1
|
Kalin JH, Wu M, Gomez AV, Song Y, Das J, Hayward D, Adejola N, Wu M, Panova I, Chung HJ, Kim E, Roberts HJ, Roberts JM, Prusevich P, Jeliazkov JR, Roy Burman SS, Fairall L, Milano C, Eroglu A, Proby CM, Dinkova-Kostova AT, Hancock WW, Gray JJ, Bradner JE, Valente S, Mai A, Anders NM, Rudek MA, Hu Y, Ryu B, Schwabe JWR, Mattevi A, Alani RM, Cole PA. Targeting the CoREST complex with dual histone deacetylase and demethylase inhibitors. Nat Commun 2018; 9:53. [PMID: 29302039 PMCID: PMC5754352 DOI: 10.1038/s41467-017-02242-4] [Citation(s) in RCA: 165] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 11/14/2017] [Indexed: 01/08/2023] Open
Abstract
Here we report corin, a synthetic hybrid agent derived from the class I HDAC inhibitor (entinostat) and an LSD1 inhibitor (tranylcypromine analog). Enzymologic analysis reveals that corin potently targets the CoREST complex and shows more sustained inhibition of CoREST complex HDAC activity compared with entinostat. Cell-based experiments demonstrate that corin exhibits a superior anti-proliferative profile against several melanoma lines and cutaneous squamous cell carcinoma lines compared to its parent monofunctional inhibitors but is less toxic to melanocytes and keratinocytes. CoREST knockdown, gene expression, and ChIP studies suggest that corin's favorable pharmacologic effects may rely on an intact CoREST complex. Corin was also effective in slowing tumor growth in a melanoma mouse xenograft model. These studies highlight the promise of a new class of two-pronged hybrid agents that may show preferential targeting of particular epigenetic regulatory complexes and offer unique therapeutic opportunities.
Collapse
Affiliation(s)
- Jay H Kalin
- Division of Genetics, Departments of Medicine and Biological Chemistry and Molecular Pharmacology, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, 02115, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Muzhou Wu
- Department of Dermatology, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Andrea V Gomez
- Department of Biology and Biotechnology, University of Pavia, 27100, Pavia, Italy
| | - Yun Song
- Department of Molecular and Cell Biology, University of Leicester, Leicester, LE1 9HN, UK
| | - Jayanta Das
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Dawn Hayward
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Nkosi Adejola
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Mingxuan Wu
- Division of Genetics, Departments of Medicine and Biological Chemistry and Molecular Pharmacology, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, 02115, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Izabela Panova
- Department of Dermatology, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Hye Jin Chung
- Department of Dermatology, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Edward Kim
- Department of Dermatology, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Holly J Roberts
- Department of Dermatology, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Justin M Roberts
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Polina Prusevich
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Jeliazko R Jeliazkov
- Program in Molecular Biophysics, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Shourya S Roy Burman
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Louise Fairall
- Department of Molecular and Cell Biology, University of Leicester, Leicester, LE1 9HN, UK
| | - Charles Milano
- Department of Molecular and Cell Biology, University of Leicester, Leicester, LE1 9HN, UK
| | - Abdulkerim Eroglu
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Charlotte M Proby
- Division of Cancer Research, Jacqui Wood Cancer Centre, University of Dundee, Dundee, DD1 9SY, UK
| | - Albena T Dinkova-Kostova
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Division of Cancer Research, Jacqui Wood Cancer Centre, University of Dundee, Dundee, DD1 9SY, UK
| | - Wayne W Hancock
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, 19104, USA
| | - Jeffrey J Gray
- Program in Molecular Biophysics, Johns Hopkins University, Baltimore, MD, 21218, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - James E Bradner
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Sergio Valente
- Pasteur Institute, Cenci-Bolognetti Foundation, Department of Drug Chemistry and Technologies, Sapienza University of Rome, 00185, Rome, Italy
| | - Antonello Mai
- Pasteur Institute, Cenci-Bolognetti Foundation, Department of Drug Chemistry and Technologies, Sapienza University of Rome, 00185, Rome, Italy
| | - Nicole M Anders
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Michelle A Rudek
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Yong Hu
- Department of Oncology, BioDuro LLC, Shanghai, 200131, China
| | - Byungwoo Ryu
- Department of Dermatology, Boston University School of Medicine, Boston, MA, 02118, USA
| | - John W R Schwabe
- Department of Molecular and Cell Biology, University of Leicester, Leicester, LE1 9HN, UK.
| | - Andrea Mattevi
- Department of Biology and Biotechnology, University of Pavia, 27100, Pavia, Italy.
| | - Rhoda M Alani
- Department of Dermatology, Boston University School of Medicine, Boston, MA, 02118, USA.
| | - Philip A Cole
- Division of Genetics, Departments of Medicine and Biological Chemistry and Molecular Pharmacology, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, 02115, USA.
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
2
|
Abstract
Tuberculosis is still a major problem in some developed and developing countries. The poor compliance to the treatment of tuberculosis patients due to the adverse events was supposed to be an important factor contributing to the high prevalence. This review aims to clarify the role and the pharmacological mechanism of the genes involved in the isoniazid-induced hepatotoxicity. We selected English articles of studies in human from PubMed up to May 2014 with the keywords pharmacogenetic, isoniazid and hepatotoxicity, N-acetyl transferase 2 (NAT2), CYP2E1 and glutathione S transferase (GST). Polymorphisms of NAT2, CYP2E1 and GST1 could increase patients' susceptibility to isoniazid-induced hepatotoxicity. The rapid acetylators of NAT2 and rapid metabolizers of CYP2E1 showed increased concentrations of hepatotoxic metabolites. However, the rapid metabolizers of GST1 could decrease the concentration of hepatotoxic metabolites. Some studies of human leukocyte antigen (HLA), Uridine 5'-dipphospho (UDP) glucuronosyltransferase (UGT), nitric oxide synthase (NOS), Broad complex, Tramtrack, Bric-a-brac (BTB) and cap'n'collar type of basic region leucine zipper factor family (CNC) homolog (BACH) and Maf basic leucine zipper protein (MAFK) polymorphisms showed their roles in isoniazid-induced hepatotoxicity by modifying the expression of antioxidant enzymes. A better insight into the role of polymorphisms of HLA, UGT, NOS, BACH and MAFK in addition to NAT2, CYP2E1 and GST1 in the hepatotoxicity of isoniazid may support physicians in monitoring patients hepatotoxicity symptoms and laboratory data and optimizing pharmacotherapy. Future studies about the role of such polymorphisms in different ethnicities are suggested.
Collapse
|
4
|
Dancy BCR, Ming SA, Papazyan R, Jelinek CA, Majumdar A, Sun Y, Dancy BM, Drury WJ, Cotter RJ, Taverna SD, Cole PA. Azalysine analogues as probes for protein lysine deacetylation and demethylation. J Am Chem Soc 2012; 134:5138-48. [PMID: 22352831 PMCID: PMC3313494 DOI: 10.1021/ja209574z] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Reversible lysine acetylation and methylation regulate the function of a wide variety of proteins, including histones. Here, we have synthesized azalysine-containing peptides in acetylated and unacetylated forms as chemical probes of the histone deacetylases (HDAC8, Sir2Tm, and SIRT1) and the histone demethylase, LSD1. We have shown that the acetyl-azalysine modification is a fairly efficient substrate for the sirtuins, but a weaker substrate for HDAC8, a classical HDAC. In addition to deacetylation by sirtuins, the acetyl-azalysine analogue generates a novel ADP-ribose adduct that was characterized by mass spectrometry, Western blot analysis, and nuclear magnetic resonance spectroscopy. This peptide-ADP-ribose adduct is proposed to correspond to a derailed reaction intermediate, providing unique evidence for the direct 2'-hydroxyl attack on the O-alkylimidate intermediate that is formed in the course of sirtuin catalyzed deacetylation. An unacetylated azalysine-containing H3 peptide proved to be a potent inhibitor of the LSD1 demethylase, forming an FAD adduct characteristic of previously reported related structures, providing a new chemical probe for mechanistic analysis.
Collapse
Affiliation(s)
| | | | | | | | - Ananya Majumdar
- The Johns Hopkins Biomolecular NMR Center, Johns Hopkins University, Baltimore, MD 21218
| | | | | | | | | | | | - Philip A. Cole
- Corresponding Author: Philip A. Cole, Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, 725 N. Wolfe St, 316 Hunterian Building, Baltimore, MD 21205, Tel: 410-614-8849/614-0540, Fax: 410-955-3023,
| |
Collapse
|