1
|
Zdenek CN, Rodrigues CFB, Bourke LA, Tanaka-Azevedo AM, Monagle P, Fry BG. Children and Snakebite: Snake Venom Effects on Adult and Paediatric Plasma. Toxins (Basel) 2023; 15:158. [PMID: 36828472 PMCID: PMC9961128 DOI: 10.3390/toxins15020158] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/26/2023] [Accepted: 02/07/2023] [Indexed: 02/17/2023] Open
Abstract
Snakebite is a globally neglected tropical disease, with coagulation disturbances being the primary pathology of many deadly snake venoms. Age-related differences in human plasma have been abundantly reported, yet the effect that these differences pose regarding snakebite is largely unknown. We tested for differences in coagulotoxic effects (via clotting time) of multiple snake venoms upon healthy human adult (18+) and paediatric (median 3.3 years old) plasma in vivo and compared these effects to the time it takes the plasmas to clot without the addition of venom (the spontaneous clotting time). We tested venoms from 15 medically significant snake species (from 13 genera) from around the world with various mechanisms of coagulotoxic actions, across the three broad categories of procoagulant, pseudo-procoagulant, and anticoagulant, to identify any differences between the two plasmas in their relative pathophysiological vulnerability to snakebite. One procoagulant venom (Daboia russelii, Russell's Viper) produced significantly greater potency on paediatric plasma compared with adult plasma. In contrast, the two anticoagulant venoms (Pseudechis australis, Mulga Snake; and Bitis cornuta, Many-horned Adder) were significantly more potent on adult plasma. All other procoagulant venoms and all pseudo-procoagulant venoms displayed similar potency across both plasmas. Our preliminary results may inform future studies on the effect of snake venoms upon plasmas from different age demographics and hope to reduce the burden of snakebite upon society.
Collapse
Affiliation(s)
- Christina N. Zdenek
- Venom Evolution Lab, School of Biological Sciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | | | - Lachlan A. Bourke
- Venom Evolution Lab, School of Biological Sciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Anita Mitico Tanaka-Azevedo
- Laboratório de Herpetologia, Instituto Butantan, São Paulo 05508-040, SP, Brazil
- Programa de Pós-Graduação Interunidades Em Biotecnologia, USP, IPT e Instituto Butantan, São Paulo 05508-040, SP, Brazil
| | - Paul Monagle
- Department of Paediatrics, University of Melbourne, Parkville, VIC 3010, Australia
- Haematology Research, Murdoch children’s Research Institute, Flemington Rd., Parkville, VIC 3052, Australia
- Department of Clinical Haematology, Royal Children’s Hospital, Flemington Rd., Parkville, VIC 3052, Australia
- Kids Cancer Centre, Sydney Children’s Hospital, High St., Randwick, NSW 2031, Australia
| | - Bryan G. Fry
- Venom Evolution Lab, School of Biological Sciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| |
Collapse
|
2
|
Zdenek CN, Llinas J, Dobson J, Allen L, Dunstan N, Sousa LF, Moura da Silva AM, Fry BG. Pets in peril: The relative susceptibility of cats and dogs to procoagulant snake venoms. Comp Biochem Physiol C Toxicol Pharmacol 2020; 236:108769. [PMID: 32376497 DOI: 10.1016/j.cbpc.2020.108769] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 04/07/2020] [Accepted: 04/18/2020] [Indexed: 11/27/2022]
Abstract
Snakebite is a common occurrence for pet cats and dogs worldwide and can be fatal. In Australia the eastern brown snake (Pseudonaja textilis) is responsible for an estimated 76% of reported snakebite cases to domestic pets nationally each year, with the primary pathology being venom-induced consumptive coagulopathy. While only 31% of dogs survive P. textilis bites without antivenom, cats are twice as likely to survive bites (66%). Even with antivenom treatment, cats have a significantly higher survival rate. The reason behind this disparity is unclear. Using a coagulation analyser (Stago STA R Max), we tested the relative procoagulant effects of P. textilis venom-as well as 10 additional procoagulant venoms found around the world-on cat and dog plasma in vitro, as well as on human plasma for comparison. All venoms acted faster upon dog plasma than cat or human, indicating that dogs would likely enter coagulopathic states sooner, and are thus more vulnerable to procoagulant snake venoms. The spontaneous clotting time (recalcified plasma with no venom added) was also substantially faster in dogs than in cats, suggesting that the naturally faster clotting blood of dogs predisposes them to being more vulnerable to procoagulant snake venoms. This is consistent with clinical records showing more rapid onset of symptoms and lethal effects in dogs than cats. Several behavioural differences between cats and dogs are also highly likely to disproportionately negatively affect prognosis in dogs. Thus, compared to cats, dogs require earlier snakebite first-aid and antivenom to prevent the onset of lethal venom effects.
Collapse
Affiliation(s)
- Christina N Zdenek
- Venom Evolution Lab, School of Biological Sciences, The University of Queensland, St. Lucia, QLD 4072, Australia.
| | | | - James Dobson
- Venom Evolution Lab, School of Biological Sciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Luke Allen
- Venom Supplies Pty Ltd, Stonewell Rd, Tanunda, SA 5352, Australia
| | - Nathan Dunstan
- Venom Supplies Pty Ltd, Stonewell Rd, Tanunda, SA 5352, Australia
| | - Leijiane F Sousa
- Venom Evolution Lab, School of Biological Sciences, The University of Queensland, St. Lucia, QLD 4072, Australia; Laboratório de Imunopatologia, Instituto Butantan, São Paulo 05503-900, Brazil
| | | | - Bryan G Fry
- Venom Evolution Lab, School of Biological Sciences, The University of Queensland, St. Lucia, QLD 4072, Australia.
| |
Collapse
|