1
|
Mazza T, Scalise M, Console L, Galluccio M, Giangregorio N, Tonazzi A, Pochini L, Indiveri C. Carnitine traffic and human fertility. Biochem Pharmacol 2024; 230:116565. [PMID: 39368751 DOI: 10.1016/j.bcp.2024.116565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/18/2024] [Accepted: 10/01/2024] [Indexed: 10/07/2024]
Abstract
Carnitine is a vital molecule in human metabolism, prominently involved in fatty acid β-oxidation within mitochondria. Predominantly sourced from dietary intake, carnitine also derives from endogenous synthesis. This review delves into the complex network of carnitine transport and distribution, emphasizing its pivotal role in human fertility. Together with its role in fatty acid oxidation, carnitine modulates the acety-CoA/CoA ratio, influencing carbohydrate metabolism, lipid biosynthesis, and gene expression. The intricate regulation of carnitine homeostasis involves a network of membrane transporters, notably OCTN2, which is central in its absorption, reabsorption, and distribution. OCTN2 dysfunction, results in Primary Carnitine Deficiency (PCD), characterized by systemic carnitine depletion and severe clinical manifestations, including fertility issues. In the male reproductive system, carnitine is crucial for sperm maturation and motility. In the female reproductive system, carnitine supports mitochondrial function necessary for oocyte quality, folliculogenesis, and embryonic development. Indeed, deficiencies in carnitine or its transporters have been linked to asthenozoospermia, reduced sperm quality, and suboptimal fertility outcomes in couples. Moreover, the antioxidant properties of carnitine protect spermatozoa from oxidative stress and help in managing conditions like polycystic ovary syndrome (PCOS) and endometriosis, enhancing sperm viability and fertilization potential of oocytes. This review summarizes the key role of membrane transporters in guaranteeing carnitine homeostasis with a special focus on the implications in fertility and possible treatments of infertility and other related disorders.
Collapse
Affiliation(s)
- Tiziano Mazza
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Via P. Bucci 4C, Arcavacata di Rende 87036, Italy
| | - Mariafrancesca Scalise
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Via P. Bucci 4C, Arcavacata di Rende 87036, Italy
| | - Lara Console
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Via P. Bucci 4C, Arcavacata di Rende 87036, Italy
| | - Michele Galluccio
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Via P. Bucci 4C, Arcavacata di Rende 87036, Italy
| | - Nicola Giangregorio
- CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnology (IBIOM), via Amendola 122/O, Bari 70126, Italy
| | - Annamaria Tonazzi
- CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnology (IBIOM), via Amendola 122/O, Bari 70126, Italy
| | - Lorena Pochini
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Via P. Bucci 4C, Arcavacata di Rende 87036, Italy; CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnology (IBIOM), via Amendola 122/O, Bari 70126, Italy.
| | - Cesare Indiveri
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Via P. Bucci 4C, Arcavacata di Rende 87036, Italy; CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnology (IBIOM), via Amendola 122/O, Bari 70126, Italy.
| |
Collapse
|
2
|
Fan Z, Xin P, Zhao L, Kong C, Piao C, Wu Z, Qiu Z, Zhao W, Zhang Z. Ferroptosis Is Crucial for Cisplatin Induced Sertoli Cell Injury via N6-Methyladenosine Dependent Manner. World J Mens Health 2024; 42:865-880. [PMID: 38606861 PMCID: PMC11439804 DOI: 10.5534/wjmh.230268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/22/2023] [Accepted: 12/03/2023] [Indexed: 04/13/2024] Open
Abstract
PURPOSE This study aimed to investigate the effect of the N6-methyladenosine (m6A) dependent ferroptosis on cisplatininduced Sertoli cell injury. MATERIALS AND METHODS A cisplatin exposure mouse model was established by intraperitoneal injection of cisplatin in our study. TM4 cell lines was used for in vitro study. Ferroptosis was detected according to metabolomic analysis and a series of assays, including malondialdehyde, glutathione, and glutathione disulfide concentration detection, 2',7'-dichlorodihydrofluorescein diacetate and BODIPY 581/591 C11 probe detection, and transmission electron microscope imaging. Key ferroptosis-related genes were identified via transcriptomic analysis, western blot and immunohistochemistry. The m6A modification was demonstrated via m6A RNA immunoprecipitation and luciferase reporter assays. Immune cell infiltration was detected by mass cytometry, and verified by flow cytometry and immunofluorescence. RESULTS Ferroptosis, but not other types of programmed cell death, is a significant phenomenon in cisplatin-induced testis damage and Sertoli cell loss. Ferroptosis induced by cisplatin in Sertoli cell/TM4 cell is GPX4 independent but is regulated by SLC7A11 and ALOX12. Both SLC7A11 and ALOX12 are regulated via m6A dependent manner by METTL3. Furthermore, overexpressed ALOX12-12HETE pathway may result in macrophage polarization and inflammatory response in cisplatin exposure testis. CONCLUSIONS Cisplatin-induced Sertoli cell injury via ferroptosis and promoted ferroptosis in an m6A dependent manner. m6A modification of both SLC7A11 and ALOX12 mRNA could result in ferroptosis in our in vitro model. Further, overexpressed ALOX12 can cause more production of 12-HETE, which may be responsible for testis inflammation caused by cisplatin.
Collapse
Affiliation(s)
- Zhongru Fan
- Department of Urology, The First Hospital of China Medical University, Shenyang, China
| | - Peng Xin
- Department of Urology, The First Hospital of China Medical University, Shenyang, China
| | - Lin Zhao
- Department of Obstetrics and Gynecology, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, China
| | - Chuize Kong
- Department of Urology, The First Hospital of China Medical University, Shenyang, China
| | - Chiyuan Piao
- Department of Urology, The First Hospital of China Medical University, Shenyang, China
| | - Zhengqi Wu
- Department of Urology, The First Hospital of China Medical University, Shenyang, China
| | - Zhongkai Qiu
- Department of Urology, The First Hospital of China Medical University, Shenyang, China
- Department of Urology, Benxi Central Hospital, Benxi, China
| | - Wei Zhao
- Department of Urology, The First Hospital of China Medical University, Shenyang, China.
| | - Zhe Zhang
- Department of Urology, The First Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
3
|
Li X, Zhang B, Yang H, Zhang L, Lou H, Zheng S. The emergence of natural products as potential therapeutics for male infertility. Andrology 2024; 12:1191-1208. [PMID: 38191265 DOI: 10.1111/andr.13588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/04/2023] [Accepted: 12/22/2023] [Indexed: 01/10/2024]
Abstract
Infertility is a major reproductive health problem. Approximately 50% of all documented cases of infertility are attributable to male factors, such as poor testicular function and semen quality. The recent significant global decline in sperm counts has serious implications for male fertility, but the armamentarium for improving testicular function and semen quality is limited. Natural products have a wide range of activities and are a major source of drugs for disease prevention and treatment. To provide ideas and a theoretical basis for the research and development of therapeutic drugs for male infertility, this review summarizes natural products (mostly monomers) that have been shown to improve testicular function and semen quality and their possible mechanisms of action. These natural products primarily improve testicular function and semen quality via antioxidant, antiapoptotic, and anti-inflammatory effects, in addition to increasing serum testosterone and reducing DNA damage in spermatozoa and testicular cells. Prospects for the application of natural products in the treatment of male infertility are discussed.
Collapse
Affiliation(s)
- Xiuyun Li
- Maternal and Child Health Development Research Center, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, China
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Bin Zhang
- Maternal and Child Health Development Research Center, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, China
| | - Huijun Yang
- Reproductive Medicine Center, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, China
| | - Liuping Zhang
- Pharmaceutical Department, Shanxian Central Hospital, Heze, China
| | - Hongxiang Lou
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shicun Zheng
- Maternal and Child Health Development Research Center, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, China
| |
Collapse
|
4
|
Wu S, Lv K, Zheng T, Zhang T, Nan Y, Wang R. Roles of adipose-derived stem cells and derived exosomes in therapeutic applications to testicular injury caused by cisplatin. PLoS One 2024; 19:e0297076. [PMID: 38315670 PMCID: PMC10843130 DOI: 10.1371/journal.pone.0297076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 12/23/2023] [Indexed: 02/07/2024] Open
Abstract
In recent years, adipose-derived stem cells (ADSCs) and derived exosomes (ADSC-Ex) have been investigated for their therapeutic potential in various diseases due to their satisfactory differentiation and regeneration ability. We aimed to explore the potential treatment of ADSCs and ADSC-Ex for testicular injury caused by cisplatin. ADSCs and ADSC-Ex s were identified and extracted to treat the rat model with testicular injury caused by cisplatin. Then the immunohistochemistry and Enzyme linked immunosorbent assay (ELISA) were used to detect the potential treatment of ADSCs and ADSC-Ex. We found that ADSCs and ADSC-Ex significantly improved the testicular tissue damage, increased the number of germ cells, and improved the arrangement of the seminiferous tubules. The levels of malondialdehyde and testosterone were also improved. We speculated that ADSCs and ADSC-Ex may alleviate the testicular injury caused by cisplatin.
Collapse
Affiliation(s)
- Shixuan Wu
- Department of Andrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Kunlong Lv
- Department of Andrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Tao Zheng
- Department of Andrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Tianbiao Zhang
- Department of Andrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yonghao Nan
- Department of Andrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Rui Wang
- Department of Andrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
5
|
Rendón-Barrón MJ, Pérez-Arteaga E, Delgado-Waldo I, Coronel-Hernández J, Pérez-Plasencia C, Rodríguez-Izquierdo F, Linares R, González-Esquinca AR, Álvarez-González I, Madrigal-Bujaidar E, Jacobo-Herrera NJ. Laherradurin Inhibits Tumor Growth in an Azoxymethane/Dextran Sulfate Sodium Colorectal Cancer Model In Vivo. Cancers (Basel) 2024; 16:573. [PMID: 38339324 PMCID: PMC10854818 DOI: 10.3390/cancers16030573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
Colorectal cancer (CRC) is the third most common neoplasia in the world. Its mortality rate is high due to the lack of specific and effective treatments, metastasis, and resistance to chemotherapy, among other factors. The natural products in cancer are a primary source of bioactive molecules. In this research, we evaluated the antitumor activity of an acetogenin (ACG), laherradurin (LH), isolated from the Mexican medicinal plant Annona macroprophyllata Donn.Sm. in a CRC murine model. The CRC was induced by azoxymethane-dextran sulfate sodium (AOM/DSS) in Balb/c mice and treated for 21 days with LH or cisplatin. This study shows for the first time the antitumor activity of LH in an AOM/DSS CRC model. The acetogenin diminished the number and size of tumors compared with cisplatin; the histologic studies revealed a recovery of the colon tissue, and the blood toxicity data pointed to less damage in animals treated with LH. The TUNEL assay indicated cell death by apoptosis, and the in vitro studies exhibited that LH inhibited cell migration in HCT116 cells. Our study provides strong evidence of a possible anticancer agent for CRC.
Collapse
Affiliation(s)
- Michael Joshue Rendón-Barrón
- Unidad de Bioquímica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubiran, Av. Vasco de Quiroga 15, Col. Belisario Domínguez Sección XVI, Tlalpan, Ciudad de México 14080, Mexico; (M.J.R.-B.); (E.P.-A.); (I.D.-W.)
- Unidad Profesional Adolfo López Mateos, Laboratorio de Genética, Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Zacatenco, Av. Wilfrido Massieu Esq Cda. Miguel Stampa S/N, Alcaldía Gustavo A. Madero, Ciudad de México 07738, Mexico; (I.Á.-G.); (E.M.-B.)
| | - Eduardo Pérez-Arteaga
- Unidad de Bioquímica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubiran, Av. Vasco de Quiroga 15, Col. Belisario Domínguez Sección XVI, Tlalpan, Ciudad de México 14080, Mexico; (M.J.R.-B.); (E.P.-A.); (I.D.-W.)
| | - Izamary Delgado-Waldo
- Unidad de Bioquímica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubiran, Av. Vasco de Quiroga 15, Col. Belisario Domínguez Sección XVI, Tlalpan, Ciudad de México 14080, Mexico; (M.J.R.-B.); (E.P.-A.); (I.D.-W.)
| | - Jossimar Coronel-Hernández
- Unidad de Investigación Biomédica en Cancer, Instituto Nacional Nacional de Cancerología, Av. San Fernando 22, Belisario Domínguez Secc 16, Tlalpan, Ciudad de México 14080, Mexico; (J.C.-H.); (C.P.-P.); (F.R.-I.)
| | - Carlos Pérez-Plasencia
- Unidad de Investigación Biomédica en Cancer, Instituto Nacional Nacional de Cancerología, Av. San Fernando 22, Belisario Domínguez Secc 16, Tlalpan, Ciudad de México 14080, Mexico; (J.C.-H.); (C.P.-P.); (F.R.-I.)
- Unidad de Investigación en Biomedicina, Laboratorio de Genómica, Facultad de Estudios Superiores Iztacala, Av. De los Barrios 1, Los Reyes Ixtacala, Tlalnepantla 54090, Mexico
| | - Frida Rodríguez-Izquierdo
- Unidad de Investigación Biomédica en Cancer, Instituto Nacional Nacional de Cancerología, Av. San Fernando 22, Belisario Domínguez Secc 16, Tlalpan, Ciudad de México 14080, Mexico; (J.C.-H.); (C.P.-P.); (F.R.-I.)
| | - Rosa Linares
- Unidad de Investigación en Biología de la Reproducción, Laboratorio de Endocrinología, Facultad de Estudios Superiores Zaragoza, Batalla 5 de Mayo S/N, Ejército de Oriente Zona Peñon, Iztapalapa, Ciudad de México 09230, Mexico;
| | - Alma Rosa González-Esquinca
- Laboratorio de Fisiología y Química Vegetal, Instituto de Ciencias Biológicas, Universidad de Ciencias y Artes de Chiapas, Libramiento Norte Poniente 1150, Lajas Maciel, Tuxtla Gutiérrez 29039, Mexico;
| | - Isela Álvarez-González
- Unidad Profesional Adolfo López Mateos, Laboratorio de Genética, Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Zacatenco, Av. Wilfrido Massieu Esq Cda. Miguel Stampa S/N, Alcaldía Gustavo A. Madero, Ciudad de México 07738, Mexico; (I.Á.-G.); (E.M.-B.)
| | - Eduardo Madrigal-Bujaidar
- Unidad Profesional Adolfo López Mateos, Laboratorio de Genética, Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Zacatenco, Av. Wilfrido Massieu Esq Cda. Miguel Stampa S/N, Alcaldía Gustavo A. Madero, Ciudad de México 07738, Mexico; (I.Á.-G.); (E.M.-B.)
| | - Nadia Judith Jacobo-Herrera
- Unidad de Bioquímica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubiran, Av. Vasco de Quiroga 15, Col. Belisario Domínguez Sección XVI, Tlalpan, Ciudad de México 14080, Mexico; (M.J.R.-B.); (E.P.-A.); (I.D.-W.)
| |
Collapse
|
6
|
Peng Z, Xin WZ, Sheng ZY, Zi T, Nan LY, Lin WZ, Jun LF, Xia LX. Melatonin alleviates cisplatin-induced mice spermatogenesis defects. Reprod Toxicol 2023; 119:108391. [PMID: 37149204 DOI: 10.1016/j.reprotox.2023.108391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 05/01/2023] [Accepted: 05/03/2023] [Indexed: 05/08/2023]
Abstract
Cisplatin (CDDP) is a chemotherapeutic drug that is used to treat many different types of tumors. However, it also has significant adverse effects on male reproduction, which are partially mediated oxidative damage. Melatonin (MLT) is a promising antioxidant that can be used for reproductive protection. In this paper, we investigated the effect of CDDP on spermatogenesis, as well as MLT's potential role in reproductive protection. CDDP (5 mg/kg BW) significantly reduced male mice testosterone levels and decreased sperm vitality and progressive motility. Additionally, a lower percentage of stage VII and VIII seminiferous tubules were observed in CDDP-treated mice. MLT administration significantly alleviated CDDP-induced testicular damages, CDDP-induced lowered male fertility in vivo, and enhanced in vitro embryonic development of two cells and blastocysts. These changes may be due to CDDP-mediated spermatogenesis defects in germ cell and Leydig cell proliferation, which are reflected in abnormal PCNA, SYCP3, and CYP11A1 expression levels and can be improved by MLT. CDDP treatment significantly decreased the total antioxidant capacity (TAC), as well as SOD and GSH levels, and increased MDA levels in mice testis, leading to increased apoptosis of germ cells and increased BAX/BCL2 ratios in mice testis. MLT treatment may reduce germ cell apoptosis by reducing oxidative damage in mice testis. This study demonstrated that CDDP affects sperm fertility by altering germ cell and Leydig cell proliferation via increased oxidative damage and that MLT can attenuate these damages. Our work provides potential information for further research on the toxic effects of CDDP and the protective effects of MLT on male reproduction.
Collapse
Affiliation(s)
- Zhu Peng
- Shandong Stem Cell Engineering Technology Research Center, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Wang Zhi Xin
- Shandong Stem Cell Engineering Technology Research Center, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Zhang Yu Sheng
- School of Bioscience and Technology, Weifang Medical University, Weifang, China
| | - Teng Zi
- Shandong Stem Cell Engineering Technology Research Center, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Liu Ya Nan
- School of Bioscience and Technology, Weifang Medical University, Weifang, China
| | - Wang Ze Lin
- School of Bioscience and Technology, Weifang Medical University, Weifang, China
| | - Liu Fu Jun
- Shandong Stem Cell Engineering Technology Research Center, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China.
| | - Liu Xue Xia
- Shandong Stem Cell Engineering Technology Research Center, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China.
| |
Collapse
|
7
|
Mitochondrial health quality control: measurements and interpretation in the framework of predictive, preventive, and personalized medicine. EPMA J 2022; 13:177-193. [PMID: 35578648 PMCID: PMC9096339 DOI: 10.1007/s13167-022-00281-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 05/03/2022] [Indexed: 12/11/2022]
Abstract
Mitochondria are the “gatekeeper” in a wide range of cellular functions, signaling events, cell homeostasis, proliferation, and apoptosis. Consequently, mitochondrial injury is linked to systemic effects compromising multi-organ functionality. Although mitochondrial stress is common for many pathomechanisms, individual outcomes differ significantly comprising a spectrum of associated pathologies and their severity grade. Consequently, a highly ambitious task in the paradigm shift from reactive to predictive, preventive, and personalized medicine (PPPM/3PM) is to distinguish between individual disease predisposition and progression under circumstances, resulting in compromised mitochondrial health followed by mitigating measures tailored to the individualized patient profile. For the successful implementation of PPPM concepts, robust parameters are essential to quantify mitochondrial health sustainability. The current article analyses added value of Mitochondrial Health Index (MHI) and Bioenergetic Health Index (BHI) as potential systems to quantify mitochondrial health relevant for the disease development and its severity grade. Based on the pathomechanisms related to the compromised mitochondrial health and in the context of primary, secondary, and tertiary care, a broad spectrum of conditions can significantly benefit from robust quantification systems using MHI/BHI as a prototype to be further improved. Following health conditions can benefit from that: planned pregnancies (improved outcomes for mother and offspring health), suboptimal health conditions with reversible health damage, suboptimal life-style patterns and metabolic syndrome(s) predisposition, multi-factorial stress conditions, genotoxic environment, ischemic stroke of unclear aetiology, phenotypic predisposition to aggressive cancer subtypes, pathologies associated with premature aging and neuro/degeneration, acute infectious diseases such as COVID-19 pandemics, among others.
Collapse
|