1
|
Shao Y, Xu J, Liang B, Zhang S, Chen W, Wang Y, Xing D. The role of CDR1as/ciRS-7 in cardio-cerebrovascular diseases. Biomed Pharmacother 2023; 167:115589. [PMID: 37776642 DOI: 10.1016/j.biopha.2023.115589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 10/02/2023] Open
Abstract
Cerebellar degeneration-related protein 1 antisense RNA (CDR1as), also known as ciRS-7, is a circular natural antisense transcript of CDR1. It is a widely studied and powerful representative of circular RNAs. Based on its widely reported role in cancer, CDR1as is considered one of the most promising biomarkers for diagnosing and treating tumours. However, some recent studies have extensively focused on its regulatory role in cardio-cerebrovascular diseases instead of in tumours. Studies have shown that CDR1as plays a unique role in the occurrence of cardio-cerebrovascular diseases; thus, it may be a potential target for preventing and treating cardio-cerebrovascular diseases. Furthermore, CDR1as has also been found to be related to signal transduction pathways related to inflammatory response, oxidative stress, etc., which may reveal its potential mechanism in cardio-cerebrovascular diseases. However, there is no literature to summarize the role and possible mechanism of CDR1as in cardio-cerebrovascular diseases. Therefore, in the present review, we have comprehensively summarised the latest progress in the biological characteristics, development processes, regulatory mechanisms, and roles of CDR1as in cardio-cerebrovascular diseases, aiming to provide a reference and guidance for future studies.
Collapse
Affiliation(s)
- Yingchun Shao
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao 266071, China.
| | - Jiazhen Xu
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao 266071, China
| | - Bing Liang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao 266071, China
| | - Shuangshuang Zhang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao 266071, China
| | - Wujun Chen
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao 266071, China.
| | - Yanhong Wang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao 266071, China.
| | - Dongming Xing
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao 266071, China; School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
2
|
Qiao S, Wang X, Li H, Zhang C, Wang A, Zhang S. Atherosclerosis-associated endothelial dysfunction is promoted by miR-199a-5p/SIRT1 axis regulated by circHIF1ɑ. Nutr Metab Cardiovasc Dis 2023; 33:1619-1631. [PMID: 37336718 DOI: 10.1016/j.numecd.2023.05.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 04/29/2023] [Accepted: 05/03/2023] [Indexed: 06/21/2023]
Abstract
BACKGROUND AND AIMS Atherosclerosis (AS) is a chronic inflammatory disease that damages the arterial wall as a result of hyperlipidemia and causes endothelial cell dysfunction, which increases the risk of atherothrombotic events. Multiple pathological conditions have shown ectopic miR-199a-5p levels to cause endothelial injury, but its role in the AS competitive endogenous RNA (CeRNA) network is still unknown. METHODS AND RESULTS The high-fat diet (HFD) apoE-/- mouse model was constructed in vivo, and ECs were cultured under ox-LDL treatment to induce EC injury in vitro. Immunohistochemistry and immunofluorescence staining were used to assess the effect of miR-199a-5p on the macrophage, SMC, collagen content, and endothelial coverage in the artery wall of mouse model. miR-199a-5p level was validated to be overexpression in the aorta tissue of HFD apoE-/- mice and in the ox-LDL-treated ECs, and even in the plasma EVs of the patients with cerebral AS. Silencing of miR-199a-5p significantly attenuated atherosclerotic progress in HFD apoE-/- mice, and the gain/loss-of-function assay indicated that miR-199a-5p overexpression aggravated ox-LDL-induced disabilities of endothelial proliferation, motility, and neovascularization based on cell counting kit-8 assay, transwell assay and matrigel assay. Mechanistically, miR-199a-5p prevented EC activation by activating the FOXO signaling pathway by targeting SIRT1. Additionally, circular RNA (circRNA) circHIF1ɑ was identified as having a low expression in the ox-LDL-treated EC and mediated SIRT1 expression via sponging miR-199a-5p to rescue ox-LDL-induced EC injury. CONCLUSIONS Our study demonstrated the vital role of miR-199a-5p/SIRT1 axis regulated by circHIF1ɑ in AS pathogenesis and provided novel effective targets for AS treatment.
Collapse
Affiliation(s)
- Shan Qiao
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong First Medical University, Jinan, China; Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China; Department of Medical Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China; Shandong Laibo Biotechnology Co., Ltd, China
| | - Xing Wang
- Department of Neurology, Tianyou Affiliated Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - Haiyun Li
- Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Canling Zhang
- Nursing Department, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong First Medical University, Jinan, China
| | - Aihua Wang
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong First Medical University, Jinan, China; Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Shanchao Zhang
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong First Medical University, Jinan, China; Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China; School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China.
| |
Collapse
|
3
|
Sun F, Zhang Y, Wu X, Xu X, Zhu C, Huang W. Breviscapine Combined with BMSCs Reduces Aβ Deposition in Rat with Alzheimer's Disease by Regulating Circular RNA ciRS-7. Curr Mol Med 2023; 23:76-86. [PMID: 35048805 DOI: 10.2174/1566524022666220113151044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 11/05/2021] [Accepted: 11/25/2021] [Indexed: 12/16/2022]
Abstract
AIMS This study aimed to clarify that breviscapine combined with bone marrow mesenchymal stem cells (BMSCs) treatment can reduce Aβ deposition in Alzheimer's disease (AD) patients. BACKGROUND AD is a common degenerative disease of the central nervous system. Aβ protein deposition in the cerebral cortex and hippocampus causes neuronal peroxidation damage, synaptic dysfunction, neuroinflammation, and nerve cell apoptosis, and ultimately leads to AD. OBJECTIVE To investigate whether breviscapine combined with BMSCs treatment can reduce Aβ deposition in AD. METHODS The AD rat model was successfully induced by Aβ1-42. The expression of protein and mRNA was detected by western blot and reverse transcription-quantitative PCR (RT-qPCR), respectively. RESULTS In AD rat brain tissue, the expression of circular RNA ciRS-7 (ciRS-7), ubiquitin carboxyl-terminal hydrolase L1 (UCHL1), and NF-kappaB p65 was significantly downregulated, and the expression of β-amyloid precursor protein (APP), β-site APPcleaving enzyme 1 (BAEC1), and Aβ was upregulated. The expression of ciRS-7, UCHL1, and p65 was significantly upregulated after breviscapine or BMSCs treatment, and there was increased APP and BAEC1 degradation. Notably, breviscapine combined with BMSCs treatment was more effective than either treatment alone. In SH-SY5Y cells, overexpression of ciRS-7 reduced Aβ deposition by upregulating UCHL1 to degrade APP and BAEC1, but these effects were reversed with inhibition of NF-kB signaling. Finally, knockdown of ciRS-7 elevated Aβ, APP, and BAEC1 expression in each group of rats compared with the control. CONCLUSION Breviscapine combined with BMSCs treatment can reduce Aβ deposition in AD rats and promote the degradation of APP and BAEC1 by activating NF-kB to promote UCHL1 expression.
Collapse
Affiliation(s)
- Fengqin Sun
- Department of Neurology, The Third People's Hospital of Yunnan Province, 292 Beijing Road, Kunming, 650011, China
| | - Yulin Zhang
- Department of Neurology, The Third People's Hospital of Yunnan Province, 292 Beijing Road, Kunming, 650011, China
| | - Xinran Wu
- Teaching Research Department, The Third People's Hospital of Yunnan Province, 292 Beijing Road, Kunming, 650011, China
| | - Xu Xu
- Department of Neurology, The Third People's Hospital of Yunnan Province, 292 Beijing Road, Kunming, 650011, China
| | - Chaodie Zhu
- Department of Neurology, The Third People's Hospital of Yunnan Province, 292 Beijing Road, Kunming, 650011, China
| | - Wei Huang
- Department of Neurology, The Third People's Hospital of Yunnan Province, 292 Beijing Road, Kunming, 650011, China
| |
Collapse
|
4
|
Liu F, Gao B, Wang Y. CircIRAK1 aggravates ox-LDL-induced endothelial cell injury in atherosclerosis via TRIM14 upregulation by binding to miR-330-5p. Clin Hemorheol Microcirc 2023; 85:195-209. [PMID: 36336926 DOI: 10.3233/ch-221551] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
BACKGROUND Atherosclerosis (AS) is a common inflammatory cardiovascular disease, and circular RNAs (circRNAs) are associated with the pathogenesis of AS. CircRNA Interleukin (IL)-1 receptor-associated kinase 1 (circIRAK1, hsa_circ_0091822) was upregulated in AS. The aims of this study were to ascertain the function and mechanism of circIRAK1 in AS. METHODS Human Umbilical Vein Endothelial Cells (HUVECs) were treated with oxidized low-density lipoprotein (ox-LDL). RNA expression was detected by reverse transcription-quantitative polymerase chain reaction assay. Cell viability was examined using Cell Counting Kit-8 assay. Tube formation ability was measured by tube formation assay. Cell apoptosis was assessed using flow cytometry. Western blot was used for protein detection. Inflammatory reaction was evaluated via Enzyme-linked immunosorbent assay. Oxidative injury was analyzed by commercial kits. Target binding was determined through dual-luciferase reporter assay, RNA immunoprecipitation assay and pull-down assay. RESULTS The expression of circIRAK1 was upregulated in AS serums and ox-LDL-treated HUVECs. Silencing circIRAK1 enhanced cell viability and angiogenesis while suppressed cell apoptosis, inflammatory response and oxidative stress in ox-LDL-stimulated HUVECs. CircIRAK1 served as a molecular sponge for miR-330-5p. CircIRAK1 regulated ox-LDL-mediated cell injury by absorbing miR-330-5p. In addition, miR-330-5p prevented endothelial cell dysfunction caused by ox-LDL via targeting tripartite motif containing 14 (TRIM14). TRIM14 expression was upregulated by circIRAK1 through sponging miR-330-5p. CONCLUSION These results suggested that circIRAK1 upregulated TRIM14 by interacting with miR-330-5p, consequently contributing to ox-LDL-induced endothelial cell injury in AS.
Collapse
Affiliation(s)
- Fang Liu
- Department of Cardiology, Hanchuan People's Hospital, Hanchuan City, Hubei, China
| | - Bo Gao
- Department of Cardiology, Hanchuan People's Hospital, Hanchuan City, Hubei, China
| | - Yu Wang
- Department of Cardiology, Hanchuan People's Hospital, Hanchuan City, Hubei, China
| |
Collapse
|
5
|
Chen J, Liu Y, Liu Y, Peng J. Resveratrol protects against ox-LDL-induced endothelial dysfunction in atherosclerosis via depending on circ_0091822/miR-106b-5p-mediated upregulation of TLR4. Immunopharmacol Immunotoxicol 2022; 44:915-924. [PMID: 35736860 DOI: 10.1080/08923973.2022.2093740] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Atherosclerosis (AS) is the most common inducer of cardiovascular diseases, and resveratrol (RSV) has played a protective function in the endothelial injury of AS. This study was to explore the molecular mechanism of RSV in oxidized low-density lipoprotein (ox-LDL)-mediated endothelial dysfunction. METHODS Circ_0091822, microRNA-106b-5p (miR-106b-5p) or toll-like receptor (TLR4) levels were examined using reverse transcription-quantitative polymerase chain reaction assay. Cell viability was detected via Cell Counting Kit-8 assay and angiogenesis was assessed by tube formation assay. Cell apoptosis was determined through flow cytometry. The protein analysis was conducted via western blot. Inflammatory cytokines were measured by enzyme-linked immunosorbent assay. The oxidative injury was evaluated using the commercial kits. The binding detection was performed via dual-luciferase reporter assay and RNA pull-down assay. RESULTS Circ_0091822 was downregulated by RSV in ox-LDL-treated endothelial cells. RSV promoted cell viability and angiogenesis while inhibiting apoptosis, inflammation, and oxidative stress after exposure to ox-LDL. The circ_0091822 knockdown relieved the ox-LDL-induced cell damages. RSV suppressed the ox-LDL-caused endothelial dysfunction via inducing the downregulation of circ_0091822. Circ_0091822 could target miR-106b-5p, and the reversal of circ_0091822 for RSV function was achieved by sponging miR-106b-5p. Circ_0091822 absorbed miR-106b-5p to elevate the level of TLR4. RSV impeded ox-LDL-induced damages by regulating miR-106b-5p/TLR4 axis. CONCLUSION All these findings suggested that RSV acted as an inhibitory factor in ox-LDL-induced endothelial injury via downregulating circ_0091822 to upregulate miR-106b-5p-related TLR4.
Collapse
Affiliation(s)
- Jinsong Chen
- Department of Cardiovascular Medicine, The Second Affiliated Hospital, Hengyang Medcial School, University of South China, Hengyang City, China
| | - Yang Liu
- Department of Cardiovascular Medicine, The Second Affiliated Hospital, Hengyang Medcial School, University of South China, Hengyang City, China
| | - Yunyang Liu
- Department of Cardiovascular Medicine, The Second Affiliated Hospital, Hengyang Medcial School, University of South China, Hengyang City, China
| | - Jianye Peng
- Department of Cardiovascular Medicine, The Second Affiliated Hospital, Hengyang Medcial School, University of South China, Hengyang City, China
| |
Collapse
|
6
|
Liang Y, Jie H, Liu Q, Li C, Xiao R, Xing X, Sun J, Yu S, Hu Y, Xu GH. Knockout of circRNA single stranded interacting protein 1 (circRBMS1) played a protective role in myocardial ischemia-reperfusion injury though inhibition of miR-2355-3p/Mammalian Sterile20-like kinase 1 (MST1) axis. Bioengineered 2022; 13:12726-12737. [PMID: 35611768 PMCID: PMC9275998 DOI: 10.1080/21655979.2022.2068896] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Evidence suggests circRBMS1 regulates mRNA to mediate cell apoptosis, inflammation, and oxidative stress in different diseases. MST1 is reported to be the target and activator of apoptosis-related molecules and signaling pathways. Hence, the present study aims to investigate the role of circ-RBMS1/miR-2355-3p/MST1 in the development of I/R injury. In vitro experiments showed increased circ-RBMS1 and decreased miR-2355-3p in H/R-induced HCMs. CircRBMS1 served as a sponge for miR-2355-3p and miR-2355-3p targeted MST1. Furthermore, knockout of circRBMS1 attenuated cell apoptosis, oxidized stress, and inflammation in H/R-induced HCMs. In vivo experiments indicated circRBMS1 knockdown attenuated cardiac function damage, cell apoptosis, oxidative stress injury and inflammatory response through miR-2355-3p/MST1 axis in mice. In summary, these results demonstrated circRBMS1 played a protective role in myocardial I/R injury though inhibition of miR-2355-3p/MST1 axis. It might provide a new therapeutic target for cardiac I/R injury.
Collapse
Affiliation(s)
- Yingping Liang
- Department of Anesthesiology, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Huanhuan Jie
- Department of Anesthesiology, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Qin Liu
- Department of Anesthesiology, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Chang Li
- Department of Anesthesiology, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Renjie Xiao
- Department of Anesthesiology, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xianliang Xing
- Department of Anesthesiology, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jing Sun
- Department of Anesthesiology, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Shuchun Yu
- Department of Anesthesiology, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yanhui Hu
- Department of Anesthesiology, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Guo-Hai Xu
- Department of Anesthesiology, Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
7
|
Mao X, Wang L, Chen C, Tao L, Ren S, Zhang L. Circ_0124644 enhances ox-LDL-induced cell damages in human umbilical vein endothelial cells through upregulating FOXO4 by sponging miR-370-3p. Clin Hemorheol Microcirc 2022; 81:135-147. [PMID: 35570481 DOI: 10.3233/ch-211375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
BACKGROUND: Circular RNA circ_0124644 has crucial regulation in the progression of coronary artery diseases, including atherosclerosis (AS). The aim of this study was to explore the regulatory mechanism of circ_0124644 in oxidized low-density lipoprotein (ox-LDL)-induced endothelial injury in human umbilical vein endothelial cells (HUVECs). METHODS: Cell viability and proliferation were assessed using cell counting kit-8 (CCK-8) assay and EdU assay. The apoptosis detection was performed by flow cytometry. Angiogenesis was evaluated through tube formation assay. The protein analysis was conducted via western blot. Inflammatory cytokines were examined by enzyme-linked immunosorbent assay (ELISA). The expression determination of circ_0124644, microRNA-370-3p (miR-370-3p) and forkhead box protein O4 (FOXO4) was performed through reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay were used to analyze the interaction between targets. RESULTS: Treatment of ox-LDL resulted in the inhibition of cell viability, proliferation and angiogenesis but the promotion of apoptosis and inflammation in HUVECs. These ox-LDL-induced cell damages were alleviated after the downregulation of circ_0124644. Circ_0124644 interacted with miR-370-3p, and the regulatory role of circ_0124644 was associated with the sponge function of miR-370-3p. Additionally, miR-370-3p targeted FOXO4 and circ_0124644 increased the expression of FOXO4 through acting as a sponge of miR-370-3p. Overexpression of miR-370-3p protected from ox-LDL-induced injury via the downregulation of FOXO4. CONCLUSION: All results revealed that circ_0124644 accelerated endothelial injury in ox-LDL-treated HUVECs by mediating miR-370-3p-related FOXO4 expression.
Collapse
Affiliation(s)
- Xiang Mao
- Department of Cardiology, the First People’s Hospital of Taizhou City, Taizhou, Zhejiang, China
| | - Lingqing Wang
- Department of Cardiology, the First People’s Hospital of Taizhou City, Taizhou, Zhejiang, China
| | - Changgong Chen
- Department of Cardiology, the First People’s Hospital of Taizhou City, Taizhou, Zhejiang, China
| | - Luyuan Tao
- Department of Cardiology, the First People’s Hospital of Taizhou City, Taizhou, Zhejiang, China
| | - Shijia Ren
- Department of Cardiology, the First People’s Hospital of Taizhou City, Taizhou, Zhejiang, China
| | - Li Zhang
- Department of Cardiology, the First People’s Hospital of Taizhou City, Taizhou, Zhejiang, China
| |
Collapse
|
8
|
Zhang Y, Zhang X, Xu Y, Fang S, Ji Y, Lu L, Xu W, Qian H, Liang ZF. Circular RNA and Its Roles in the Occurrence, Development, Diagnosis of Cancer. Front Oncol 2022; 12:845703. [PMID: 35463362 PMCID: PMC9021756 DOI: 10.3389/fonc.2022.845703] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/14/2022] [Indexed: 12/19/2022] Open
Abstract
Circular RNAs (circRNAs) are non-coding single-stranded covalently closed circular RNA, mainly produced by reverse splicing of exons of precursor mRNAs (pre-mRNAs). The characteristics of high abundance, strong specificity, and good stability of circRNAs have been discovered. A large number of studies have reported its various functions and mechanisms in biological events, such as the occurrence and development of cancer. In this review, we focus on the classification, characterization, biogenesis, functions of circRNAs, and the latest advances in cancer research. The development of circRNAs as biomarkers in cancer diagnosis and treatment also provides new ideas for studying circRNAs research.
Collapse
Affiliation(s)
- Yue Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Xinyi Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Yumeng Xu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Shikun Fang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Ying Ji
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Ling Lu
- Child Healthcare Department, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Wenrong Xu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Hui Qian
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Zhao Feng Liang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| |
Collapse
|
9
|
Huang X, Zhao Y, Zhou H, Li Y. Circular RNAs in atherosclerosis. Clin Chim Acta 2022; 531:71-80. [PMID: 35339453 DOI: 10.1016/j.cca.2022.03.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/11/2022] [Accepted: 03/21/2022] [Indexed: 12/13/2022]
Abstract
Atherosclerosis (AS) is a chronic inflammatory lesion of the arterial vessel wall caused by a variety of complex factors. Furthermore, it is a major cause of cardiovascular disease and a leading cause of death. Circular RNAs (circRNAs) are a new family of endogenous non-coding RNAs with unique covalently closed loops that have sparked interest due to their unique characteristics and potential diagnostic and therapeutic applications in various diseases. A growing number of studies have shown that circRNAs can be used as biomarkers for the diagnosis and treatment of AS. In this article, we review the biogenesis, classification as well as functions of circRNA and summarize the research on circRNA as a diagnostic biomarker for AS. Finally, we describe the regulatory capacity of circRNA in AS pathogenesis through its pathogenesis and demonstrate the potential therapeutic role of circRNA for AS.
Collapse
Affiliation(s)
- Xiaoni Huang
- Department of Nephrology, Institute of Nephrology and Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou City, Guangdong Province 510630, PR China
| | - Yuwen Zhao
- Department of Nephrology, Institute of Nephrology and Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou City, Guangdong Province 510630, PR China
| | - Huijiao Zhou
- Department of Nephrology, Institute of Nephrology and Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou City, Guangdong Province 510630, PR China
| | - Yongqiang Li
- Department of General Practice, The Third Affiliated Hospital of Southern Medical University, Guangzhou City, Guangdong Province 510630, PR China.
| |
Collapse
|
10
|
Ma X, Chen Y, Mo C, Li L, Nong S, Gui C. The role of circRNAs in the regulation of myocardial angiogenesis in coronary heart disease. Microvasc Res 2022; 142:104362. [PMID: 35337818 DOI: 10.1016/j.mvr.2022.104362] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 02/28/2022] [Accepted: 03/15/2022] [Indexed: 11/16/2022]
Abstract
During myocardial ischemia, timely reperfusion is critical to limit infarct area and the overall loss of cardiac contractile function. New treatment strategies need to be developed for patients who are neither able to receive interventional treatment nor suitable for surgical blood transport reconstruction surgery. Therapeutic angiogenesis is a promising approach that can be used to guide new treatment strategies. The goal of these therapies is to form new blood vessels or promote the maturation of existing vasculature systems, bypassing blocked arteries to maintain organ perfusion, thereby relieving symptoms and preventing the remodeling of bad organs. Non-coding RNAs (ncRNAs), including microRNAs (miRNAs), long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs), have been attracted much attention for their roles in various physiological and pathological processes. There is growing evidence that ncRNAs, especially circRNAs, play an important role in the regulation of cardiomyopathy angiogenesis due to its diversity of functions. Therefore, this article reviews the role and mechanisms of circRNA in myocardial angiogenesis to better understand the role of circRNAs in myocardial angiogenesis, which may provide useful insights and new revelations for the research field of identifying diagnostic markers and therapeutic approaches for the treatment of coronary artery disease.
Collapse
Affiliation(s)
- Xiao Ma
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University&Guangxi Key Laboratory Base of Precision Medicine in Cardiocerebrovascular Diseases Control and Prevention & Guangxi Clinical Research Center for Cardiocerebrovascular Diseases, Nanning, Guangxi Zhuang Autonomous Region 530021, PR China
| | - Yuanxin Chen
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University&Guangxi Key Laboratory Base of Precision Medicine in Cardiocerebrovascular Diseases Control and Prevention & Guangxi Clinical Research Center for Cardiocerebrovascular Diseases, Nanning, Guangxi Zhuang Autonomous Region 530021, PR China
| | - Changhua Mo
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University&Guangxi Key Laboratory Base of Precision Medicine in Cardiocerebrovascular Diseases Control and Prevention & Guangxi Clinical Research Center for Cardiocerebrovascular Diseases, Nanning, Guangxi Zhuang Autonomous Region 530021, PR China
| | - Longcang Li
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University&Guangxi Key Laboratory Base of Precision Medicine in Cardiocerebrovascular Diseases Control and Prevention & Guangxi Clinical Research Center for Cardiocerebrovascular Diseases, Nanning, Guangxi Zhuang Autonomous Region 530021, PR China
| | - Shuxiong Nong
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University&Guangxi Key Laboratory Base of Precision Medicine in Cardiocerebrovascular Diseases Control and Prevention & Guangxi Clinical Research Center for Cardiocerebrovascular Diseases, Nanning, Guangxi Zhuang Autonomous Region 530021, PR China
| | - Chun Gui
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University&Guangxi Key Laboratory Base of Precision Medicine in Cardiocerebrovascular Diseases Control and Prevention & Guangxi Clinical Research Center for Cardiocerebrovascular Diseases, Nanning, Guangxi Zhuang Autonomous Region 530021, PR China..
| |
Collapse
|
11
|
Rahmati Y, Asemani Y, Aghamiri S, Ezzatifar F, Najafi S. CiRS-7/CDR1as; An oncogenic circular RNA as a potential cancer biomarker. Pathol Res Pract 2021; 227:153639. [PMID: 34649055 DOI: 10.1016/j.prp.2021.153639] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/20/2021] [Accepted: 09/27/2021] [Indexed: 12/13/2022]
Abstract
Circular RNAs (circRNAs) as a new class of non-coding RNAs (ncRNAs) play role in gene regulation in multicellular organisms via various interactions with nucleic acids, proteins and particularly microRNAs. They have been found to be involved in a number of biological functions particularly in regulation of cell cycle, and extracellular interactions. Thus, dysregulation of circRNAs is found to be associated with several human diseases and especially numerous types of cancers. ciRS-7 is an example of circRNAs which have been studied in a number of human diseases like neurological diseases, diabetes mellitus, and importantly different malignancies. It has been found to regulate cell proliferation and malignant features in cancer cells. CiRS-7 is upregulated in several cancers and its overexpression promoted malignant phenotype of cancer cells via enhancing cell proliferation, migration, and invasion in vitro and in vivo. As a competing endogenous RNA (ceRNA), ciRS-7 is found to sponge miR-7 as the most common miRNA target in interaction together. Functional analyses show role of ciRS-7 in downregulation of miR-7 and involvement of a series of signaling pathways in turn through them it is believed that ciRS-7 regulates malignant behaviors of cancer cells. Clinical studies demonstrate upregulation of ciRS-7 in cancer tissues compared to their non-cancerous adjacent tissues, correlation with worse clinicopathological features in cancerous patients and an independent prognostic factor. In this review, we have an overview to the role of ciRS-7 in development and progression of cancer and also assess its potentials as a diagnostic and prognostic biomarker in human cancers.
Collapse
Affiliation(s)
- Yazdan Rahmati
- Department of Medical Genetics and Molecular Biology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Yahya Asemani
- Department of Immunology, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Shahin Aghamiri
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Fatemeh Ezzatifar
- Molecular and Cell Biology Research Center, Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Sajad Najafi
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
12
|
Shi H, Li H, Zhang F, Xue H, Zhang Y, Han Q. MiR-26a-5p alleviates cardiac hypertrophy and dysfunction via targeting ADAM17. Cell Biol Int 2021; 45:2357-2367. [PMID: 34370360 DOI: 10.1002/cbin.11685] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 07/19/2021] [Accepted: 07/24/2021] [Indexed: 12/15/2022]
Abstract
Cardiac hypertrophy has been a high prevalence rate throughout the world. It has posed a big threat to public health due to limited therapeutic approaches. Previous studies showed that pathological cardiac hypertrophy was associated with autophagy, microRNAs (miRNA), and other signaling pathways, while the molecular mechanisms remain incompletely characterized. In this study, we used thoracic aortic constriction (TAC)-induced mice and angiotensin-II (Ang-II)-induced H9C2 cell line as cardiac hypertrophy model to investigate the role of miR-26a-5p in cardiac hypertrophy. We found that miR-26a-5p was downregulated in cardiac hypertrophy mice. Overexpression of miR-26a-5p by type 9 recombinant adeno-associated virus (rAAV9) reversed the heart hypertrophic manifestations. The phenotypes were also promoted by miR-26a-5p inhibitor in Ang-II-induced H9C2 cells. Through miRNA profile analysis and dual-luciferase reporter assay, ADAM17 was identified as a direct target of miR-26a-5p. Restored expression of ADAM17 disrupted the effect of miR-26a-5p on cardiac hypertrophy. To sum up, these results indicated that miR-26a-5p played an inhibitory role in cardiac hypertrophy and dysfunction via targeting ADAM17. The miR-26a-5p-ADAM17-cardiac hypertrophy axis provided special insight and a new molecular mechanism for a better understanding of cardiac hypertrophy disease, as well as the diagnostic and therapeutic practice.
Collapse
Affiliation(s)
- Hongtao Shi
- Department of Cardiology, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Hao Li
- Department of Cardiology, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Fan Zhang
- Department of Cardiology, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Honghong Xue
- Department of Cardiology, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Yanan Zhang
- Department of Cardiology, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Qinghua Han
- Department of Cardiology, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, PR China
| |
Collapse
|
13
|
Sun X, Deng K, Zang Y, Zhang Z, Zhao B, Fan J, Huang L. Exploring the regulatory roles of circular RNAs in the pathogenesis of atherosclerosis. Vascul Pharmacol 2021; 141:106898. [PMID: 34302990 DOI: 10.1016/j.vph.2021.106898] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 01/04/2021] [Accepted: 07/19/2021] [Indexed: 01/19/2023]
Abstract
Circular RNAs (circRNAs) are a class of noncoding RNAs with a covalently closed loop structure. Recent evidence has shown that circRNAs can regulate gene transcription, alternative splicing, microRNA (miRNA) "molecular sponges", RNA-binding proteins and protein translation. Atherosclerosis is one of the leading causes of death worldwide, and more studies have indicated that circRNAs are related to atherosclerosis pathogenesis, including vascular endothelial cells, vascular smooth muscle cells, inflammation and lipid metabolism. In this review, we systematically summarize the biogenesis, characteristics and functions of circRNAs with a focus on their roles in the pathogenesis of atherosclerosis.
Collapse
Affiliation(s)
- Xueyuan Sun
- Department of Clinical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, People's Republic of China
| | - Kaiyuan Deng
- Department of Clinical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, People's Republic of China
| | - Yunhui Zang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, People's Republic of China
| | - Zhiyong Zhang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, People's Republic of China
| | - Boxin Zhao
- Department of Clinical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, People's Republic of China
| | - Jingyao Fan
- Department of Clinical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, People's Republic of China
| | - Lijuan Huang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, People's Republic of China.
| |
Collapse
|
14
|
Yang T, Long T, Du T, Chen Y, Dong Y, Huang ZP. Circle the Cardiac Remodeling With circRNAs. Front Cardiovasc Med 2021; 8:702586. [PMID: 34250050 PMCID: PMC8267062 DOI: 10.3389/fcvm.2021.702586] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/02/2021] [Indexed: 12/16/2022] Open
Abstract
Cardiac remodeling occurs after the heart is exposed to stress, which is manifested by pathological processes such as cardiomyocyte hypertrophy and apoptosis, dendritic cells activation and cytokine secretion, proliferation and activation of fibroblasts, and finally leads to heart failure. Circular RNAs (circRNAs) are recently recognized as a specific type of non-coding RNAs that are expressed in different species, in different stages of development, and in different pathological conditions. Growing evidences have implicated that circRNAs play important regulatory roles in the pathogenesis of a variety of cardiovascular diseases. In this review, we summarize the biological origin, characteristics, functional classification of circRNAs and their regulatory functions in cardiomyocytes, endothelial cells, fibroblasts, immune cells, and exosomes in the pathogenesis of cardiac remodeling.
Collapse
Affiliation(s)
- Tiqun Yang
- Department of Cardiology, Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,National Health Commission (NHC) Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, China
| | - Tianxin Long
- Department of Cardiology, Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,National Health Commission (NHC) Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, China
| | - Tailai Du
- Department of Cardiology, Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,National Health Commission (NHC) Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, China
| | - Yili Chen
- Department of Cardiology, Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,National Health Commission (NHC) Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, China
| | - Yugang Dong
- Department of Cardiology, Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,National Health Commission (NHC) Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, China
| | - Zhan-Peng Huang
- Department of Cardiology, Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,National Health Commission (NHC) Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, China.,National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| |
Collapse
|
15
|
Chen X, Sun H, Zhao Y, Zhang J, Xiong G, Cui Y, Lei C. CircRNA circ_0004370 promotes cell proliferation, migration, and invasion and inhibits cell apoptosis of esophageal cancer via miR-1301-3p/COL1A1 axis. Open Med (Wars) 2021; 16:104-116. [PMID: 33506107 PMCID: PMC7801883 DOI: 10.1515/med-2021-0001] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 10/29/2020] [Accepted: 10/30/2020] [Indexed: 02/06/2023] Open
Abstract
Background The aim of this study was to investigate the circ_0004370 expression in EC, its effects on cell proliferation, apoptosis, migration, invasion, and epithelial–mesenchymal transition (EMT) process, and the underlying regulatory mechanisms in EC. Methods The protein levels of COL1A1 and EMT-related proteins were detected by western blot. The role of circ_0004370 on cell viability, proliferation, and apoptosis was analyzed by Cell Counting Kit-8 (CCK-8) assay, colony formation assay, and flow cytometry, respectively. The transwell assay was used to examine cell migration and invasion. The binding sites between miR-1301-3p and circ_0004370 or COL1A1 were predicted by starbase software and confirmed by dual-luciferase reporter assay and RNA pull-down assay. Results We discovered that circ_0004370 was remarkably upregulated in EC tissues and cells. Knockdown of circ_0004370 inhibited cell proliferation, migration as well as invasion, and promoted apoptosis in vitro, while its effect was rescued by miR-1301-3p inhibition. And circ_0004370 mediated the EMT process in EC cells. Moreover, we explored its regulatory mechanism and found that circ_0004370 directly bound to miR-1301-3p and COL1A1 was verified as a target of miR-1301-3p. COL1A1 was highly expressed in EC cells and upregulation of COL1A1 reversed the effects of miR-1301-3p on cell proliferation, migration, invasion, and apoptosis. In addition, silencing of circ_0004370 reduced tumor volumes and weights in vivo. We showed that circ_0004370/miR-1301-3p/COL1A1 axis played the critical role in EC to regulate the cell activities. Conclusion Circ_0004370 promotes EC proliferation, migration and invasion, and EMT process and suppresses apoptosis by regulating the miR-1301-3p/COL1A1 axis, indicating that circ_0004370 may be used as a potential therapeutic target for EC.
Collapse
Affiliation(s)
- Xiaobo Chen
- Department of Thoracic Surgery, The First Affiliated Hospital of Kunming Medical University, No 295 Xichang Road, Kunming 650032, Yunnan, China
| | - Hongwen Sun
- Department of Thoracic Surgery, The First Affiliated Hospital of Kunming Medical University, No 295 Xichang Road, Kunming 650032, Yunnan, China
| | - Yunping Zhao
- Department of Thoracic Surgery, The First Affiliated Hospital of Kunming Medical University, No 295 Xichang Road, Kunming 650032, Yunnan, China
| | - Jing Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Kunming Medical University, No 295 Xichang Road, Kunming 650032, Yunnan, China
| | - Guosheng Xiong
- Department of Thoracic Surgery, The First Affiliated Hospital of Kunming Medical University, No 295 Xichang Road, Kunming 650032, Yunnan, China
| | - Yue Cui
- Department of Thoracic Surgery, The First Affiliated Hospital of Kunming Medical University, No 295 Xichang Road, Kunming 650032, Yunnan, China
| | - Changcheng Lei
- Department of Thoracic Surgery, The First Affiliated Hospital of Kunming Medical University, No 295 Xichang Road, Kunming 650032, Yunnan, China
| |
Collapse
|
16
|
Huang S, Zeng Z, Sun Y, Cai Y, Xu X, Li H, Wu S. Association study of hsa_circ_0001946, hsa-miR-7-5p and PARP1 in coronary atherosclerotic heart disease. Int J Cardiol 2020; 328:1-7. [PMID: 33326806 DOI: 10.1016/j.ijcard.2020.12.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 11/17/2020] [Accepted: 12/04/2020] [Indexed: 02/09/2023]
Abstract
BACKGROUND Our previous work identified an aberrant expression of hsa_circ_0001946 in coronary atherosclerotic heart disease (CHD). Here we aimed to verify the role of hsa_circ_0001946 as a biomarker for CHD, and explore the clues of its downstream regulation. METHODS The hsa_circ_0001946 expression in CHD patients (n = 120) and controls (n = 120) were confirmed with qRT-PCR. CircBank and miRDB were used for target analysis in silico. Spearman correlation test was performed to infer potential interrelationships among the nucleic acid molecular biomarkers, and their predictive abilities were examined using receiver operating characteristic (ROC) curves. RESULTS Hsa_circ_0001946 was validated to be significantly up-regulated in the peripheral blood mononuclear cells of CHD patients, and revealed as an independent indicator of increased CHD risk (odds ratio: 2.364; 95% confidence interval [CI]: 1.765-3.165) after adjusting for confounding factors. Hsa-miR-7-5p was found to own the largest number of binding sites in has_circ_0001946 sequence, and among its targets predicted, the poly ADP-ribose polymerase 1 (PARP1) has been implicated in the pathophysiology of CHD. Spearman analysis indicated negative correlations of hsa-miR-7-5p with hsa_circ_0001946 and PARP1, respectively; while hsa_circ_0001946 was positively correlated with PARP1. The prediction accuracy of hsa_circ_0001946 in CHD was evaluated, showing an area under the ROC curve of 0.897 (95% CI: 0.791-0.961), which could further increase to 0.957 (95% CI: 0.870-0.992) upon a combination of hsa-miR-7-5p and PARP1. CONCLUSION The present work demonstrated the predictive power of hsa_circ_0001946, hsa-miR-7-5p and PARP1 as combined biomarkers for CHD, and suggests a regulatory axis they consisted might contribute to the CHD development.
Collapse
Affiliation(s)
- Shuna Huang
- Department of Clinical Research and Translation Center Office, the First Affiliated Hospital of Fujian Medical University, China
| | - Zhaonan Zeng
- Department of Center for Experimental Research in Clinical Medicine, Fujian Provincial Hospital, China
| | - Yi Sun
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, China; Fujian Key Lab of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, China
| | - Yingying Cai
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Xingyan Xu
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Huangyuan Li
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, China; Fujian Key Lab of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, China.
| | - Siying Wu
- Department of Neurosurgery, the First Affiliated Hospital of Fujian Medical University, China; Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, China; Key Lab of Environment and Health, School of Public Health, Fujian Medical University, China.
| |
Collapse
|
17
|
Jiang C, Zeng X, Shan R, Wen W, Li J, Tan J, Li L, Wan R. The Emerging Picture of the Roles of CircRNA-CDR1as in Cancer. Front Cell Dev Biol 2020; 8:590478. [PMID: 33335899 PMCID: PMC7736612 DOI: 10.3389/fcell.2020.590478] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 11/13/2020] [Indexed: 12/11/2022] Open
Abstract
Circular RNAs (circRNAs) are covalently closed circular structures without 5′ caps and 3′ tails, which are mainly formed from precursor mRNAs (pre-mRNAs) via back-splicing of exons. With the development of RNA sequencing and bioinformatic analysis, circRNAs were recently rediscovered and found to be widely expressed in the tree of life. Cerebellar degeneration-related protein 1 antisense RNA (CDR1as) is recognized as one of the most well-identified circRNAs. It contains over 70 miR-7 binding sites and can regulate gene activity by sponging miR-7. Increasing numbers of studies have recently demonstrated that CDR1as is abnormally expressed in many types of tumors, such as colorectal cancer, cholangiocarcinoma and osteosarcoma, and plays a vital role in the development of cancer. However, there are few reviews focusing on CDR1as and cancer. Hence, it is important to review and discuss the role of CDR1as in cancer. Here, we first review the main biological features of CDR1as. We then focus on the expression and roles of CDR1as in cancer. Finally, we summarize what is known on the role of CDR1as in cancer and discuss future prospects in this area of research.
Collapse
Affiliation(s)
- Chaohua Jiang
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
| | - Xiaohong Zeng
- Imaging Department, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
| | - Renfeng Shan
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
| | - Wu Wen
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
| | - Jianfeng Li
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
| | - Jinfeng Tan
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
| | - Lei Li
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
| | - Renhua Wan
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
| |
Collapse
|
18
|
Zhang Z, Ren L, Zhao Q, Lu G, Ren M, Lu X, Yin Y, He S, Zhu C. TRPC1 exacerbate metastasis in gastric cancer via ciRS-7/miR-135a-5p/TRPC1 axis. Biochem Biophys Res Commun 2020; 529:85-90. [PMID: 32560824 DOI: 10.1016/j.bbrc.2020.05.181] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 05/25/2020] [Indexed: 12/13/2022]
Abstract
Metastasis is frequently occurred in end-stage GC. Nevertheless, the initiation and progression of metastasis in GC remains unclear. The transient receptor potential canonical (TRPC) has been confirmed to be crucial for metastasis in many kinds of tumors, including GC. However, the molecular mechanisms regulating TRPC1 is unclear. Therefore, we investigated the role and mechanisms of TRPC1 in GC metastasis. We first evaluated the role of TRPC1 in GC by searching the public database, and tested the expression of TRPC1 in 50 paired GC tissues by qRT-PCR and IHC assays. Then, we generated BGC-823-shTRPC1 cells and MKN-45-TRPC1 cells to investigate the effects of TRPC1 on metastasis in vitro. For the mechanism study, we applied luciferase reporter assay, RNA pull-down assay, as well as RIP assay to validate the interation of ciRS-7, miR-135a-5p and TRPC1 in GC cells. This study, we showed that TRPC1 exacerbate EMT in gastric cancer via ciRS-7/miR-135a-5p/TRPC1 axis, and target TRPC1 could be beneficial for end-stage GC patients.
Collapse
Affiliation(s)
- Zhiyong Zhang
- Department of Gastroenterology, First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, China
| | - Li Ren
- Department of Gastroenterology, First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, China
| | - Qian Zhao
- Department of Gastroenterology, First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, China
| | - Guifang Lu
- Department of Gastroenterology, First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, China
| | - Mudan Ren
- Department of Gastroenterology, First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, China
| | - Xinlan Lu
- Department of Gastroenterology, First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, China
| | - Yan Yin
- Department of Gastroenterology, First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, China
| | - Shuixiang He
- Department of Thoracic Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, China.
| | - Cailin Zhu
- Department of Thoracic Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, China.
| |
Collapse
|