1
|
Li P, Ma J, Jiang Y, Yang X, Luo Y, Tao L, Guo X, Gao B. Association between Mixed Heavy Metal Exposure and Arterial Stiffness, with Alkaline Phosphatase Identified as a Mediator. Biol Trace Elem Res 2024:10.1007/s12011-024-04359-2. [PMID: 39218814 DOI: 10.1007/s12011-024-04359-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Elevated arterial stiffness has been associated with exposure to heavy metals such as lead (Pb) and cadmium (Cd). However, the collective impact of multiple metals and the underlying mechanisms are not fully elucidated. The purpose of this study was to assess the combined effects of exposure to nine heavy metals on arterial stiffness and explore whether serum alkaline phosphatase (ALP) acts as a mediator in this relationship. In the retrospective analysis, data from 8,700 participants were retrieved from the National Health and Nutrition Examination Survey (NHANES) spanning from 1999 to 2018. Arterial stiffness was measured by estimated pulse wave velocity (ePWV). The cumulative impact of exposure to multiple metals was examined using adaptive elastic-net, environmental risk score, weighted quantile sum regression, and quantile g-computation. Additionally, mediation analysis was conducted to explore the potential mediating role of serum ALP. We found that combined exposure to multiple metals was consistently associated with elevated ePWV, with Ba, Pb, and Sb exhibiting the greatest contributions. Notably, serum ALP partially mediated the associations between individual (Pb, Sb) and mixed metal exposure with ePWV, with mediation proportions at 10.76% for Pb, 18.22% for Sb, and 11.07% for mixed metal exposure. In conclusion, this study demonstrates a clear association between exposure to heavy metals, either individually or in combination, and heightened arterial stiffness. Furthermore, the findings suggest that serum ALP activity may act as a mediator in these relationships.
Collapse
Affiliation(s)
- Pingan Li
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, No.10 Xitoutiao, Youanmen Street, Beijing, 100069, China
| | - Jianhua Ma
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, No.10 Xitoutiao, Youanmen Street, Beijing, 100069, China
| | - Yue Jiang
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, No.10 Xitoutiao, Youanmen Street, Beijing, 100069, China
| | - Xinghua Yang
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, No.10 Xitoutiao, Youanmen Street, Beijing, 100069, China
| | - Yanxia Luo
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, No.10 Xitoutiao, Youanmen Street, Beijing, 100069, China
| | - Lixin Tao
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, No.10 Xitoutiao, Youanmen Street, Beijing, 100069, China
| | - Xiuhua Guo
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, No.10 Xitoutiao, Youanmen Street, Beijing, 100069, China
| | - Bo Gao
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, No.10 Xitoutiao, Youanmen Street, Beijing, 100069, China.
| |
Collapse
|
2
|
Abdulazeez R, Highab SM, Onyawole UF, Jeje MT, Musa H, Shehu DM, Ndams IS. Co-administration of resveratrol rescued lead-induced toxicity in Drosophila melanogaster. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 109:104470. [PMID: 38763436 DOI: 10.1016/j.etap.2024.104470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/23/2024] [Accepted: 05/14/2024] [Indexed: 05/21/2024]
Abstract
Lead toxicity poses a significant environmental concern linked to diverse health issues. This study explores the potential mitigating effects of resveratrol on lead-induced toxicity in Drosophila melanogaster. Adult fruit flies, aged three days, were orally exposed to lead (60 mg/L), Succimer (10 mg), and varying concentrations of resveratrol (50, 100, and 150 mg). The investigation encompassed the assessment of selected biological parameters, biochemical markers, oxidative stress indicators, and antioxidant enzymes. Resveratrol exhibited a dose-dependent enhancement of egg-laying, eclosion rate, filial generation output, locomotor activity, and life span in D. melanogaster, significantly to 150 mg of diet. Most of the investigated biochemical parameters were significantly rescued in lead-exposed fruit flies when co-treated with resveratrol (p < 0.05). However, oxidative stress remained unaffected by resveratrol. The findings suggest that resveratrol effectively protects against lead toxicity in Drosophila melanogaster and may hold therapeutic potential as an agent for managing lead poisoning in humans.
Collapse
Affiliation(s)
- R Abdulazeez
- Department of Zoology, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Kaduna State, Nigeria.
| | - S M Highab
- Department of Clinical Pharmacology and Therapeutics, Faculty of Clinical Sciences, College of Medicine and Health Sciences, Federal University, Dutse, Jigawa State, Nigeria
| | - U F Onyawole
- Department of Zoology, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Kaduna State, Nigeria
| | - M T Jeje
- Department of Zoology, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Kaduna State, Nigeria
| | - H Musa
- Department of Zoology, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Kaduna State, Nigeria
| | - D M Shehu
- Department of Zoology, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Kaduna State, Nigeria
| | - I S Ndams
- Department of Zoology, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Kaduna State, Nigeria
| |
Collapse
|
3
|
Alanazi ST, Harisa GI, Salama SA. Modulating SIRT1, Nrf2, and NF-κB signaling pathways by bergenin ameliorates the cadmium-induced nephrotoxicity in rats. Chem Biol Interact 2024; 387:110797. [PMID: 37949422 DOI: 10.1016/j.cbi.2023.110797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/30/2023] [Accepted: 11/06/2023] [Indexed: 11/12/2023]
Abstract
In light of the current industrial evolution, exposure to cadmium has become a significant public health concern. Cadmium accumulates in the renal tubular cells and causes nephrotoxicity largely through disruption of the redox homeostasis, induction of inflammation, and suppression of the histone deacetylase SIRT1 expression. The current work aimed at exploring the protective capability of bergenin, a naturally-occurring methyl gallic acid derivative, against the cadmium-evoked nephrotoxicity. Male Wistar rats were treated either with cadmium alone or with cadmium and bergenin for a 7-day experimental period followed by collection of kidney and blood specimens that were subjected to biochemical, molecular, and histological investigations. The results revealed the ability of bergenin to improve the renal functions in the cadmium-intoxicated rats as evidenced by increased glomerular filtration rate, and decreased serum creatinine and blood urea nitrogen. Equally important, bergenin reduced the renal tissue injury and enhanced its redox homeostasis as indicated by decreased protein expression of the kidney injury marker KIM-1, reduced lipid peroxidation, and improved antioxidant potential and histopathological picture of the renal tissues. Mechanistically, bergenin reduced the renal tissue cadmium content, markedly up-regulated protein expression of SIRT1 that regulates inflammation and the redox status of the renal tissues. Additionally, it improved the expression of the major antioxidant transcription factor Nrf2 and its responsive gene products heoxygenase-1 and NAD(P)H quinone dehydrogenase 1 in the cadmium-intoxicated rats. In the same context, bergenin down-regulated the acetylation and the nuclear translocation of the inflammatory transcription factor NF-κB and reduced levels of its responsive gene products TNF-α and IL-1β, as well as the activity of the inflammatory cell infiltration biomarker myeloperoxidase. Collectively, the current study underscores the ameliorating activity of bergenin against the cadmium-evoked nephrotoxicity and highlights modulation of SIRT1, Nrf2, and NF-κB signaling as potential underlining molecular mechanisms.
Collapse
Affiliation(s)
- Samyah T Alanazi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, 11433, Saudi Arabia
| | - Gamaleldin I Harisa
- Kayyali Chair for Pharmaceutical Industries, Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia; Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Al-Azhar University, Cairo, 11751, Egypt.
| | - Samir A Salama
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Al-Azhar University, Cairo, 11751, Egypt; Division of Biochemistry, Department of Pharmacology, College of Pharmacy, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| |
Collapse
|
4
|
Salama SA, Mohamadin AM, Abdel-Bakky MS. Arctigenin alleviates cadmium-induced nephrotoxicity: Targeting endoplasmic reticulum stress, Nrf2 signaling, and the associated inflammatory response. Life Sci 2021; 287:120121. [PMID: 34742745 DOI: 10.1016/j.lfs.2021.120121] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/20/2021] [Accepted: 11/01/2021] [Indexed: 12/21/2022]
Abstract
AIM Nephrotoxicity is a critical consequence of cadmium toxicity. Cadmium induces nephrotoxicity through disruption of cellular redox balance and induction of endoplasmic reticulum stress (ERS) and inflammatory responses. The present study investigated the renoprotective effects of the naturally occurring arctigenin against the cadmium-induced nephrotoxicity. MAIN METHODS Male Wistar rats were randomized into normal control, arctigenin control, cadmium, and cadmium/arctigenin groups. Cadmium and arctigenin were administered daily over a seven-day period. On the eighth day, blood and kidney tissue specimens were collected and subjected to spectrophotometric, ELISA, and immunoblotting analysis. KEY FINDINGS Arctigenin significantly improved renal functions and reduced renal tubular injury in the cadmium-intoxicated rats as reflected by increased GFR and reduced levels of serum creatinine, BUN, urinary albumin-to-creatinine ratio, and protein expression of KIM-1. Arctigenin alleviated the cadmium-induced oxidative DNA damage and lipid peroxidation while boosted reduced glutathione level and antioxidant enzymes activity. Mechanistically, arctigenin enhanced nuclear translocation of the antioxidant transcription factor Nrf2 and up-regulated its downstream redox-regulating enzymes HO-1 and NQO1. Importantly, arctigenin ameliorated the cadmium-evoked ERS as demonstrated by reduced protein expression of the key molecules Bip, PERK, IRE1α, CHOP, phspho-eIF2α, and caspase-12 and diminished activity of caspase-12. Additionally, arctigenin down-regulated the cadmium-induced NF-κB nuclear translocation and decreased its downstream pro-inflammatory cytokines TNF-α and IL-1β. SIGNIFICANCE The current work underlines the alleviating activity of arctigenin against cadmium-evoked nephrotoxicity potentially through mitigating ERS and targeting Nrf2 and NF-κB signaling. The current findings support possible therapeutic application of arctigenin in controlling cadmium-induced nephrotoxicity although clinical investigations are necessary.
Collapse
Affiliation(s)
- Samir A Salama
- Division of Biochemistry, Department of Pharmacology, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia.
| | - Ahmed M Mohamadin
- Department of Biochemistry, Faculty of Pharmacy, Al-Azhar University, Cairo 11751, Egypt
| | - Mohamed S Abdel-Bakky
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah 52471, Saudi Arabia
| |
Collapse
|
5
|
Swain KK, Bhand S. A colorimetric paper-based ATONP-ALP nanobiosensor for selective detection of Cd 2+ ions in clams and mussels. Anal Bioanal Chem 2021; 413:1715-1727. [PMID: 33564927 DOI: 10.1007/s00216-020-03140-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 12/06/2020] [Accepted: 12/21/2020] [Indexed: 01/27/2023]
Abstract
A colorimetric paper-based enzyme-coupled antimony tin oxide nanoparticle (ATONP) nanobiosensor for selective detection of Cd2+ ions in clams and mussels is presented. Alkaline phosphatase (ALP) was immobilized on ATONPs via 16-phosphonohexadecanoic acid (16-PHA) to develop ATONP-ALP nanobiosensor. The biosensor was characterized using XPS, Raman spectroscopy, SEM, and EDX. ATONP-ALP nanobiosensor exhibited high selectivity towards detection of Cd2+ ion with a LOD 0.006 μg L-1 and linear range of detection 0.005-1 μg L-1. The developed biosensor was further integrated into a low-cost paper-based format. A visual color change was obtained for Cd2+ ion in the range 0.1-10 μg L-1. The developed biosensor was successfully demonstrated for the analysis of Cd2+ ions in clams with recoveries 101-104%. The ATONP-ALP nanobiosensor was validated using mussel tissue (BCR-668) and the conventional ICP-OES and ICP-MS techniques.
Collapse
Affiliation(s)
- Krishna Kumari Swain
- Biosensor Lab, Department of Chemistry, BITS Pilani K.K. Birla Goa Campus, Mormugao, Goa, 403726, India
| | - Sunil Bhand
- Biosensor Lab, Department of Chemistry, BITS Pilani K.K. Birla Goa Campus, Mormugao, Goa, 403726, India.
| |
Collapse
|
6
|
Zhang S, Sun L, Zhang J, Liu S, Han J, Liu Y. Adverse Impact of Heavy Metals on Bone Cells and Bone Metabolism Dependently and Independently through Anemia. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2000383. [PMID: 33042736 PMCID: PMC7539179 DOI: 10.1002/advs.202000383] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 06/21/2020] [Indexed: 05/05/2023]
Abstract
Mounting evidence is revealing that heavy metals can incur disordered bone homeostasis, leading to the development of degenerative bone diseases, including osteoporosis, osteoarthritis, degenerative disk disease, and osteomalacia. Meanwhile, heavy metal-induced anemia has been found to be intertwined with degenerative bone diseases. However, the relationship and interplay among these adverse outcomes remain elusive. Thus, it is of importance to shed light on the modes of action (MOAs) and adverse outcome pathways (AOPs) responsible for degenerative bone diseases and anemia under exposure to heavy metals. In the current Review, the epidemiological and experimental findings are recapitulated to interrogate the contributions of heavy metals to degenerative bone disease development which may be attributable dependently and independently to anemia. A few likely mechanisms are postulated for anemia-independent degenerative bone diseases, including dysregulated osteogenesis and osteoblastogenesis, imbalanced bone formation and resorption, and disturbed homeostasis of essential trace elements. By contrast, remodeled bone microarchitecture, inhibited erythropoietin production, and disordered iron homeostasis are speculated to account for anemia-associated degenerative bone disorders upon heavy metal exposure. Together, this Review aims to elaborate available literature to fill in the knowledge gaps in understanding the detrimental effects of heavy metals on bone cells and bone homeostasis through different perspectives.
Collapse
Affiliation(s)
- Shuping Zhang
- The First Affiliated Hospital of Shandong First Medical UniversityJinanShandong250014China
- Biomedical Sciences College & Shandong Medicinal Biotechnology CentreShandong First Medical University & Shandong Academy of Medical SciencesJinanShandong250062China
| | - Li Sun
- The First Affiliated Hospital of Shandong First Medical UniversityJinanShandong250014China
| | - Jie Zhang
- The First Affiliated Hospital of Shandong First Medical UniversityJinanShandong250014China
- Biomedical Sciences College & Shandong Medicinal Biotechnology CentreShandong First Medical University & Shandong Academy of Medical SciencesJinanShandong250062China
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and EcotoxicologyResearch Center for Eco‐Environmental SciencesChinese Academy of SciencesBeijing100085China
| | - Jinxiang Han
- Biomedical Sciences College & Shandong Medicinal Biotechnology CentreShandong First Medical University & Shandong Academy of Medical SciencesJinanShandong250062China
| | - Yajun Liu
- Beijing Jishuitan HospitalPeking University Health Science CenterBeijing100035China
| |
Collapse
|
7
|
Zhu MK, Li HY, Bai LH, Wang LS, Zou XT. Histological changes, lipid metabolism, and oxidative and endoplasmic reticulum stress in the liver of laying hens exposed to cadmium concentrations. Poult Sci 2020; 99:3215-3228. [PMID: 32475458 PMCID: PMC7597684 DOI: 10.1016/j.psj.2019.12.073] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 10/21/2019] [Accepted: 12/24/2019] [Indexed: 12/18/2022] Open
Abstract
The objective of this study was to determine the effects of cadmium (Cd) on histological changes, lipid metabolism, and oxidative and endoplasmic reticulum (ER) stress in the liver of layers. A total of 480 hens at 38 wk of age were randomly assigned in 5 groups that were fed a basal diet or basal diet supplemented with CdCl2 2.5H2O at 7.5, 15, 30, and 60 mg Cd/kg feed for 9 wk. The results showed that accumulation of Cd was the greatest in the kidney, followed by the liver, pancreas, and lung. Diet contaminated with 30 mg Cd/kg induced antioxidant defenses accompanied by the increase of the activities of antioxidant enzymes in the liver, while dietary supplementation with 60 mg Cd/kg decreased the antioxidant levels significantly (P < 0.05). Immunofluorescence assay showed Cd induced reactive oxygen species production and endoplasmic reticulum stress in hepatocytes. Exposure to 60 mg Cd/kg significantly upregulated the expression of cytochrome C, caspase 3, caspase 9, caspase 7, Grp78, and Chop (P < 0.05). Histopathology and quantitative real-time PCR results presented periportal fibrosis, bile duct hyperplasia, and periportal inflammatory cell infiltration in the liver accompanied by upregulating the expression of tumor necrosis factor-α, IL-6 and IL-10 in the 30- or 60-mg Cd/kg groups. Oil Red O staining and RT-qPCR results showed dietary supplementation with 7.5, 15, and 30 mg Cd/kg promoted the synthesis of lipid droplets and upregulated the expression of fatty acid synthase, while dietary supplementation with 60 mg Cd/kg attenuated the synthesis of lipid droplets and downregulated the expression of acyl-CoA oxidase 1, carnitine palmitoyltransferase-1, and perixisome proliferation-activated receptor α (P < 0.05). Besides, the expression of vitellogenin (VTG) II and microsomal triglyceride transfer protein were upregulated in the 7.5-mg Cd/kg group, and the expressions of apolipoprotein B, vitellogenin II, and apolipoprotein very-low-density lipoprotein-II were downregulated in the 30- and/or 60-mg Cd/kg groups (P < 0.05). Conclusively, although low-dose Cd exposure promoted the synthesis of lipids and lipoproteins in the liver, the increase of Cd exposure could trigger liver injury through inducing oxidative and endoplasmic reticulum stress and negatively affect lipid metabolism and yolk formation in laying hens.
Collapse
Affiliation(s)
- M K Zhu
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou 310058, P.R. China
| | - H Y Li
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou 310058, P.R. China
| | - L H Bai
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou 310058, P.R. China
| | - L S Wang
- Jiande Weifeng Feed Co., Ltd., Jiande, 311603 Hangzhou, Zhejiang, P.R. China
| | - X T Zou
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou 310058, P.R. China.
| |
Collapse
|
8
|
Dietary Cadmium Chloride Supplementation Impairs Renal Function and Bone Metabolism of Laying Hens. Animals (Basel) 2019; 9:ani9110998. [PMID: 31752407 PMCID: PMC6912261 DOI: 10.3390/ani9110998] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/04/2019] [Accepted: 11/15/2019] [Indexed: 11/17/2022] Open
Abstract
This study was conducted to evaluate the toxic effects of cadmium (Cd) on the kidney function and bone development in laying hens. A total of 480 Hy-line laying hens aged 38 weeks were randomly allocated into five treatments, each of which included six replicates of 16 birds. The concentrations of Cd in the diets of the five groups were 0.47, 7.58, 15.56, 30.55, and 60.67 mg/kg. Results showed that serum calcium (Ca) levels decreased significantly in the 60.67 mg Cd/kg diet group (p < 0.05). The activities of serum alkaline phosphatase (ALP) and bone ALP (BALP) decreased significantly in the 15.56, 30.55 and 60.67 mg Cd/kg diet groups (p < 0.05). The levels of parathyroid hormone (PTH) increased significantly in the 30.55 and 60.67 mg Cd/kg diet groups, and the estradiol (E2), 1,25-(OH)2-D3 and calcitonin (CT) decreased significantly with the increase of dietary Cd supplementation (p < 0.05). Histological results presented enlargements of renal tubules and tubular fibrosis in the kidney and decreased trabecular bone in the tibia. Tartrate-resistant acidic phosphatase (TRAP) staining results of tibia showed that osteoclast was significantly increased at the relatively high dose of dietary Cd (p < 0.05). In addition, the renal function indicators of blood urea nitrogen (BUN), urea acid (UA), and creatinine were significantly increased in Cd supplemented groups compared with the control group (p < 0.05). Low dose Cd exposure induced antioxidant defenses accompanying the increase in activities of catalase (CAT), glutathione peroxidase (GSH-Px), and the levels of glutathione (GSH) in renal tissue. At the same time, with the increased Cd levels, the activities of CAT, GSH-Px decreased significantly, and the level of malondialdehyde (MDA) increased significantly (p < 0.05). The activities of Na+/K+-ATPase and Ca2+/Mg2+-ATPase decreased significantly in the relatively high levels of dietary Cd (p < 0.05). These results suggest that Cd can damage renal function and induce disorders in bone metabolism of laying hens.
Collapse
|
9
|
Salama SA, Arab HH, Hassan MH, Al Robaian MM, Maghrabi IA. Cadmium-induced hepatocellular injury: Modulatory effects of γ-glutamyl cysteine on the biomarkers of inflammation, DNA damage, and apoptotic cell death. J Trace Elem Med Biol 2019; 52:74-82. [PMID: 30732903 DOI: 10.1016/j.jtemb.2018.12.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 11/10/2018] [Accepted: 12/07/2018] [Indexed: 12/18/2022]
Abstract
Cadmium is an extremely toxic pollutant that reaches human body through intake of the industrially polluted food and water as well as through cigarette smoking and exposure to polluted air. Cadmium accumulates in different body organs especially the liver. It induces tissue injury largely through inflammation and oxidative stress-based mechanisms. The aim of the current study was to investigate the ability of γ glutamyl cysteine (γGC) to protect against cadmium-induced hepatocellular injury employing Wistar rats as a mammalian model. The results of the current work indicated that γGC upregulated the level of the anti-inflammatory cytokine IL-10 and downregulated the levels of the pro-inflammatory cytokines (TNF-α, IL-6, and IL-1β) in the cadmium-exposed rats. In addition, γGC reduced the liver tissues cadmium content in the cadmium-treated rats, suppressed the cadmium-induced hepatocellular apoptosis and oxidative modifications of cellular DNA, lipids, and proteins. Additionally, γGC enhanced the antioxidant potential of the liver tissues in the cadmium-treated rats as evidenced by a remarkable increase in the activity of the antioxidant enzymes superoxide dismutase and glutathione peroxidase and significant increase in the levels of the total antioxidant capacity and reduced glutathione as well as a significant reduction in oxidized to reduced glutathione (GSSG/GSH) ratio. Moreover, it effectively improved liver cell integrity in the cadmium-treated rats as demonstrated by a significant reduction in the serum activity of the liver enzymes (ALT and AST) and amelioration of the cadmium-evoked histopathological alterations. Together, these findings underscore, for the first time, the alleviating effects of γGC against cadmium-induced hepatocellular injury that is potentially mediated through reduction of liver tissue cadmium content along with modulation of both hepatocellular redox status and inflammatory cytokines.
Collapse
Affiliation(s)
- Samir A Salama
- Division of Biochemistry, Department of Pharmacology and GTMR Unit, College of Clinical Pharmacy, Taif University, Taif, 21974, Saudi Arabia; Department of Biochemistry, Faculty of Pharmacy, Al-Azhar University, Cairo, 11751, Egypt.
| | - Hany H Arab
- Division of Biochemistry, Department of Pharmacology and GTMR Unit, College of Clinical Pharmacy, Taif University, Taif, 21974, Saudi Arabia; Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Memy H Hassan
- Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University, El-Madinah El-Munaworah, 30001, Saudi Arabia; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azahr University, Cairo, 11751, Egypt
| | - Majed M Al Robaian
- Department of Pharmaceutics, College of Clinical Pharmacy, Taif University, Taif 21974, Saudi Arabia
| | - Ibrahim A Maghrabi
- Department of Clinical Pharmacy, College of Clinical Pharmacy, Taif University, Taif 21974, Saudi Arabia
| |
Collapse
|
10
|
The Administration of Cadmium for 2, 3 and 4 Months Causes a Loss of Recognition Memory, Promotes Neuronal Hypotrophy and Apoptosis in the Hippocampus of Rats. Neurochem Res 2019; 44:485-497. [PMID: 30673958 DOI: 10.1007/s11064-018-02703-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 12/16/2018] [Accepted: 12/18/2018] [Indexed: 10/27/2022]
Abstract
Cadmium (Cd) is a toxic metal and classified as a carcinogen whose exposure could affect the function of the central nervous system. There are studies that suggest that Cd promotes neurodegeneration in different regions of the brain, particularly in the hippocampus. It is proposed that its mechanism of toxicity maybe by an oxidative stress pathway, which modifies neuronal morphology and causes the death of neurons and consequently affecting cognitive tasks. However, this mechanism is not yet clear. The aim of the present work was to study the effect of Cd administration on recognition memory for 2, 3 and 4 months, neuronal morphology and immunoreactivity for caspase-3 and 9 in rat hippocampi. The results show that the administration of Cd decreased recognition memory. Likewise, it caused the dendritic morphology of the CA1, CA3 and dentate gyrus regions of the hippocampus to decrease with respect to the time of administration of this heavy metal. In addition, we observed a reduction in the density of dendritic spines as well as an increase in the immunoreactivity of caspase-3 and 9 in the same hippocampal regions of the animals treated with Cd. These results suggest that Cd affects the structure and function of the neurons of the hippocampus, which contribute to the deterioration of recognition memory. Our results suggest that the exposure to Cd represents a critical health problem, which if not addressed quickly, could cause much more serious problems in the quality of life of the human population, as well as in the environment in which they develop.
Collapse
|
11
|
Elbaghdady HAM, Alwaili MA, El-Demerdash RS. Regenerative potential of bone marrow mesenchymal stem cells on cadmium chloride-induced hepato-renal injury and testicular dysfunction in sprague dawley rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 164:41-49. [PMID: 30096602 DOI: 10.1016/j.ecoenv.2018.07.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 06/25/2018] [Accepted: 07/05/2018] [Indexed: 06/08/2023]
Abstract
The effect of bone marrow-derived mesenchymal stem cells on cadmium-induced liver and kidney damage was studied in Sprague Dawley rats. The study employed three animal groups: Group 1 served as control animals; Group 2 rats were dosed intra-peritoneally with 2 mg of cadmium chloride per kg body weight, and Group 3 rats were again dosed with a single intraperitoneal injection of 2 mg of cadmium chloride per kg body weight two doses of 106 cells each intravenously. Finally, the animals were killed using halothane inhalation anesthesia. Semen analysis (total sperm count, viability, motility, and % of normal sperm), biochemical estimations (serum total protein, uric acid, creatinine, levels of enzymes ALT, AST, and ALP, and levels of hormones LH, FSH, Inhibin, and testosterone), and histopathological analysis of liver and kidney tissue sections (using hematoxylene and eosin stains) were conducted. The results showed that when compared to controls, cadmium exposure drastically decreased total sperm count, viability, motility, and % of normal sperm, decreased serum total protein, increased serum uric acid and creatinine levels, increased levels of ALT, AST, and ALP enzymes, decreased levels of testosterone and inhibin, increased levels of LH and FSH, and caused significant histopathological abnormalities in both kidney and liver tissues. Treatment with stem cells ameliorated the effects of cadmium-induced toxicity significantly (p < 0.05) of the histopathological and biochemical parameters. In conclusion, the study reinforces previous findings that bone marrow mesenchymal stem cells can ameliorate the toxic effects of cadmium chloride and may be used as a potential therapeutic strategy for cadmium-induced adverse effects.
Collapse
Affiliation(s)
- Heba Allah M Elbaghdady
- Zoology Department, Environmental Sciences Division, Faculty of Science, Mansoura University, 35516 Mansoura, Egypt; Department of Biological Sciences, Princes Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia.
| | - Maha A Alwaili
- Department of Biological Sciences, Princes Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia; Deanship of Scientific Research, Princes Nora Bint Abdulrahman University, Saudi Arabia
| | | |
Collapse
|