUSION Carbonyl sulfide is another new gaseous signaling molecule, and a low dose of exogenous COS may play a protective role in I/R-induced ALI by acting as an anti-inflammatory agent by promoting the production of antioxidants and by inhibiting the expression of adhesion molecule proteins.
Collapse
Affiliation(s)
- Yan-Rui Zhao
- Department of Orthopedics, Beijing Chao Yang Hospital, Capital Medical University, Gong Ren Ti Yu Chang Nan Rd, Chaoyang District, Beijing, 100020, People's Republic of China
| | - Wen-Rui Lv
- Department of Orthopedics, Beijing Chao Yang Hospital, Capital Medical University, Gong Ren Ti Yu Chang Nan Rd, Chaoyang District, Beijing, 100020, People's Republic of China
| | - Jun-Lin Zhou
- Department of Orthopedics, Beijing Chao Yang Hospital, Capital Medical University, Gong Ren Ti Yu Chang Nan Rd, Chaoyang District, Beijing, 100020, People's Republic of China.
| |
Collapse
|
10
|
Endogenous sulfur dioxide is a novel adipocyte-derived inflammatory inhibitor. Sci Rep 2016; 6:27026. [PMID: 27246393 PMCID: PMC4887903 DOI: 10.1038/srep27026] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 05/12/2016] [Indexed: 01/14/2023] Open
Abstract
The present study was designed to determine whether sulfur dioxide (SO2) could be endogenously produced in adipocyte and served as a novel adipocyte-derived inflammatory inhibitor. SO2 was detected in adipose tissue using high-performance liquid chromatography with fluorescence detection. SO2 synthase aspartate aminotransferase (AAT1 and AAT2) mRNA and protein expressions in adipose tissues were measured. For in vitro study, 3T3-L1 adipocytes were cultured, infected with adenovirus carrying AAT1 gene or lentivirus carrying shRNA to AAT1, and then treated with tumor necrosis factor-α (TNF-α). We found that endogenous SO2/AAT pathway existed in adipose tissues including perivascular, perirenal, epididymal, subcutaneous and brown adipose tissue. AAT1 overexpression significantly increased SO2 production and inhibited TNF-α-induced inflammatory factors, monocyte chemoattractant protein-1 (MCP-1) and interleukin-8 (IL-8) secretion from 3T3-L1 adipocytes. By contrast, AAT1 knockdown decreased SO2 production and exacerbated TNF-α-stimulated MCP-1 and IL-8 secretion. Mechanistically, AAT1 overexpression attenuated TNF-α-induced IκBα phosphorylation and degradation, and nuclear factor-κB (NF-κB) p65 phosphorylation, while AAT1 knockdown aggravated TNF-α-activated NF-κB pathway, which was blocked by SO2. NF-κB inhibitors, PDTC or Bay 11-7082, abolished excessive p65 phosphorylation and adipocyte inflammation induced by AAT1 knockdown. This is the first report to suggest that endogenous SO2 is a novel adipocyte-derived inflammatory inhibitor.
Collapse
|
11
|
Zhao YR, Wang D, Liu Y, Shan L, Zhou JL. The PI3K/Akt, p38MAPK, and JAK2/STAT3 signaling pathways mediate the protection of SO2 against acute lung injury induced by limb ischemia/reperfusion in rats. J Physiol Sci 2016; 66:229-39. [PMID: 26541157 PMCID: PMC10716937 DOI: 10.1007/s12576-015-0418-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 10/07/2015] [Indexed: 01/14/2023]
Abstract
Sulfur dioxide (SO2) is naturally synthesized by glutamate-oxaloacetate transaminase (GOT) from L-cysteine in mammalian cells. We found that SO2 may have a protective effect on acute lung injury (ALI) induced by limb ischemia/reperfusion (I/R) in rats. The PI3K/Akt, p38MAPK, and JAK2/STAT3 pathways are crucial in cell signaling transduction. The present study aims to verify the role of SO2 on limb I/R-induced ALI, and investigate whether PI3K/Akt, p38MAPK, and JAK2/STAT3 pathways were involved, as well as the relationship among the three pathways; we used specific inhibitors (LY294002, SB03580, and Stattic) to block them, respectively. The experimental methods of Western, ELISA, TUNEL, etc., were used to test the results. In the I/R group, the parameters of lung injury (MDA, MPO, TUNEL, cytokines) increased significantly, but the administration of Na2SO3/NaHSO3 attenuated the damage in the lung. The Western results showed that the rat's lung exist expression of P-STAT3, P-AKT, and P-p38 proteins. After I/R, P-STAT3, P-Akt, and P-p38 proteins expression all increased. After using Na2SO3/NaHSO3, P-Akt, and P-p38 proteins expression increased, but P-STAT3 protein expression decreased. We also found a strange phenomenon; compared to the I/R + SO2 group, the administration of stattic, P-p38 protein expression showed no change, but P-Akt protein expression increased (p < 0.05). In conclusion, SO2 has a protective effect on rats with limb I/R-induced ALI. The JAK2/STAT3, PI3K/Akt, and p38MAPK pathways are likely all involved in the process, and the JAK2/STAT3 pathway may have an impact on the P13K/Akt pathway.
Collapse
Affiliation(s)
- Yan-Rui Zhao
- Department of Orthopedics, Beijing Chaoyang Hospital, Capital Medical University, Gong Ren Ti Yu Chang Nan Rd, Chaoyang District, Beijing, People's Republic of China
| | - Dong Wang
- Department of Orthopedics, Beijing Chaoyang Hospital, Capital Medical University, Gong Ren Ti Yu Chang Nan Rd, Chaoyang District, Beijing, People's Republic of China
| | - Yang Liu
- Department of Orthopedics, Beijing Chaoyang Hospital, Capital Medical University, Gong Ren Ti Yu Chang Nan Rd, Chaoyang District, Beijing, People's Republic of China
| | - Lei Shan
- Department of Orthopedics, Beijing Chaoyang Hospital, Capital Medical University, Gong Ren Ti Yu Chang Nan Rd, Chaoyang District, Beijing, People's Republic of China
| | - Jun-Lin Zhou
- Department of Orthopedics, Beijing Chaoyang Hospital, Capital Medical University, Gong Ren Ti Yu Chang Nan Rd, Chaoyang District, Beijing, People's Republic of China.
| |
Collapse
|
12
|
Yang P, Yang N, Zhang X, Xu X. The significance and mechanism of propofol on treatment of ischemia reperfusion induced lung injury in rats. Cell Biochem Biophys 2015; 70:1527-32. [PMID: 25074530 DOI: 10.1007/s12013-014-0088-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
This study is aimed to investigate the efficacy and underlying the mechanism of propofol in treatment of ischemia reperfusion (IR)-induced lung injury in rats, providing a novel insight of therapeutic strategy for IR-induced lung injury. 120 healthy SD rats were selected and randomly divided into sham operation group, IR group, and propofol group (40 rats per group). Bronchoalveolar lavage fluid (BALF) protein content, serum protein content, lung permeability index, lung water content rate, methane dicarboxylic aldehyde (MDA) in lung tissue, superoxide dismutase (SOD), nitric oxide (NO), endothelin (ET-1), toll-like receptor 4 (TLR4), nuclear factor (NF-κB), and tumor necrosis factor-α (TNF-α) were examined and compared among different groups to evaluate the therapeutical effects of propofol on IR-induced lung injury and analyze the mechanism. In sham operation group, neither change in lung tissue nor pulmonary interstitial edema or alveolar wall damage was found under microscope; in IR group, marked pulmonary interstitial edema and alveolar wall damage complicated with inflammatory cell infiltration and hemorrhage were found; in propofol group, alveolar wall widening was observed, however, hemorrhage in alveolar cavity, inflammatory infiltration and tissue damage were less significant than in IR group. At 3 h after reperfusion, BALF protein content, lung permeability index, and lung water content rate were all significantly increased in IR group and propofol group, while the serum protein content was significantly lower than sham operation group (p < 0.05). Moreover, we found that the change of above parameters in propofol group was less significant than in IR group (p < 0.05). No statistically significant difference was found in ET-1 levels in different groups (p > 0.05). In contrast, MDA and NO in IR group and propofol group were significantly increased, while SOD activity was significantly decreased (p < 0.05). Furthermore, the change of above parameters in propofol group was less significant than in IR group (p < 0.05). In addition, mRNAs of TLR4, NF-κB, and TNF-α were significantly increased in IR group and propofol group (p < 0.05) with more significant change in IR group compared with propofol group (p < 0.05). Propofol has protective effects against IR-induced lung injury by improving activity of oxygen radical and restoring NO/ET-1 dynamic balance. Besides, regulation of TLR4, NF-κB, and TNF-α by propofol also play important role in alleviating IR-induced lung injury.
Collapse
Affiliation(s)
- Pei Yang
- Department of Anesthesiology, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, People's Republic of China
| | | | | | | |
Collapse
|
13
|
Wang XB, Du JB, Cui H. Sulfur dioxide, a double-faced molecule in mammals. Life Sci 2014; 98:63-7. [DOI: 10.1016/j.lfs.2013.12.027] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2013] [Revised: 12/07/2013] [Accepted: 12/20/2013] [Indexed: 12/31/2022]
|