1
|
Thankappan B, Thomas A, Sakthivadivel A, Shanmuganathan N, Angayarkanni J. In vitro and in vivo antimicrobial activity of self-assembled melittin nanoparticles: A comparative study with melittin peptide. Colloids Surf B Biointerfaces 2023; 226:113331. [PMID: 37150105 DOI: 10.1016/j.colsurfb.2023.113331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/09/2023]
Abstract
The aim of the present study was to analyse the efficacy of self-assembled melittin nanoparticles (MelNP) and compare with native melittin peptide (Mel). Self-assembly formation of the melittin was promoted by heating at 90 °C for 50 min followed by cooling at room temperature. SEM micrographs revealed the formation of nanovesicles. MIC of MelNP against E. coli, S. aureus and P. aeruginosa was found to be 4, 2, and 2 μM, respectively while it was 8, 8 and 4 μM for Mel peptide. Markedly, MelNP showed 12.6 % hemolysis at 8 μM whereas with Mel it was about 71.63 %. The lytic activity of MelNP was also higher in the presence of trypsin/serum than Mel. Both MelNP and Mel exhibited membranolytic activity with cellular disintegration. Further, toxicity analysis studied up to 72 h showed that MelNP was non-toxic to zebrafish embryos up to 6 μM; however, with Mel exposed embryos showed up 30 dead embryos. Bacterial load was markedly reduced in MelNP and Mel exposed infected embryos than compared to the infected one. Moreover, the peptides were also responsible for reducing the infection and prolonging the survivability in infected embryos. Thus, MelNP could be considered an efficient and safer therapeutic molecule that Mel and wherein further experiments are warranted to affirm the broad spectrum efficiency.
Collapse
Affiliation(s)
- Bency Thankappan
- Department of Microbial Biotechnology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India.
| | - Anto Thomas
- Department of Environmental Biotechnology, School of Environmental Sciences, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India
| | - Aishwarya Sakthivadivel
- Department of Microbial Biotechnology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Nivetha Shanmuganathan
- Department of Microbial Biotechnology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Jayaraman Angayarkanni
- Department of Microbial Biotechnology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| |
Collapse
|
2
|
Reissmann S, Filatova MP. New generation of cell‐penetrating peptides: Functionality and potential clinical application. J Pept Sci 2021; 27:e3300. [DOI: 10.1002/psc.3300] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/06/2021] [Accepted: 01/11/2021] [Indexed: 12/19/2022]
Affiliation(s)
- Siegmund Reissmann
- Faculty of Biological Sciences, Institute of Biochemistry and Biophysics Friedrich Schiller University Dornburger Str. 25 Jena Thueringia 07743 Germany
| | - Margarita P. Filatova
- Shemyakin‐Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences Moscow Russia
| |
Collapse
|
3
|
Boaro A, Ageitos L, Torres M, Bartoloni FH, de la Fuente-Nunez C. Light-Emitting Probes for Labeling Peptides. CELL REPORTS. PHYSICAL SCIENCE 2020; 1:100257. [PMID: 34396352 PMCID: PMC8360326 DOI: 10.1016/j.xcrp.2020.100257] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Peptides are versatile biopolymers composed of 2-100 amino acid residues that present a wide range of biological functions and constitute potential therapies for numerous diseases, partly due to their ability to penetrate cell membranes. However, their mechanisms of action have not been fully elucidated due to the lack of appropriate tools. Existing light-emitting probes are limited by their cytotoxicity and large size, which can alter peptide structure and function. Here, we describe the available fluorescent, bioluminescent, and chemiluminescent probes for labeling peptides, with a focus on minimalistic options.
Collapse
Affiliation(s)
- Andreia Boaro
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, and Department of Bioengineering, University of Pennsylvania, 3610 Hamilton Walk, Philadelphia, PA 19104, USA
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Avenida dos Estados, 5001, Santo André, São Paulo 09210-580, Brazil
| | - Lucía Ageitos
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, and Department of Bioengineering, University of Pennsylvania, 3610 Hamilton Walk, Philadelphia, PA 19104, USA
- Centro de Investigacións Científicas Avanzadas (CICA) e Departamento de Química, Facultade de Ciencias, Universidade da Coruña, Calle de la Maestranza, 9, A Coruña 15071, Spain
| | - Marcelo Torres
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, and Department of Bioengineering, University of Pennsylvania, 3610 Hamilton Walk, Philadelphia, PA 19104, USA
| | - Fernando Heering Bartoloni
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Avenida dos Estados, 5001, Santo André, São Paulo 09210-580, Brazil
| | - Cesar de la Fuente-Nunez
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, and Department of Bioengineering, University of Pennsylvania, 3610 Hamilton Walk, Philadelphia, PA 19104, USA
| |
Collapse
|
4
|
Trigueiro NSDS, Canedo A, Braga DLDS, Luchiari AC, Rocha TL. Zebrafish as an Emerging Model System in the Global South: Two Decades of Research in Brazil. Zebrafish 2020; 17:412-425. [PMID: 33090089 DOI: 10.1089/zeb.2020.1930] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The zebrafish (Danio rerio) is an emerging model system in several research areas worldwide, especially in the Global South. In this context, the present study revised the historical use and trends of zebrafish as experimental models in Brazil. The data concerning the bibliometric parameters, research areas, geographic distribution, experimental design, zebrafish strain, and reporter lines, as well as recent advances were revised. In addition, the comparative trends of Brazilian and global research were discussed. Revised data showed the rapid growth of Brazilian scientific production using zebrafish as a model, especially in three main research areas (Neuroscience &and Behavior, Pharmacology and Toxicology, and Environment/Ecology). Studies were conducted in 19 Brazilian states (70.37%), confirming the wide geographic distribution and importance of zebrafish research. Results indicated that research related to toxicological approaches are widespread in Global South countries such as Brazil. Studies were performed mainly using in vivo tests (89.58%) with adult fish (59.75%) and embryos (30.67%). Moreover, significant research gaps and recommendations for future research are presented. The present study shows that the zebrafish is a suitable vertebrate model system in the Global South.
Collapse
Affiliation(s)
- Nicholas Silvestre de Souza Trigueiro
- Laboratory of Environmental Biotechnology and Ecotoxicology, Department of Biosciences and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Brazil
| | - Aryelle Canedo
- Laboratory of Environmental Biotechnology and Ecotoxicology, Department of Biosciences and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Brazil
| | - Daniel Lôbo de Siqueira Braga
- Laboratory of Environmental Biotechnology and Ecotoxicology, Department of Biosciences and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Brazil
| | - Ana Carolina Luchiari
- Department of Physiology and Behavior, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Thiago Lopes Rocha
- Laboratory of Environmental Biotechnology and Ecotoxicology, Department of Biosciences and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Brazil
| |
Collapse
|
5
|
Yesudhason BV, Selvan Christyraj JRS, Ganesan M, Subbiahanadar Chelladurai K, Venkatachalam S, Ramalingam A, Benedict J, Paulraj VD, Selvan Christyraj JD. Developmental stages of zebrafish (Danio rerio) embryos and toxicological studies using foldscope microscope. Cell Biol Int 2020; 44:1968-1980. [PMID: 32584484 DOI: 10.1002/cbin.11412] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 06/17/2020] [Accepted: 06/23/2020] [Indexed: 01/25/2023]
Abstract
Zebrafish (Danio rerio), is a well-established vertebrate animal model widely used in developmental biology and toxicological research. In the present study, foldscope is used as an innovative tool to study the developmental stages and toxicological analysis of the zebrafish embryos. Briefly, the developmental stages, such as zygote, cleavage, blastula, gastrula, segmentation, and pharyngula formation are observed and documented using simple foldscope. Toxicological parameters upon exposure to different concentration of ethanol extract of Curcuma longa and its lead compound, ar-turmerone along with rhodamine B (bio-coupler) on zebrafish embryos are analyzed upto 72 hr using foldscopes in live condition. The lethal endpoints, such as coagulation, lack of somite formation, non-detachment of tail, and lack of heartbeat are clearly monitored and documented using foldscope. Bio-evaluation of test compounds with the aid of foldscope confirms that the toxicity is directly proportional to the concentration. Our results conclude that, ethanol extract of C. longa, ar-turmerone and rhodamine B exposed embryos remains healthy up to 96, 48, and 24 µg concentrations, respectively. Embryos exposed to higher concentrations become coagulated, however normal physiological active movement of tail lashing and heartbeat are evident in lower concentration exposed embryos. Except coagulation, no other abnormalities are observed and interestingly, the hatching ability is not delayed, when compared with the control embryos. It is confirmed that the test compounds are not highly toxic to zebrafish embryos. Hence it can be used for further analysis, especially for studying the neural-regeneration and its neuronal development in zebrafish embryos.
Collapse
Affiliation(s)
- Beryl Vedha Yesudhason
- Regeneration and Stem Cell Biology Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science and Technology, Chennai, Tamilnadu, India
| | - Johnson Retnaraj Samuel Selvan Christyraj
- Regeneration and Stem Cell Biology Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science and Technology, Chennai, Tamilnadu, India
| | - Mijithra Ganesan
- Regeneration and Stem Cell Biology Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science and Technology, Chennai, Tamilnadu, India
| | - Karthikeyan Subbiahanadar Chelladurai
- Regeneration and Stem Cell Biology Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science and Technology, Chennai, Tamilnadu, India
| | - Saravanakumar Venkatachalam
- Regeneration and Stem Cell Biology Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science and Technology, Chennai, Tamilnadu, India
| | - Arun Ramalingam
- Regeneration and Stem Cell Biology Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science and Technology, Chennai, Tamilnadu, India
| | - Johnson Benedict
- Regeneration and Stem Cell Biology Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science and Technology, Chennai, Tamilnadu, India
| | - Vennila Devi Paulraj
- Regeneration and Stem Cell Biology Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science and Technology, Chennai, Tamilnadu, India
| | - Jackson Durairaj Selvan Christyraj
- Regeneration and Stem Cell Biology Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science and Technology, Chennai, Tamilnadu, India
| |
Collapse
|
6
|
Afonin S, Babii O, Reuter A, Middel V, Takamiya M, Strähle U, Komarov IV, Ulrich AS. Light-controllable dithienylethene-modified cyclic peptides: photoswitching the in vivo toxicity in zebrafish embryos. Beilstein J Org Chem 2020; 16:39-49. [PMID: 31976015 PMCID: PMC6964649 DOI: 10.3762/bjoc.16.6] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 12/17/2019] [Indexed: 12/21/2022] Open
Abstract
This study evaluates the embryotoxicity of dithienylethene-modified peptides upon photoswitching, using 19 analogues based on the β-hairpin scaffold of the natural membranolytic peptide gramicidin S. We established an in vivo assay in two variations (with ex vivo and in situ photoisomerization), using larvae of the model organism Danio rerio, and determined the toxicities of the peptides in terms of 50% lethal doses (LD50). This study allowed us to: (i) demonstrate the feasibility of evaluating peptide toxicity with D. rerio larvae at 3–4 days post fertilization, (ii) determine the phototherapeutic safety windows for all peptides, (iii) demonstrate photoswitching of the whole-body toxicity for the dithienylethene-modified peptides in vivo, (iv) re-analyze previous structure–toxicity relationship data, and (v) select promising candidates for potential clinical development.
Collapse
Affiliation(s)
- Sergii Afonin
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology (KIT), POB 3640, 76021 Karlsruhe, Germany
| | - Oleg Babii
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology (KIT), POB 3640, 76021 Karlsruhe, Germany
| | - Aline Reuter
- Institute of Organic Chemistry (IOC), KIT, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| | - Volker Middel
- Institute of Toxicology and Genetics (ITG), KIT, POB 3640, 76021 Karlsruhe, Germany
| | - Masanari Takamiya
- Institute of Toxicology and Genetics (ITG), KIT, POB 3640, 76021 Karlsruhe, Germany
| | - Uwe Strähle
- Institute of Toxicology and Genetics (ITG), KIT, POB 3640, 76021 Karlsruhe, Germany
| | - Igor V Komarov
- Taras Shevchenko National University of Kyiv, vul. Volodymyrska 60, 1601 Kyiv, Ukraine.,Lumobiotics GmbH, Auerstr. 2, 76227 Karlsruhe, Germany
| | - Anne S Ulrich
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology (KIT), POB 3640, 76021 Karlsruhe, Germany.,Institute of Organic Chemistry (IOC), KIT, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| |
Collapse
|
7
|
Cebrián R, Rodríguez-Cabezas ME, Martín-Escolano R, Rubiño S, Garrido-Barros M, Montalbán-López M, Rosales MJ, Sánchez-Moreno M, Valdivia E, Martínez-Bueno M, Marín C, Gálvez J, Maqueda M. Preclinical studies of toxicity and safety of the AS-48 bacteriocin. J Adv Res 2019; 20:129-139. [PMID: 31360546 PMCID: PMC6637140 DOI: 10.1016/j.jare.2019.06.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 06/25/2019] [Accepted: 06/29/2019] [Indexed: 12/15/2022] Open
Abstract
The in vitro antimicrobial potency of the bacteriocin AS-48 is well documented, but its clinical application requires investigation, as its toxicity could be different in in vitro (haemolytic and antibacterial activity in blood and cytotoxicity towards normal human cell lines) and in vivo (e.g. mice and zebrafish embryos) models. Overall, the results obtained are promising. They reveal the negligible propensity of AS-48 to cause cell death or impede cell growth at therapeutic concentrations (up to 27 μM) and support the suitability of this peptide as a potential therapeutic agent against several microbial infections, due to its selectivity and potency at low concentrations (in the range of 0.3-8.9 μM). In addition, AS-48 exhibits low haemolytic activity in whole blood and does not induce nitrite accumulation in non-stimulated RAW macrophages, indicating a lack of pro-inflammatory effects. The unexpected heightened sensitivity of zebrafish embryos to AS-48 could be due to the low differentiation state of these cells. The low cytotoxicity of AS-48, the absence of lymphocyte proliferation in vivo after skin sensitization in mice, and the lack of toxicity in a murine model support the consideration of the broad spectrum antimicrobial peptide AS-48 as a promising therapeutic agent for the control of a vast array of microbial infections, in particular, those involved in skin and soft tissue diseases.
Collapse
Affiliation(s)
- Rubén Cebrián
- Department of Molecular Genetics, Faculty of Science and Engineering, Nijenborgh 7, 9747 AG, University of Groningen, Groningen, the Netherlands
| | - M Elena Rodríguez-Cabezas
- CIBER-EHD, Department of Pharmacology. Centre for Biomedical Research (CIBM), Avda del Conocimiento s/n, University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria de Granada (Ibs.GRANADA), Granada, Spain
| | - Rubén Martín-Escolano
- Department of Parasitology, Instituto de Investigación Biosanitaria (ibs.Granada), Hospitales Universitarios de Granada/University of Granada, Severo Ochoa s/n, E-18071 Granada, Spain
| | - Susana Rubiño
- Department of Microbiology, Faculty of Sciences, Avda Fuentenueva s/n, University of Granada, 18071 Granada, Spain
| | - María Garrido-Barros
- CIBER-EHD, Department of Pharmacology. Centre for Biomedical Research (CIBM), Avda del Conocimiento s/n, University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria de Granada (Ibs.GRANADA), Granada, Spain
| | - Manuel Montalbán-López
- Department of Microbiology, Faculty of Sciences, Avda Fuentenueva s/n, University of Granada, 18071 Granada, Spain
| | - María José Rosales
- Department of Parasitology, Instituto de Investigación Biosanitaria (ibs.Granada), Hospitales Universitarios de Granada/University of Granada, Severo Ochoa s/n, E-18071 Granada, Spain
| | - Manuel Sánchez-Moreno
- Department of Parasitology, Instituto de Investigación Biosanitaria (ibs.Granada), Hospitales Universitarios de Granada/University of Granada, Severo Ochoa s/n, E-18071 Granada, Spain
| | - Eva Valdivia
- Department of Microbiology, Faculty of Sciences, Avda Fuentenueva s/n, University of Granada, 18071 Granada, Spain
| | - Manuel Martínez-Bueno
- Department of Microbiology, Faculty of Sciences, Avda Fuentenueva s/n, University of Granada, 18071 Granada, Spain
| | - Clotilde Marín
- Department of Parasitology, Instituto de Investigación Biosanitaria (ibs.Granada), Hospitales Universitarios de Granada/University of Granada, Severo Ochoa s/n, E-18071 Granada, Spain
| | - Julio Gálvez
- CIBER-EHD, Department of Pharmacology. Centre for Biomedical Research (CIBM), Avda del Conocimiento s/n, University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria de Granada (Ibs.GRANADA), Granada, Spain
| | - Mercedes Maqueda
- Department of Microbiology, Faculty of Sciences, Avda Fuentenueva s/n, University of Granada, 18071 Granada, Spain
| |
Collapse
|
8
|
Combined transcriptomic and proteomic analysis reveals a diversity of venom-related and toxin-like peptides expressed in the mat anemone Zoanthus natalensis (Cnidaria, Hexacorallia). Arch Toxicol 2019; 93:1745-1767. [PMID: 31203412 DOI: 10.1007/s00204-019-02456-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 04/09/2019] [Indexed: 12/12/2022]
Abstract
Venoms from marine animals have been recognized as a new emerging source of peptide-based therapeutics. Several peptide toxins from sea anemone have been investigated as therapeutic leads or pharmacological tools. Venom complexity should be further highlighted using combined strategies of large-scale sequencing and data analysis which integrated transcriptomics and proteomics to elucidate new proteins or peptides to be compared among species. In this work, transcriptomic and proteomic analyses were combined to identify six groups of expressed peptide toxins in Zoanthus natalensis. These include neurotoxin, hemostatic and hemorrhagic toxin, protease inhibitor, mixed function enzymes, venom auxiliary proteins, allergen peptides, and peptides related to the innate immunity. Molecular docking analysis indicated that one expressed Zoanthus Kunitz-like peptide, ZoaKuz1, could be a voltage-gated potassium channels blocker and, hence, it was selected for functional studies. Functional bioassays revealed that ZoaKuz1 has an intrinsic neuroprotective activity in zebrafish model of Parkinson's disease. Since pharmacological blockade of KV channels is known to induce neuroprotective effects, ZoaKuz1 holds the potential to be developed in a therapeutic tool to control neural dysfunction by slowing or even halting neurodegeneration mediated by ion-channel hyperactivity.
Collapse
|
9
|
Tansi FL, Filatova MP, Koroev DO, Volpina OM, Lange S, Schumann C, Teichgräber UK, Reissmann S, Hilger I. New generation CPPs show distinct selectivity for cancer and noncancer cells. J Cell Biochem 2018; 120:6528-6541. [DOI: 10.1002/jcb.27943] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 10/02/2018] [Indexed: 12/21/2022]
Affiliation(s)
- Felista L. Tansi
- Department of Experimental Radiology, Institute of Diagnostic and Interventional Radiology Jena University Hospital Jena Germany
| | - Margarita P. Filatova
- Shemyakin‐Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences Moscow Russia
| | - Dmitri O. Koroev
- Shemyakin‐Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences Moscow Russia
| | - Olga M. Volpina
- Shemyakin‐Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences Moscow Russia
| | | | | | - Ulf K. Teichgräber
- Department of Experimental Radiology, Institute of Diagnostic and Interventional Radiology Jena University Hospital Jena Germany
| | - Siegmund Reissmann
- Jena Bioscience GmbH Jena Germany
- Centrum of Molecular Biomedicine, Institute of Biochemistry and Biophysics, Friedrich‐Schiller‐University Jena Germany
| | - Ingrid Hilger
- Department of Experimental Radiology, Institute of Diagnostic and Interventional Radiology Jena University Hospital Jena Germany
| |
Collapse
|
10
|
Liao Q, Gong G, Siu SWI, Wong CTT, Yu H, Tse YC, Rádis-Baptista G, Lee SMY. A Novel ShK-Like Toxic Peptide from the Transcriptome of the Cnidarian Palythoa caribaeorum Displays Neuroprotection and Cardioprotection in Zebrafish. Toxins (Basel) 2018; 10:toxins10060238. [PMID: 29895785 PMCID: PMC6024583 DOI: 10.3390/toxins10060238] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 06/07/2018] [Accepted: 06/08/2018] [Indexed: 12/25/2022] Open
Abstract
Palythoa caribaeorum (class Anthozoa) is a zoantharian which, together with other cnidarians, like jellyfishes, hydra, and sea anemones, possesses specialized structures in its tissues, the cnidocytes, which deliver an array of toxins in order to capture prey and deter predators. The whole transcriptome of P. caribaeroum was deep sequenced, and a diversity of toxin-related peptide sequences were identified, and some retrieved for functional analysis. In this work, a peptide precursor containing a ShK domain, named PcShK3, was analyzed by means of computational processing, comprising structural phylogenetic analysis, model prediction, and dynamics simulation of peptide-receptor interaction. The combined data indicated that PcShK3 is a distinct peptide which is homologous to a cluster of peptides belonging to the ShK toxin family. In vivo, PcShK3 distributed across the vitelline membrane and accumulated in the yolk sac stripe of zebrafish larvae. Notably, it displayed a significant cardio-protective effect in zebrafish in concentrations inferior to the IC50 (<43.53 ± 6.45 µM), while in high concentrations (>IC50), it accumulated in the blood and caused pericardial edema, being cardiotoxic to zebrafish larvae. Remarkably, PcShK3 suppressed the 6-OHDA-induced neurotoxicity on the locomotive behavior of zebrafish. The present results indicated that PcShK3 is a novel member of ShK toxin family, and has the intrinsic ability to induce neuro- and cardio-protective effects or cause cardiac toxicity, according to its effective concentration.
Collapse
Affiliation(s)
- Qiwen Liao
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau, China.
| | - Guiyi Gong
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau, China.
| | - Shirley Weng In Siu
- Department of Computer and Information Science, Faculty of Science and Technology, University of Macau, Macau, China.
| | | | - Huidong Yu
- Shenzhen Rongxin Biotechnology Co., Ltd., Shenzhen 518054, China.
| | - Yu Chung Tse
- Department of Biology, South University of Science and Technology of China, Shenzhen 518055, China.
| | - Gandhi Rádis-Baptista
- Laboratory of Biochemistry and Biotechnology, Institute for Marine Sciences, Federal University of Ceará, Fortaleza 60165-081, Brazil.
| | - Simon Ming-Yuen Lee
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau, China.
| |
Collapse
|