1
|
Wu J, Feng A, Liu C, Zhou W, Li K, Liu Y, Shi Y, Adu-Amankwaah J, Yu H, Pan X, Sun H. Genistein alleviates doxorubicin-induced cardiomyocyte autophagy and apoptosis via ERK/STAT3/c-Myc signaling pathway in rat model. Phytother Res 2024; 38:3921-3934. [PMID: 38818771 DOI: 10.1002/ptr.8236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/16/2024] [Revised: 03/25/2024] [Accepted: 04/23/2024] [Indexed: 06/01/2024]
Abstract
Doxorubicin (Dox) is a highly effective anti-neoplastic agent. Still, its utility in the clinic has been hindered by toxicities, including vomiting, hematopoietic suppression and nausea, with cardiotoxicity being the most serious side effect. Genistein (Gen) is a natural product with extensive biological effects, including anti-oxidation, anti-tumor, and cardiovascular protection. This study evaluated whether Gen protected the heart from Dox-induced cardiotoxicity and explored the underlying mechanisms. Male Sprague-Dawley (SD) rats were categorized into control (Ctrl), genistein (Gen), doxorubicin (Dox), genistein 20 mg/kg/day + doxorubicin (Gen20 + Dox) and genistein 40 mg/kg/day + doxorubicin (Gen40 + Dox) groups. Six weeks after injection, immunohistochemistry (IHC), transmission electron microscopy (TEM), and clinical cardiac function analyses were performed to evaluate the effects of Dox on cardiac function and structural alterations. Furthermore, each heart histopathological lesions were given a score of 0-3 in compliance with the articles for statistical analysis. In addition, molecular and cellular response of H9c2 cells toward Dox were evaluated through western blotting, Cell Counting Kit-8 (CCK8), AO staining and calcein AM/PI assay. Dox (5 μM in vitro and 18 mg/kg in vivo) was used in this study. In vivo, low-dose Gen pretreatment protected the rat against Dox-induced cardiac dysfunction and pathological remodeling. Gen inhibited extracellular signal-regulated kinase1/2 (ERK1/2)'s phosphorylation, increased the protein levels of STAT3 and c-Myc, and decreased the autophagy and apoptosis of cardiomyocytes. U0126, a MEK1/2 inhibitor, can mimic the effect of Gen in protecting against Dox-induced cytotoxicity both in vivo and in vitro. Molecular docking analysis showed that Gen forms a stable complex with ERK1/2. Gen protected the heart against Dox-induced cardiomyocyte autophagy and apoptosis through the ERK/STAT3/c-Myc signaling pathway.
Collapse
Affiliation(s)
- Jinxia Wu
- Department of Physiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Ailu Feng
- Department of Physiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Chunyang Liu
- Department of Physiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Wenxiu Zhou
- Department of Physiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Kexue Li
- Department of Physiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yan Liu
- Department of Physiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yue Shi
- Department of Physiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | | | - Hongli Yu
- Department of Physiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiuhua Pan
- Department of Physiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Hong Sun
- Department of Physiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
2
|
Zou Y, Liu Q, Guo P, Huang Y, Ye Z, Hu J. Anti‑chondrocyte apoptosis effect of genistein in treating inflammation‑induced osteoarthritis. Mol Med Rep 2020; 22:2032-2042. [PMID: 32582961 PMCID: PMC7411358 DOI: 10.3892/mmr.2020.11254] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/13/2020] [Accepted: 06/01/2020] [Indexed: 12/11/2022] Open
Abstract
Osteoarthritis (OA) is a chronic disease that is mainly characterized by chondrocyte degeneration. Inflammatory mediators participate in the development of OA, leading to chondrocyte apoptosis and destruction of the cartilage. Genistein is the major active component of isoflavone, with a chemical composition and a biological effect that is similar to that of estrogens, which prevents the degradation of cartilage; however, its underlying mechanisms of action remain unknown. The aim of the present study was to investigate the anti-apoptotic effects of genistein on chondrocytes for the treatment of inflammation-induced OA. Interleukin (IL)-1β was used to establish a chondrocyte OA model. After treatment with different concentrations of genistein, western blotting identified that expression levels of collagen II and aggrecan were increased in a concentration-dependent manner, while caspase 3 expression gradually decreased after genistein application. Moreover, flow cytometry and ELISA results demonstrated that genistein could decrease chondrocyte apoptosis and reduce the levels of tumor necrosis factor (TNF)-α in a dose-dependent manner. Furthermore, the in vitro data were evaluated in an OA rat model. Genistein increased the collagen and acid glycosaminoglycan content, as well as decreased the levels of TNF-α and IL-1β. Genistein also promoted the expression levels of collagen II and aggrecan in the articular cartilage, and decreased the expression of caspase 3, thus alleviating cartilage degradation. In conclusion, the results indicated that genistein mediated inflammation and had an anti-apoptotic role in treating OA. Therefore, genistein may serve as an alternative treatment for OA.
Collapse
Affiliation(s)
- Yang Zou
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310005, P.R. China
| | - Qiming Liu
- Department of Orthopedics Surgery, Fuyang Orthopedics and Traumatology Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 311400, P.R. China
| | - Piaoting Guo
- Department of General Medicine, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310005, P.R. China
| | - Yang Huang
- Department of Orthopedics, Municipal Hospital Affiliated to Medical School of Taizhou University, Taizhou, Zhejiang 318000, P.R. China
| | - Zhengcong Ye
- Department of Orthopedics, Xiaoshan Traditional Chinese Medicine Hospital, Hangzhou, Zhejiang 311201, P.R. China
| | - Jiong Hu
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310005, P.R. China
| |
Collapse
|
3
|
Abstract
Soybeans and their food products exist in the market in various forms, ranging from crude oils and bean meals to nutritious products (e.g. soy milk powers). With the availability of technologies for mass production of soy products and for enrichment of soy components (e.g. phospholipids, saponins, isoflavones, oligosaccharides and edible fiber), the nutritional values of soy products have been enhanced remarkably, offering the potential for functional food development. Among different bioactive components in soybeans, one important component is isoflavones, which have been widely exploited for health implications. While there are studies supporting the health benefits of isoflavones, concerns on adverse effects have been raised in the literature. The objective of this article is to review the recent understanding of the biological activities, adverse effects, and use of isoflavones in functional food development.
Collapse
Affiliation(s)
- Chengshen Hu
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
- Center for Human Tissue and Organs Degeneration, Institute of Biomedical and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wing-Tak Wong
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Runyu Wu
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Wing-Fu Lai
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
- School of Life and Health Sciences, The Chinese University of Hong Kong (Shenzhen), Shenzhen, China
| |
Collapse
|