1
|
Kong Y, Yin R, He Y, Pan F, Yang H, Wang H, Zhang J, Gao Y. Plasticity changes in iron homeostasis in hibernating Daurian ground squirrels (Spermophilus dauricus) may counteract chronically inactive skeletal muscle atrophy. J Comp Physiol B 2024; 194:191-202. [PMID: 38522042 DOI: 10.1007/s00360-024-01543-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 01/30/2024] [Accepted: 02/08/2024] [Indexed: 03/25/2024]
Abstract
Disuse-induced muscular atrophy is frequently accompanied by iron overload. Hibernating animals are a natural animal model for resistance to disuse muscle atrophy. In this paper, we explored changes in skeletal muscle iron content of Daurian ground squirrels (Spermophilus dauricus) during different periods of hibernation as well as the regulatory mechanisms involved. The results revealed that compared with the summer active group (SA), iron content in the soleus muscle (SOL) decreased (- 65%) in the torpor group (TOR), but returned to normal levels in the inter-bout arousal (IBA); splenic iron content increased in the TOR group (vs. SA, + 67%), decreased in the IBA group (vs. TOR, - 37%). Expression of serum hepcidin decreased in the TOR group (vs. SA, - 22%) and returned to normal levels in the IBA groups; serum ferritin increased in the TOR group (vs. SA, + 31%), then recovered in the IBA groups. Soleus muscle transferrin receptor 1 (TfR1) expression increased in the TOR group (vs. SA, + 83%), decreased in the IBA group (vs. TOR, - 30%); ferroportin 1 increased in the IBA group (vs. SA, + 55%); ferritin increased in the IBA group (vs. SA, + 42%). No significant differences in extensor digitorum longus in iron content or iron metabolism-related protein expression were observed among the groups. Significantly, all increased or decreased indicators in this study returned to normal levels after the post-hibernation group, showing remarkable plasticity. In summary, avoiding iron overload may be a potential mechanism for hibernating Daurian ground squirrels to avoid disuse induced muscular atrophy. In addition, the different skeletal muscle types exhibited unique strategies for regulating iron homeostasis.
Collapse
Affiliation(s)
- Yong Kong
- Shaanxi Key Laboratory for Animal Conservation, Department of Biology, College of Life Sciences, Northwest University, 1229# North Taibai Road, Xi'an, 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, 710069, China
| | - Rongrong Yin
- Department of Biology, WuXi APP Tec Co., Ltd., Shanghai, 200131, China
| | - Yue He
- Shaanxi Key Laboratory for Animal Conservation, Department of Biology, College of Life Sciences, Northwest University, 1229# North Taibai Road, Xi'an, 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, 710069, China
| | - Fangyang Pan
- Shaanxi Key Laboratory for Animal Conservation, Department of Biology, College of Life Sciences, Northwest University, 1229# North Taibai Road, Xi'an, 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, 710069, China
| | - Huajian Yang
- Shaanxi Key Laboratory for Animal Conservation, Department of Biology, College of Life Sciences, Northwest University, 1229# North Taibai Road, Xi'an, 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, 710069, China
| | - Huiping Wang
- Shaanxi Key Laboratory for Animal Conservation, Department of Biology, College of Life Sciences, Northwest University, 1229# North Taibai Road, Xi'an, 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, 710069, China
| | - Jie Zhang
- Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Yunfang Gao
- Shaanxi Key Laboratory for Animal Conservation, Department of Biology, College of Life Sciences, Northwest University, 1229# North Taibai Road, Xi'an, 710069, China.
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, 710069, China.
| |
Collapse
|
2
|
Pal Singh P, Vithalapuram V, Metre S, Kodipyaka R. Lipoplex-based therapeutics for effective oligonucleotide delivery: a compendious review. J Liposome Res 2019; 30:313-335. [DOI: 10.1080/08982104.2019.1652645] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Pirthi Pal Singh
- Department of Formulation Research and Development, Custom Pharmaceutical Services, Dr. Reddy’s Laboratories Ltd., Hyderabad, India
| | - Veena Vithalapuram
- Department of Formulation Research and Development, Custom Pharmaceutical Services, Dr. Reddy’s Laboratories Ltd., Hyderabad, India
| | - Sunita Metre
- Department of Formulation Research and Development, Custom Pharmaceutical Services, Dr. Reddy’s Laboratories Ltd., Hyderabad, India
| | - Ravinder Kodipyaka
- Department of Formulation Research and Development, Custom Pharmaceutical Services, Dr. Reddy’s Laboratories Ltd., Hyderabad, India
| |
Collapse
|
3
|
Amoutzopoulos B, Löker GB, Samur G, Cevikkalp SA, Yaman M, Köse T, Pelvan E. Effects of a traditional fermented grape-based drink 'hardaliye' on antioxidant status of healthy adults: a randomized controlled clinical trial. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2013; 93:3604-3610. [PMID: 23553618 DOI: 10.1002/jsfa.6158] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 03/11/2013] [Accepted: 04/02/2013] [Indexed: 06/02/2023]
Abstract
BACKGROUND The antioxidative effects of the traditional grape-based beverage, hardaliye, were investigated with a 40-day randomized controlled clinical trial on 89 healthy adults. Subjects were randomly divided into three groups: high hardaliye (HH), low hardaliye (LH) and control group. HH and LH groups consumed 500 mL and 250 mL hardaliye per day, respectively, and the control group did not consume any hardaliye. Dien conjugate (DC), malondialdehyde (MDA), vitamin C, total antioxidant capacity (TAC) and homocysteine concentrations were measured in fasting blood samples collected at baseline and after intervention. RESULTS Significant decreases in DC, MDA and homocysteine concentrations were observed in HH and LH groups (P < 0.001) after intervention, whereas the control group showed no change. The reduction in homocysteine was significantly different between HH and LH groups (P < 0.001), except for DC and MDA. TAC and vitamin C were slightly increased; however, the change was not statistically significant. CONCLUSION Dietary supplementation with hardaliye affect the MDA, DC and homocysteine levels in blood, possibly due to the presence of antioxidant compounds. Dose response was only observed for homocysteine. Further studies need to be performed to assess the effects on antioxidant capacity.
Collapse
Affiliation(s)
- Birdem Amoutzopoulos
- Scientific and Technological Research Council of Turkey (TUBITAK) Marmara Research Center, Food Institute, 41470, Kocaeli, Turkey
| | | | | | | | | | | | | |
Collapse
|
4
|
Smyth TJ, Betker J, Wang W, Anchordoquy TJ. Moisture content impacts the stability of DNA adsorbed onto gold microparticles. J Pharm Sci 2011; 100:4845-54. [PMID: 21732371 DOI: 10.1002/jps.22697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Revised: 06/08/2011] [Accepted: 06/17/2011] [Indexed: 11/09/2022]
Abstract
Particle-mediated epidermal delivery (PMED) of small quantities of DNA (0.5-4.0 μg) has been reported to both induce an immune response and protect against disease in human subjects. In order for the PMED of DNA to be a viable technique for vaccination, the adsorbed DNA must be stable during shipping and storage. Here, we report that the storage stability of plasmid DNA adsorbed to 2-μm gold particles is strongly dependent on sample water content. Gold/DNA samples stored at 60°C and 6% relative humidity (RH) maintained supercoil content after 4-month storage, whereas storage at higher RHs facilitated degradation. Storage with desiccants had stabilizing effects on DNA similar to storage at 6% RH. However, storage with "indicating" Drierite and phosphorus pentoxide resulted in enhanced rates of DNA degradation.
Collapse
Affiliation(s)
- Tyson J Smyth
- University of Colorado School of Pharmacy, Aurora, Colorado 80045, USA
| | | | | | | |
Collapse
|
5
|
Lu FSH, Nielsen NS, Timm-Heinrich M, Jacobsen C. Oxidative stability of marine phospholipids in the liposomal form and their applications. Lipids 2010; 46:3-23. [PMID: 21088919 DOI: 10.1007/s11745-010-3496-y] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Accepted: 10/26/2010] [Indexed: 12/15/2022]
Abstract
Marine phospholipids (MPL) have attracted a great deal of attention recently as they are considered to have a better bioavailability, a better resistance towards oxidation and a higher content of eicosapentaenoic (EPA) and docosahexaenoic acids (DHA) than oily triglycerides (fish oil) from the same source. Due to their tight intermolecular packing conformation at the sn-2 position and their synergism with α-tocopherol present in MPL extracts, they can form stable liposomes which are attractive ingredients for food or feed applications. However, MPL are still susceptible to oxidation as they contain large amounts polyunsaturated fatty acids and application of MPL in food and aquaculture industries is therefore a great challenge for researchers. Hence, knowledge on the oxidative stability of MPL and the behavior of MPL in food and feed systems is an important issue. For this reason, this review was undertaken to provide the industry and academia with an overview of (1) the stability of MPL in different forms and their potential as liposomal material, and (2) the current applications and future prospects of MPL in both food and aquaculture industries with special emphasis on MPL in the liposomal form.
Collapse
Affiliation(s)
- F S Henna Lu
- Division of Seafood Research, National Food Institute, Technical University of Denmark, Lyngby, Denmark.
| | | | | | | |
Collapse
|
6
|
Lu N, Zhang Y, Gao Z. Nitrite-glucose-glucose oxidase system directly induces rat heart homogenate oxidation and tyrosine nitration: effects of some flavonoids. Toxicol In Vitro 2009; 23:627-33. [PMID: 19286453 DOI: 10.1016/j.tiv.2009.02.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2008] [Revised: 01/19/2009] [Accepted: 02/22/2009] [Indexed: 11/17/2022]
Abstract
Protein tyrosine nitration is a common post-translational modification occurring under conditions of nitrative/oxidative stress in a number of diseases. It has been found that in the presence of nitrite and hydrogen peroxide, hemoprotein catalyzes protein tyrosine nitration. In this paper, it was found that in heart homogenate, protein nitration and oxidation could be induced by a nitrite-glucose-glucose oxidase system without addition of exogenous heme or hemoprotein. Several structural diversity flavonoids (quercetin, rutin, baicalein, baicalin, apigenin, puerarin, and (+)-catechin) could, more or less, protect rat heart homogenate from oxidative and nitrative injury induced by nitrite-glucose-glucose oxidase in vitro. The inhibitory effects of flavonoids on protein nitration and lipid peroxidation were consistent with their antioxidant activities, whereas the inhibitory effects on protein oxidation were almost contrary to their antioxidant activities. These results mean that nitrite-glucose-glucose oxidase system can cause heart homogenate protein nitration and protein oxidation in different pathways, and those flavonoids with strong antioxidant activities may contribute their protective effect partly through inhibiting protein nitration.
Collapse
Affiliation(s)
- Naihao Lu
- Department of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | | | | |
Collapse
|
7
|
Molina MDC, Anchordoquy TJ. Formulation strategies to minimize oxidative damage in lyophilized lipid/DNA complexes during storage. J Pharm Sci 2009; 97:5089-105. [PMID: 18399563 DOI: 10.1002/jps.21365] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
It has been shown that degradation of lipid/DNA complexes (lipoplexes) continues in the dried state during storage. The goal of this study was to evaluate the ability of various strategies to minimize the formation of reactive oxygen species (ROS) in lyophilized lipoplexes during storage, including metal removal from reagents, air displacement, and fortification with chelator/antioxidant agents. Formulations containing individual chelator (DTPA) and antioxidants (L-methionine or alpha-tocopherol), or in combination, were subjected to lyophilization. Accelerated storage conditions were investigated and physico-chemical characteristics and biological activity of samples were monitored at different time intervals. Generation of ROS during storage was determined by adding proxyl fluorescamine to the formulations prior to freeze-drying. Lipid peroxidation was assessed by monitoring the formation of thiobarbituric reactive substances (TBARS) and lipid hydroperoxides. We also assessed the effect of increased moisture content on the chemical and biological stability of lipoplexes containing additives. Our results show that both ROS and TBARS are generated in lyophilized cakes during storage, and that agents such as DTPA or alpha-tocopherol are efficient in protecting lipid/DNA complexes against oxidative damage in the dried state. Our experiments also indicate that higher residual moisture has a deleterious effect on the stability of lipid/DNA complexes during storage.
Collapse
|
8
|
Degradation of lyophilized lipid/DNA complexes during storage: The role of lipid and reactive oxygen species. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1778:2119-26. [DOI: 10.1016/j.bbamem.2008.04.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2007] [Revised: 04/03/2008] [Accepted: 04/03/2008] [Indexed: 11/18/2022]
|
9
|
Mozuraityte R, Rustad T, Storrø I. The role of iron in peroxidation of polyunsaturated fatty acids in liposomes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2008; 56:537-543. [PMID: 18095645 DOI: 10.1021/jf0716073] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
This work investigated iron-catalyzed lipid oxidation in marine phospholipid liposomes. Oxygen consumption was used as a method to study lipid oxidation at pH 5.5 and 30 degrees C. The relationship between consumed oxygen and amount of peroxides (PV) and thiobarbituric reactive substances (TBARS) formed showed that both Fe2+ and Fe3+ catalyzed lipid oxidation. When Fe2+ was added to liposomes at a concentration of approximately 10 microM, an initial drop in dissolved oxygen (oxygen uptake rate >258 microM/min), followed by a slower linear oxygen uptake (oxygen uptake rate 4-6 microM/min), was observed. Addition of Fe3+ induced only the linear oxygen uptake. The initial fast drop in dissolved oxygen was due to oxidation of Fe2+ to Fe3+ by preexisting lipid peroxides (rate 79 microM Fe2+/min). Fe3+ is reduced by peroxides to Fe2+ at a slow rate (0.25 microM Fe3+/min at 30 degrees C) in a pseudo-first-order reaction. The redox cycling between Fe2+ and Fe3+ leads to an equilibrium between Fe2+ and Fe3+ resulting in a linear oxygen uptake. During the linear oxygen uptake, the interaction of Fe (3+) with lipid peroxide is the rate-limiting factor. Both alkoxy and peroxy radicals are formed by breakdown of peroxides by Fe2+ and Fe3+. These radicals react with fatty acids giving lipid radicals reacting with oxygen.
Collapse
Affiliation(s)
- Revilija Mozuraityte
- Department of Biotechnology, Norwegian University of Science and Technology, Trondheim, Norway
| | | | | |
Collapse
|
10
|
Jung SH, DeRuisseau LR, Kavazis AN, DeRuisseau KC. Plantaris muscle of aged rats demonstrates iron accumulation and altered expression of iron regulation proteins. Exp Physiol 2007; 93:407-14. [DOI: 10.1113/expphysiol.2007.039453] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
11
|
Micallef M, Lexis L, Lewandowski P. Red wine consumption increases antioxidant status and decreases oxidative stress in the circulation of both young and old humans. Nutr J 2007; 6:27. [PMID: 17888186 PMCID: PMC2039729 DOI: 10.1186/1475-2891-6-27] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2006] [Accepted: 09/24/2007] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Red wine contains a naturally rich source of antioxidants, which may protect the body from oxidative stress, a determinant of age-related disease. The current study set out to determine the in vivo effects of moderate red wine consumption on antioxidant status and oxidative stress in the circulation. METHODS 20 young (18-30 yrs) and 20 older (>or= 50 yrs) volunteers were recruited. Each age group was randomly divided into treatment subjects who consumed 400 mL/day of red wine for two weeks, or control subjects who abstained from alcohol for two weeks, after which they crossed over into the other group. Blood samples were collected before and after red wine consumption and were used for analysis of whole blood glutathione (GSH), plasma malondialdehyde (MDA) and serum total antioxidant status. RESULTS Results from this study show consumption of red wine induced significant increases in plasma total antioxidant status (P < 0.03), and significant decreases in plasma MDA (P < 0.001) and GSH (P < 0.004) in young and old subjects. The results show that the consumption of 400 mL/day of red wine for two weeks, significantly increases antioxidant status and decreases oxidative stress in the circulation CONCLUSION It may be implied from this data that red wine provides general oxidative protection and to lipid systems in circulation via the increase in antioxidant status.
Collapse
Affiliation(s)
- Michelle Micallef
- School of Biomedical Sciences, University of Newcastle, New South Wales, Australia
| | - Louise Lexis
- School of Biomedical Sciences, Victoria University, Victoria, Australia
| | | |
Collapse
|
12
|
Chen J, Kadlubar FF, Chen JZ. DNA supercoiling suppresses real-time PCR: a new approach to the quantification of mitochondrial DNA damage and repair. Nucleic Acids Res 2007; 35:1377-88. [PMID: 17284464 PMCID: PMC1851651 DOI: 10.1093/nar/gkm010] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
As a gold standard for quantification of starting amounts of nucleic acids, real-time PCR is increasingly used in quantitative analysis of mtDNA copy number in medical research. Using supercoiled plasmid DNA and mtDNA modified both in vitro and in cancer cells, we demonstrated that conformational changes in supercoiled DNA have profound influence on real-time PCR quantification. We showed that real-time PCR signal is a positive function of the relaxed forms (open circular and/or linear) rather than the supercoiled form of DNA, and that the conformation transitions mediated by DNA strand breaks are the main basis for sensitive detection of the relaxed DNA. This new finding was then used for sensitive detection of structure-mediated mtDNA damage and repair in stressed cancer cells, and for accurate quantification of total mtDNA copy number when all supercoiled DNA is converted into the relaxed forms using a prior heat-denaturation step. The new approach revealed a dynamic mtDNA response to oxidative stress in prostate cancer cells, which involves not only early structural damage and repair but also sustained copy number reduction induced by hydrogen peroxide. Finally, the supercoiling effect should raise caution in any DNA quantification using real-time PCR.
Collapse
Affiliation(s)
- Jinsong Chen
- Department of Surgery, Division of Urology, McGill University Health Centre and Research Institute, Montreal, Quebec H3G 1A4, Canada and Department of Epidemiology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Fred F. Kadlubar
- Department of Surgery, Division of Urology, McGill University Health Centre and Research Institute, Montreal, Quebec H3G 1A4, Canada and Department of Epidemiology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Junjian Z. Chen
- Department of Surgery, Division of Urology, McGill University Health Centre and Research Institute, Montreal, Quebec H3G 1A4, Canada and Department of Epidemiology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- *To whom correspondence should be addressed. Tel: +1 514 934 1934 x 44601(o); Fax: +1 514 934 8261;
| |
Collapse
|
13
|
Mozuraityte R, Rustad T, Storr⊘ I. Oxidation of cod phospholipids in liposomes: Effects of salts, pH and zeta potential. EUR J LIPID SCI TECH 2006. [DOI: 10.1002/ejlt.200600139] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
14
|
Zhao Y, Gao Z, Li H, Xu H. Hemin/nitrite/H2O2 induces brain homogenate oxidation and nitration: effects of some flavonoids. Biochim Biophys Acta Gen Subj 2004; 1675:105-12. [PMID: 15535973 DOI: 10.1016/j.bbagen.2004.08.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2004] [Accepted: 08/24/2004] [Indexed: 12/31/2022]
Abstract
Oxidative injury has been implicated in the pathogenesis of numerous neurodegenerative diseases. Recently, it has been found that with the existence of hydrogen peroxide and nitrite, hemin catalyzes protein nitration. We hypothesize under certain pathological conditions, hemin catalyzed protein nitration may happen in the brain. In this paper, the effects of three flavonoids, i.e. quercetin, catachin and baicalein on hemin/nitrite/H2O2 induced brain homogenate oxidation and nitration were studied. The results showed that hemin/nitrite/H2O2 system could effectively induce brain homogenate protein oxidation and nitration. Quercetin, catachin and baicalein dose-dependently inhibited hemin/nitrite/H2O2 system-induced protein nitration in a dose-dependent manner, the inhibition of protein nitration was in the order of quercetin>catachin>baicalein. These compounds also inhibited hemin/H2O2 system-induced lipid peroxidation, the inhibition order was baicalein >quercetin>catachin. However, these flavonoids showed marginal effect on hemin/nitrite/H2O2 system caused protein oxidation and thiol oxidation. The inhibition activities of flavonoids on hemin/nitrite/H2O2 system-induced protein nitration may closely relate to their radical scavenging activities, since the inhibition order of protein nitration is the same as the radical scavenging order. These results indicate hemin/nitrite/H2O2 system induces different types of oxidative assault on bio-molecules. Flavonoids could act as antioxidants inhibiting ROS and RNS caused brain damage.
Collapse
Affiliation(s)
- Yuling Zhao
- Department of Chemistry, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, PR China
| | | | | | | |
Collapse
|
15
|
Caro AA, Cederbaum AI. Antioxidant properties of S-adenosyl-L-methionine in Fe(2+)-initiated oxidations. Free Radic Biol Med 2004; 36:1303-16. [PMID: 15110395 DOI: 10.1016/j.freeradbiomed.2004.02.015] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2003] [Revised: 01/29/2004] [Accepted: 02/06/2004] [Indexed: 11/22/2022]
Abstract
S-Adenosylmethionine (SAM) is protective against a variety of toxic agents that promote oxidative stress. One mechanism for this protective effect of SAM is increased synthesis of glutathione. We evaluated whether SAM is protective via possible antioxidant-like activities. Aerobic Hepes-buffered solutions of Fe2+ spontaneously oxidize and consume O2 with concomitant production of reactive oxygen species and oxidation of substrates to radical products, e.g., ethanol to hydroxyethyl radical. SAM inhibited this oxidation of ethanol and inhibited aerobic Fe2+ oxidation and consumption of O2. SAM did not regenerate Fe2+ from Fe3+ and was not consumed after incubation with Fe2+. SAM less effectively inhibited aerobic Fe2+ oxidation in the presence of competing chelating agents such as EDTA, citrate, and ADP. The effects of SAM were mimicked by S-adenosylhomocysteine, but not by methionine or methylthioadenosine. SAM did not inhibit Fe2+ oxidation by H2O2 and was a relatively poor inhibitor of the Fenton reaction. Lipid peroxidation initiated by Fe2+ in liposomes was associated with Fe2+ oxidation; these two processes were inhibited by SAM. However, SAM did not show significant peroxyl radical scavenging activity. SAM also inhibited the nonenzymatic lipid peroxidation initiated by Fe2+ + ascorbate in rat liver microsomes. These results suggest that SAM inhibits alcohol and lipid oxidation mainly by Fe2+ chelation and inhibition of Fe2+ autoxidation. This could represent an important mechanism by which SAM exerts cellular protective actions and reduces oxidative stress in biological systems.
Collapse
Affiliation(s)
- Andres A Caro
- Department of Pharmacology and Biological Chemistry, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | |
Collapse
|
16
|
|
17
|
Feng ZQ, Shen ZX, Tan SY, Luo HS, Qi CB, Guo J, Li HX. Improvement of induction method of acute alcoholic fatty liver model in rats. Shijie Huaren Xiaohua Zazhi 2003; 11:1189-1192. [DOI: 10.11569/wcjd.v11.i8.1189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM To provide a valuable model for the study on acute alcoholic fatty liver.
METHODS Thirty Wistar male rats were randomized into two groups: model group (group 1, intragastric infusion of spirits, fed with high fat and iron diet), control group (group 2, intragastric infusion of saline, fed with common diet). Some rats were sacrificed after 2 and 3 weeks to evaluate the process of alcoholic fatty liver formation. All rats were sacrificed at the end of the fourth week.
RESULTS Slight fatty deposition was observed at the end of 2nd week after the experiment and moderate fatty deposition at the 3 rd week and severe fatty deposition at the 4 th week. In comparison with control group, the liver mass index was increased in the model group. There was a statistically significant difference between the two groups.
CONCLUSION The lesion of the acute alcoholic fatty liver in model rats is similar to that in humans. The experiment is very simple and the experiment cycle is short and the conclusion is clear.
Collapse
Affiliation(s)
- Zhi-Qiang Feng
- Department of Gastroenterology, the Renmin Hospital of Wuhan University, Wuhan, Hubei Province 430060, China
| | - Zhi-Xiang Shen
- Department of Gastroenterology, the Renmin Hospital of Wuhan University, Wuhan, Hubei Province 430060, China
| | - Shi-Yun Tan
- Department of Gastroenterology, the Renmin Hospital of Wuhan University, Wuhan, Hubei Province 430060, China
| | - He-Sheng Luo
- Department of Gastroenterology, the Renmin Hospital of Wuhan University, Wuhan, Hubei Province 430060, China
| | - Chu-Bo Qi
- Department of Pathology, Hubei Tumor Hospital, Wuhan, Hubei Province 430070, China
| | - Jie Guo
- Department of Gastroenterology, the Renmin Hospital of Wuhan University, Wuhan, Hubei Province 430060, China
| | - Hai-Xia Li
- Department of Gastroenterology, the Renmin Hospital of Wuhan University, Wuhan, Hubei Province 430060, China
| |
Collapse
|
18
|
Frei B, Zhu BZ. Biochemical and Physiological Interactions of Vitamin C and Iron. Antioxidants (Basel) 2003. [DOI: 10.1201/9781439822173.ch3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
19
|
Djuric Z, Lewis SM, Lu MH, Mayhugh M, Tang N, Hart RW. Effect of varying dietary fat levels on rat growth and oxidative DNA damage. Nutr Cancer 2002; 39:214-9. [PMID: 11759283 DOI: 10.1207/s15327914nc392_9] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Dietary fat has previously been shown to have somewhat complicated relationships to levels of oxidative stress in rats. In this study, we examined the effects of five different dietary fat intakes on levels of oxidative DNA damage in rats. Animals fed diets containing 3%, 5%, 10%, or 15% corn oil had body weights that were similar after 20 weeks. Animals fed a 20% fat diet, however, had significantly higher mean body weight than any other group. Levels of 5-hydroxymethyl-2'-deoxyuridine, one marker of oxidative DNA damage, had different relationships to dietary fat in blood and mammary gland. In blood, levels increased with dietary fat levels, and the highest levels were observed with the 20% fat diet (65% higher levels than with the 3% fat diet). In mammary gland, a plateau-type effect was observed, with maximal levels of oxidative DNA damage being obtained using 10% fat (representing a 68% increase relative to the 3% fat diet). This could be a result of induction of compensatory mechanisms in response to a high-fat diet in mammary gland but not in the short-lived nucleated blood cells. Oxidative DNA damage levels in blood thus appear to be a marker of dietary fat intake. In mammary gland, however, levels of DNA damage are consistent with previously observed promotional effects of dietary fat on mammary gland tumorigenesis at lower levels of fat intake with little or no incremental promoting effects at higher levels of fat intake.
Collapse
Affiliation(s)
- Z Djuric
- Karmanos Cancer Institute, Wayne State University, Detroit, MI 48118, USA.
| | | | | | | | | | | |
Collapse
|
20
|
Abstract
Iron is an essential metal for most biological organisms. However, if not tightly controlled, iron can mediate the deleterious oxidation of biomolecules. This review focuses on the current understanding of the role of iron in the deleterious oxidation of various biomolecules, including DNA, protein, lipid, and small molecules, e.g., ascorbate and biogenic amines. The effect of chelation on the reactivity of iron is also addressed, in addition to iron-associated toxicities. The roles of the iron storage protein ferritin as both a source of iron for iron-mediated oxidations and as a mechanism to safely store iron in cells is also addressed.
Collapse
Affiliation(s)
- Kevin D Welch
- Department of Chemistry and Biochemistry, Biotechnology Center, Utah State University, Logan, UT, USA
| | | | | | | |
Collapse
|