1
|
Zhang H, Liu D, Fan X. Diagnostic and prognostic significance of miR-486-5p in patients who underwent minimally invasive surgery for lumbar spinal stenosis. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2024; 33:1979-1985. [PMID: 38528160 DOI: 10.1007/s00586-024-08203-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/29/2024] [Accepted: 02/22/2024] [Indexed: 03/27/2024]
Abstract
BACKGROUND This study aimed to investigate the expression and clinical value of microRNA miR-486-5p in diagnosing lumbar spinal stenosis (LSS) patients and predicting the clinical outcomes after minimally invasive spinal surgery (MISS) in LSS patients, and the correlation of miR-486-5p with inflammatory responses in LSS patients. METHODS This study included 52 LSS patients, 46 patients with lumbar intervertebral disk herniation (LDH) and 42 healthy controls. Reverse transcription quantitative PCR was used to detect miR-486-5p expression. The ability of miR-486-5p to discriminate between different groups was evaluated by receiver-operating characteristic analysis. The visual analogue scale (VAS), Oswestry Disability Index (ODI) and Japanese Orthopaedic Association (JOA) scores at 6 months postoperatively were used to reflect the clinical outcomes of LSS patients. Enzyme-linked immunosorbent assay was used to measure the levels of inflammatory factor [interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α)]. The correlation of miR-486-5p with continuous variables in LSS patients was evaluated by the Pearson correlation coefficient. RESULTS Expression of serum miR-486-5p was upregulated in LSS patients and had high diagnostic value to screen LSS patients. In addition, serum miR-486-5p could predict the 6-month clinical outcomes after MISS therapy in LSS patients. Moreover, serum miR-486-5p was found to be positively correlated with the levels of IL-1β and TNF-α in patients with LSS. CONCLUSION miR-486-5p, increased in LSS patients, can function as an indicator to diagnose LSS and a predictive indicator for the clinical outcomes after MISS therapy in LSS patients. In addition, miR-486-5p may regulate LSS progression by modulating inflammatory responses.
Collapse
Affiliation(s)
- Heqing Zhang
- The Second Department of Spine Surgery, Yantaishan Hospital, Yantai, 264003, Shandong, China
| | - Dong Liu
- The Second Department of Spine Surgery, Yantaishan Hospital, Yantai, 264003, Shandong, China
| | - Xiaoguang Fan
- The Second Department of Spine Surgery, Yantaishan Hospital, Yantai, 264003, Shandong, China.
| |
Collapse
|
2
|
Li N, Han L, Wang X, Qiao O, Zhang L, Gong Y. Biotherapy of experimental acute kidney injury: emerging novel therapeutic strategies. Transl Res 2023; 261:69-85. [PMID: 37329950 DOI: 10.1016/j.trsl.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/10/2023] [Accepted: 06/12/2023] [Indexed: 06/19/2023]
Abstract
Acute kidney injury (AKI) is a complex and heterogeneous disease with high incidence and mortality, posing a serious threat to human life and health. Usually, in clinical practice, AKI is caused by crush injury, nephrotoxin exposure, ischemia-reperfusion injury, or sepsis. Therefore, most AKI models for pharmacological experimentation are based on this. The current research promises to develop new biological therapies, including antibody therapy, non-antibody protein therapy, cell therapy, and RNA therapy, that could help mitigate the development of AKI. These approaches can promote renal repair and improve systemic hemodynamics after renal injury by reducing oxidative stress, inflammatory response, organelles damage, and cell death, or activating cytoprotective mechanisms. However, no candidate drugs for AKI prevention or treatment have been successfully translated from bench to bedside. This article summarizes the latest progress in AKI biotherapy, focusing on potential clinical targets and novel treatment strategies that merit further investigation in future pre-clinical and clinical studies.
Collapse
Affiliation(s)
- Ning Li
- Institute of Disaster and Emergency Medicine, Medical College, Tianjin University, Nankai District, Tianjin, China; Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, China
| | - Lu Han
- Institute of Disaster and Emergency Medicine, Medical College, Tianjin University, Nankai District, Tianjin, China; Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, China
| | - Xinyue Wang
- Institute of Disaster and Emergency Medicine, Medical College, Tianjin University, Nankai District, Tianjin, China; Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, China
| | - Ou Qiao
- Institute of Disaster and Emergency Medicine, Medical College, Tianjin University, Nankai District, Tianjin, China; Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, China
| | - Li Zhang
- Institute of Disaster and Emergency Medicine, Medical College, Tianjin University, Nankai District, Tianjin, China; Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, China
| | - Yanhua Gong
- Institute of Disaster and Emergency Medicine, Medical College, Tianjin University, Nankai District, Tianjin, China; Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, China.
| |
Collapse
|
3
|
Hu J, Lin F, Yin Y, Shang Y, Xiao Z, Xu W. Adipocyte-derived exosomal miR-30c-5p promotes ovarian angiogenesis in polycystic ovary syndrome via the SOCS3/STAT3/VEGFA pathway. J Steroid Biochem Mol Biol 2023; 230:106278. [PMID: 36870372 DOI: 10.1016/j.jsbmb.2023.106278] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/07/2023] [Accepted: 03/02/2023] [Indexed: 03/06/2023]
Abstract
Polycystic ovary syndrome (PCOS) is a systemic endocrine disease affecting women's reproductive health. Ovarian angiogenesis in PCOS patients is abnormal, manifested by increased ovarian stromal vascularization and upregulated proangiogenic factors such as vascular endothelial growth factor (VEGF). However, the specific mechanisms underlying these changes in PCOS remain unknown. In this study, we induced the adipogenic differentiation in preadipocyte 3T3-L1 cells and found that adipocyte-derived exosomes promoted proliferation, migration, tube formation, and VEGFA expression in human ovarian microvascular endothelial cells (HOMECs) by delivering miR-30c-5p. Mechanistically, dual luciferase reporter assay demonstrated that miR-30c-5p directly targeted the 3'- untranslated region (UTR) of suppressor of cytokine signaling 3 (SOCS3) mRNA. In addition, adipocyte-derived exosomal miR-30c-5p activated signal transducer and activator of transcription 3 (STAT3)/VEGFA pathway in HOMECs via targeting SOCS3. In vivo experiments indicated that tail vein injection of adipocyte-derived exosomes exacerbated endocrine and metabolic disorders and ovarian angiogenesis in mice with PCOS via miR-30c-5p. Taken together, the study revealed that adipocyte-derived exosomal miR-30c-5p promotes ovarian angiogenesis via the SOCS3/STAT3/VEGFA pathway, thereby participating in the development of PCOS.
Collapse
Affiliation(s)
- Jian Hu
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan 430060, China; Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan 430060, China
| | - Fangyou Lin
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yuchen Yin
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan 430060, China; Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan 430060, China
| | - Yunjie Shang
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan 430060, China; Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan 430060, China
| | - Zhuoni Xiao
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan 430060, China; Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan 430060, China.
| | - Wangming Xu
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan 430060, China; Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan 430060, China.
| |
Collapse
|
4
|
Wang S, Zheng Y, Jin S, Fu Y, Liu Y. Dioscin Protects against Cisplatin-Induced Acute Kidney Injury by Reducing Ferroptosis and Apoptosis through Activating Nrf2/HO-1 Signaling. Antioxidants (Basel) 2022; 11:antiox11122443. [PMID: 36552651 PMCID: PMC9774127 DOI: 10.3390/antiox11122443] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/02/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Acute kidney injury (AKI) is a clinical syndrome with high morbidity and mortality worldwide, and there is currently no effective means to prevent it. Dioscin is naturally present in the dioscoreaceae plants and has antioxidant and anti-inflammatory effects. Here, we found that dioscin is protective against cisplatin-induced AKI. Pathological and ultrastructural observations revealed that dioscin reduced renal tissue lesions and mitochondrial damage. Furthermore, dioscin markedly suppressed reactive oxygen species and malondialdehyde levels in the kidneys of AKI rats and increased the contents of glutathione and catalase. In addition, dioscin dramatically reduced the number of apoptotic cells and the expression of pro-apoptotic proteins in rat kidneys and human renal tubular epithelial cells (HK2). Conversely, the protein levels of anti-ferroptosis including GPX4 and FSP1 in vivo and in vitro were significantly enhanced after dioscin treatment. Mechanistically, dioscin promotes the entry of Nrf2 into the nucleus and regulates the expression of downstream HO-1 to exert renal protection. However, the nephroprotective effect of dioscin was weakened after inhibiting Nrf2 in vitro and in vivo. In conclusion, dioscin exerts a reno-protective effect by decreasing renal oxidative injury, apoptosis and ferroptosis through the Nrf2/HO-1 signaling pathway, providing a new insight into AKI prevention.
Collapse
Affiliation(s)
- Shuang Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Yingce Zheng
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Shengzi Jin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Yunwei Fu
- Northeast Agricultural University Animal Hospital, Harbin 150030, China
- Heilongjiang Province Key Laboratory of Pathogenic Mechanism for Animal Disease and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Yun Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
- Heilongjiang Province Key Laboratory of Pathogenic Mechanism for Animal Disease and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
- Correspondence:
| |
Collapse
|
5
|
Li B, Lin F, Xia Y, Ye Z, Yan X, Song B, Yuan T, Li L, Zhou X, Yu W, Cheng F. The Intersection of Acute Kidney Injury and Non-Coding RNAs: Inflammation. Front Physiol 2022; 13:923239. [PMID: 35755446 PMCID: PMC9218900 DOI: 10.3389/fphys.2022.923239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 05/16/2022] [Indexed: 12/02/2022] Open
Abstract
Acute renal injury (AKI) is a complex clinical syndrome, involving a series of pathophysiological processes, in which inflammation plays a key role. Identification and verification of gene signatures associated with inflammatory onset and progression are imperative for understanding the molecular mechanisms involved in AKI pathogenesis. Non-coding RNAs (ncRNAs), involved in epigenetic modifications of inflammatory responses, are associated with the aberrant expression of inflammation-related genes in AKI. However, its regulatory role in gene expression involves precise transcriptional regulation mechanisms which have not been fully elucidated in the complex and volatile inflammatory response of AKI. In this study, we systematically review current research on the intrinsic molecular mechanisms of ncRNAs that regulate the inflammatory response in AKI. We aim to provide potential research directions and strategies for developing ncRNA-targeted gene therapies as an intervention for the inflammatory damage in AKI.
Collapse
Affiliation(s)
- Bojun Li
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Fangyou Lin
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yuqi Xia
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zehua Ye
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xinzhou Yan
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Baofeng Song
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Tianhui Yuan
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lei Li
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiangjun Zhou
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Weimin Yu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Fan Cheng
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|