1
|
Lopes FF, Lamberty Faverzani J, Hammerschmidt T, Aguilar Delgado C, Ferreira de Oliveira J, Wajner M, Regla Vargas C. Evaluation of oxidative damage to biomolecules and inflammation in patients with urea cycle disorders. Arch Biochem Biophys 2023; 736:109526. [PMID: 36702451 DOI: 10.1016/j.abb.2023.109526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 01/11/2023] [Accepted: 01/22/2023] [Indexed: 01/26/2023]
Abstract
Urea cycle disorders (UCD) are inborn errors of metabolism that occur due to a loss of function in enzymes and transporters involved in the urea cycle, causing an intoxication by hyperammonemia and accumulation of metabolites. Patients can develop hepatic encephalopathy (HE), severe neurological and motor disabilities, and often death. The mechanisms involved in the pathophysiology of UCD are many and complex, but there are strong indications that oxidative stress and inflammation are present, being responsible for at least part of the cellular damage that occurs in these diseases. The aim of this study was to evaluate oxidative and nitrosative damage and inflammation in UCD, to better understand the pathophysiology mechanisms of these diseases. We evaluated the nitrite and nitrate content, thiobarbituric acid-reactive substances (TBARS), carbonyl protein content and a panel of cytokines in plasma sample of 14 patients. The UCD patients group consisted of individuals affected with ornithine transcarbamylase deficiency (n = 8), carbamoyl phosphate synthetase deficiency (n = 2), argininosuccinate synthetase deficiency (n = 2); arginase 1 deficiency (n = 1) and argininosuccinate lyase deficiency (n = 1). Patients mean age at diagnosis was 5.25 ± 9.86 years-old and mean concentrations were compared with healthy individuals of matched age and gender. We found a significant reduction in nitrogen reactive species in patients when compared to controls. TBARS was increased in patients, indicating lipid peroxidation. To evaluate protein oxidative damage in UCD, the carbonyl content was measured, and the results also demonstrated an increase in this biomarker. Finally, we found that UCD patients have enhanced concentrations of cytokines, with pro-inflammatory interleukins IL-6, IL-8, interferon-γ and TNF-α, and anti-inflammatory IL-10 being increased when compared to the control group. In conclusion, our results demonstrate that oxidative stress and inflammation occurs in UCD and probably contribute to the severe brain damage present in patients.
Collapse
Affiliation(s)
- Franciele Fátima Lopes
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, UFRGS, Brazil; Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.
| | - Jéssica Lamberty Faverzani
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, UFRGS, Brazil; Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Tatiane Hammerschmidt
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, UFRGS, Brazil; Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Camila Aguilar Delgado
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Julia Ferreira de Oliveira
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, UFRGS, Brazil; Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Moacir Wajner
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Carmen Regla Vargas
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, UFRGS, Brazil; Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.
| |
Collapse
|
2
|
Raeisi S, Ghorbanihaghjo A, Argani H, Dastmalchi S, Seifi M, Ghasemi B, Ghazizadeh T, Abbasi MM, Karimi P. Oxidative stress-induced renal telomere shortening as a mechanism of cyclosporine-induced nephrotoxicity. J Biochem Mol Toxicol 2018; 32:e22166. [PMID: 29975447 DOI: 10.1002/jbt.22166] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 06/13/2018] [Accepted: 06/15/2018] [Indexed: 11/07/2022]
Abstract
Due to the association of oxidative stress and telomere shortening, it was aimed in the present study to investigate the possibility whether cyclosporine-A exerts its nephrotoxic side effects via induction of oxidative stress-induced renal telomere shortening and senescent phenotype in renal tissues of rats. Renal oxidative stress markers, 8-hydroxydeoxyguanosine, malondialdehyde, and protein carbonyl groups were measured by standard methods. Telomere length and telomerase activity were also evaluated in kidney tissue samples. Results showed that cyclosporine-A treatment significantly (P < 0.05) enhanced renal malondialdehyde, 8-hydroxydeoxyguanosine, and protein carbonyl groups levels, decreased renal telomere length, and deteriorated renal function compared with the controls. Renal telomerase activity was not affected by cyclosporine-A. Renal telomere length could be considered as an important parameter of both oxidative stress and kidney function. Telomere shortening and accelerated kidney aging may be caused by cyclosporine-induced oxidative stress, indicating the potential mechanism of cyclosporine-induced nephrotoxicity.
Collapse
Affiliation(s)
- Sina Raeisi
- Pediatric Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Ghorbanihaghjo
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hassan Argani
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Siavoush Dastmalchi
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Morteza Seifi
- Department of Medical Genetics, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Babollah Ghasemi
- Division of Clinical Laboratory, Tabriz Children Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Teimour Ghazizadeh
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Pouran Karimi
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
4
|
Cai X, Yu D, Xie Y, Zhou H. Argininemia as a cause of severe chronic stunting and partial growth hormone deficiency (PGHD): A case report. Medicine (Baltimore) 2018; 97:e9880. [PMID: 29443755 PMCID: PMC5839826 DOI: 10.1097/md.0000000000009880] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 01/21/2018] [Accepted: 01/24/2018] [Indexed: 11/26/2022] Open
Abstract
RATIONALE Argininemia is an autosomal recessive inherited disorder of the urea cycle. Because of its atypical symptoms in early age, diagnosis can be delayed until the typical chronic manifestations - including spastic diplegia, deterioration in cognitive function, and epilepsy - appear in later childhood. PATIENT CONCERNS A Chinese boy initially presented with severe stunting and partial growth hormone deficiency (PGHD) at 3 years old and was initially treated with growth hormone replacement therapy. Seven years later (at 10 years old), he presented with spastic diplegia, cognitive function lesions, epilepsy, and peripheral neuropathy. DIAGNOSES Ultimately, the patient was diagnosed with argininemia with homozygous mutation (c.32T>C) of the ARG1 gene at 10 years old. Blood tests showed mildly elevated blood ammonia and creatine kinase, and persistently elevated bilirubin. INTERVENTIONS Protein intake was limited to 0.8 g/kg/day, citrulline (150-200 mg [kg d]) was prescribed. OUTCOMES The patient's mental state and vomiting had improved after 3 months treatment. At 10 years and 9 month old, his height and weight had reached 121cm and 22kg, respectively, but his spastic diplegia symptoms had not improved. LESSONS This case demonstrates that stunting and PGHD that does not respond to growth hormone replacement therapy might hint at inborn errors of metabolism (IEM). IEM should also be considered in patients with persistently elevated bilirubin with or without abnormal liver transaminase, as well as elevated blood ammonia and creatine kinase, in the absence of hepatic disease.
Collapse
Affiliation(s)
- Xiaotang Cai
- Department of Pediatrics, West China Second University Hospital
- Key Laboratory of Obstetric and Gynaecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan University, Chengdu, Sichuan, China
| | - Dan Yu
- Department of Pediatrics, West China Second University Hospital
- Key Laboratory of Obstetric and Gynaecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan University, Chengdu, Sichuan, China
| | - Yongmei Xie
- Department of Pediatrics, West China Second University Hospital
- Key Laboratory of Obstetric and Gynaecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan University, Chengdu, Sichuan, China
| | - Hui Zhou
- Department of Pediatrics, West China Second University Hospital
- Key Laboratory of Obstetric and Gynaecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|