1
|
Zhu W, Huang L, Wu C, Liu L, Li H. Reviewing the evolutive ACQ-to-AIE transformation of photosensitizers for phototheranostics. LUMINESCENCE 2023. [PMID: 38148620 DOI: 10.1002/bio.4655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/21/2023] [Accepted: 11/27/2023] [Indexed: 12/28/2023]
Abstract
Photodynamic therapy (PDT) represents an emerging noninvasive treatment technique for cancers and various nonmalignant diseases, including infections. During the process of PDT, the physical and chemical properties of photosensitizers (PSs) critically determine the effectiveness of PDT. Traditional PSs have made great progress in clinical applications. One of the challenges is that traditional PSs suffer from aggregation-caused quenching (ACQ) due to their discotic structures. Recently, aggregation-induced emission PSs (AIE-PSs) with a twisted propeller-shaped conformation have been widely concerned because of high reactive oxygen species (ROS) generation efficiency, strong fluorescence efficiency, and resistance to photobleaching. However, AIE-PSs also have some disadvantages, such as short absorption wavelengths and insufficient molar absorption coefficient. When the advantages and disadvantages of AIE-PSs and ACQ-PSs are complementary, combining ACQ-PSs and AIE-PSs is a "win-to-win" strategy. As far as we know, the conversion of traditional representative ACQ-PSs to AIE-PSs for phototheranostics has not been reviewed. In the review, we summarize the recent progress on the ACQ-to-AIE transformation of PSs and the strategies to achieve desirable theranostic applications. The review would be helpful to design more efficient ACQ-AIE-PSs in the future and to accelerate the development and clinical application of PDT.
Collapse
Affiliation(s)
- Wei Zhu
- College of Textiles Science and Engineering (International Silk Institute), Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou, China
- Zhejiang Shengfa Textiles Printing and Dyeing Co., Ltd., Huzhou, China
| | - Lin Huang
- College of Textiles Science and Engineering (International Silk Institute), Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou, China
| | - Chao Wu
- College of Textiles Science and Engineering (International Silk Institute), Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou, China
| | - Lingli Liu
- Transfar Zhilian Co. Ltd., Hangzhou, China
| | - Haoxuan Li
- Key Laboratory of Eco-Textiles (Ministry of Education), Nonwoven Technology Laboratory, Jiangnan University, Wuxi, China
| |
Collapse
|
2
|
Li A, Fang R, Mao X, Sun Q. Photodynamic therapy in the treatment of rosacea: a systematic review. Photodiagnosis Photodyn Ther 2022; 38:102875. [DOI: 10.1016/j.pdpdt.2022.102875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/12/2022] [Accepted: 04/20/2022] [Indexed: 10/18/2022]
|
3
|
Yang D, Lei S, Pan K, Chen T, Lin J, Ni G, Liu J, Zeng X, Chen Q, Dan H. Application of photodynamic therapy in immune-related diseases. Photodiagnosis Photodyn Ther 2021; 34:102318. [PMID: 33940209 DOI: 10.1016/j.pdpdt.2021.102318] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 04/09/2021] [Accepted: 04/26/2021] [Indexed: 02/06/2023]
Abstract
Photodynamic therapy (PDT) is a therapeutic modality that utilizes photodamage caused by photosensitizers and oxygen after exposure to a specific wavelength of light. Owing to its low toxicity, high selectivity, and minimally invasive properties, PDT has been widely applied to treat various malignant tumors, premalignant lesions, and infectious diseases. Moreover, there is growing evidence of its immunomodulatory effects and potential for the treatment of immune-related diseases. This review mainly focuses on the effect of PDT on immunity and its application in immune-related diseases.
Collapse
Affiliation(s)
- Dan Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renminnan Road, Chengdu, Sichuan 610041, China
| | - Shangxue Lei
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renminnan Road, Chengdu, Sichuan 610041, China
| | - Keran Pan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renminnan Road, Chengdu, Sichuan 610041, China
| | - Ting Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renminnan Road, Chengdu, Sichuan 610041, China
| | - Jiao Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renminnan Road, Chengdu, Sichuan 610041, China
| | - Guangcheng Ni
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renminnan Road, Chengdu, Sichuan 610041, China
| | - Jiaxin Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renminnan Road, Chengdu, Sichuan 610041, China
| | - Xin Zeng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renminnan Road, Chengdu, Sichuan 610041, China
| | - Qianming Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renminnan Road, Chengdu, Sichuan 610041, China
| | - Hongxia Dan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renminnan Road, Chengdu, Sichuan 610041, China.
| |
Collapse
|
4
|
Li XY, Tan LC, Dong LW, Zhang WQ, Shen XX, Lu X, Zheng H, Lu YG. Susceptibility and Resistance Mechanisms During Photodynamic Therapy of Melanoma. Front Oncol 2020; 10:597. [PMID: 32528867 PMCID: PMC7247862 DOI: 10.3389/fonc.2020.00597] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 04/01/2020] [Indexed: 12/19/2022] Open
Abstract
Melanoma is the most aggressive malignant skin tumor and arises from melanocytes. The resistance of melanoma cells to various treatments results in rapid tumor growth and high mortality. As a local therapeutic modality, photodynamic therapy has been successfully applied for clinical treatment of skin diseases. Photodynamic therapy is a relatively new treatment method for various types of malignant tumors in humans and, compared to conventional treatment methods, has fewer side effects, and is more accurate and non-invasive. Although several in vivo and in vitro studies have shown encouraging results regarding the potential benefits of photodynamic therapy as an adjuvant treatment for melanoma, its clinical application remains limited owing to its relative inefficiency. This review article discusses the use of photodynamic therapy in melanoma treatment as well as the latest progress made in deciphering the mechanism of tolerance. Lastly, potential targets are identified that may improve photodynamic therapy against melanoma cells.
Collapse
Affiliation(s)
- Xin-Ying Li
- Department of Plastic Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Liu-Chang Tan
- Department of Plastic Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Li-Wen Dong
- Department of Plastic Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Wan-Qi Zhang
- Department of Plastic Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Xiao-Xiao Shen
- Department of Plastic Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Xiao Lu
- Department of Thoracic Surgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Hong Zheng
- Department of Thoracic Surgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Yuan-Gang Lu
- Department of Plastic Surgery, Daping Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
5
|
Čunderlíková B, Filová B, Kajo K, Vallová M, Balázsiová Z, Trnka M, Mateašík A. Extracellular matrix affects different aspects of cell behaviour potentially involved in response to aminolevulinic acid-based photoinactivation. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 189:283-291. [PMID: 30439643 DOI: 10.1016/j.jphotobiol.2018.08.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 07/17/2018] [Accepted: 08/14/2018] [Indexed: 01/08/2023]
Abstract
Two-dimensional cell cultures do not seem to be reliable models for anticancer drug discovery and validation. Numerous in vitro tumour models of different complexity have been evaluated with the aim to enhance anticancer drug development, but whether all these models could be considered as physiologically relevant is a question. Even type of the extracellular matrix may markedly influence experimental results and supposedly also clinical treatment outcome. By using three human oesophageal cell lines and three-dimensional cultures based on collagen type I, abundant component of stromal tissue, and Matrigel, a surrogate of basement membrane, we tested the impact of extracellular matrix on different aspects of cell behaviour. We applied live cell fluorescence confocal microscopy in combination with image analysis and supplemented it with immunohistochemical analysis of differentiation markers in fixed samples. We found that cell morphogenesis, differentiation, extracellular vesicle formation, protoporphyrin IX production from aminolevulinic acid and response to subsequent photodynamic intervention induced by red light may be affected by the type of extracellular matrix and these modifications occur in a cell-type dependent manner. Our results demonstrate that the choice of the correct extracellular matrix for in vitro tumour models is crucial for gathering clinically relevant information from in vitro experimental studies.
Collapse
Affiliation(s)
- Beata Čunderlíková
- Institute of Medical Physics, Biophysics, Informatics and Telemedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia; International Laser Centre, Bratislava, Slovakia.
| | - Barbora Filová
- Institute of Medical Physics, Biophysics, Informatics and Telemedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Karol Kajo
- Department of Pathology, St. Elisabeth Cancer Institute, Bratislava, Slovakia; Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Miroslava Vallová
- Department of Pathology, St. Elisabeth Cancer Institute, Bratislava, Slovakia
| | - Zuzana Balázsiová
- Institute of Medical Physics, Biophysics, Informatics and Telemedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Michal Trnka
- Institute of Medical Physics, Biophysics, Informatics and Telemedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | | |
Collapse
|
6
|
Čunderlíková B. Extracellular Matrix Containing in vitro Three-dimensional Tumor Models in Photodynamic Therapy-related Research. Photochem Photobiol 2017; 94:398-403. [PMID: 29143338 DOI: 10.1111/php.12859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Accepted: 10/12/2017] [Indexed: 12/29/2022]
Abstract
Three-dimensional (3D) tumor models have been intensively evaluated for their use in cancer research, and there is a strong rationale behind using 3D cell cultures in photodynamic therapy (PDT)-related experimentation. In this contribution, it is explained why 3D cell cultures containing extracellular matrix (ECM) are preferred for this purpose. Results of experimental studies utilizing ECM-containing 3D cellular models in PDT research are summarized. Finally, the design of in vitro 3D models that would provide clinically relevant information is discussed.
Collapse
Affiliation(s)
- Beata Čunderlíková
- Faculty of Medicine; Comenius University; Bratislava Slovakia
- International Laser Centre; Bratislava Slovakia
| |
Collapse
|
7
|
Anzengruber F, Avci P, de Freitas LF, Hamblin MR. T-cell mediated anti-tumor immunity after photodynamic therapy: why does it not always work and how can we improve it? Photochem Photobiol Sci 2015; 14:1492-1509. [PMID: 26062987 PMCID: PMC4547550 DOI: 10.1039/c4pp00455h] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Photodynamic therapy (PDT) uses the combination of non-toxic photosensitizers and harmless light to generate reactive oxygen species that destroy tumors by a combination of direct tumor cell killing, vascular shutdown, and activation of the immune system. It has been shown in some animal models that mice that have been cured of cancer by PDT, may exhibit resistance to rechallenge. The cured mice can also possess tumor specific T-cells that recognize defined tumor antigens, destroy tumor cells in vitro, and can be adoptively transferred to protect naïve mice from cancer. However, these beneficial outcomes are the exception rather than the rule. The reasons for this lack of consistency lie in the ability of many tumors to suppress the host immune system and to actively evade immune attack. The presence of an appropriate tumor rejection antigen in the particular tumor cell line is a requisite for T-cell mediated immunity. Regulatory T-cells (CD25+, Foxp3+) are potent inhibitors of anti-tumor immunity, and their removal by low dose cyclophosphamide can potentiate the PDT-induced immune response. Treatments that stimulate dendritic cells (DC) such as CpG oligonucleotide can overcome tumor-induced DC dysfunction and improve PDT outcome. Epigenetic reversal agents can increase tumor expression of MHC class I and also simultaneously increase expression of tumor antigens. A few clinical reports have shown that anti-tumor immunity can be generated by PDT in patients, and it is hoped that these combination approaches may increase tumor cures in patients.
Collapse
Affiliation(s)
- Florian Anzengruber
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Dermatology, Harvard Medical School, Boston, MA, USA
| | - Pinar Avci
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Dermatology, Harvard Medical School, Boston, MA, USA
- Department of Dermatology, Dermatooncology and Venerology, Semmelweis University School of Medicine, Budapest, 1085, Hungary
| | - Lucas Freitas de Freitas
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Dermatology, Harvard Medical School, Boston, MA, USA
- Programa de Pos Graduacao Interunidades Bioengenharia – USP – Sao Carlos, Brazil
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Dermatology, Harvard Medical School, Boston, MA, USA
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, USA
- Correspondence to: Michael R Hamblin, PhD, Wellman Center for Photomedicine, Massachusetts General Hospital, 50 Blossom Street, Boston, MA 02114, USA.
| |
Collapse
|
8
|
Cunderlíková B, Vasovič V, Randeberg LL, Christensen E, Warloe T, Nesland JM, Peng Q. Modification of extracorporeal photopheresis technology with porphyrin precursors. Comparison between 8-methoxypsoralen and hexaminolevulinate in killing human T-cell lymphoma cell lines in vitro. Biochim Biophys Acta Gen Subj 2014; 1840:2702-8. [PMID: 24915603 DOI: 10.1016/j.bbagen.2014.05.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 04/25/2014] [Accepted: 05/07/2014] [Indexed: 11/29/2022]
Abstract
BACKGROUND Extracorporeal photopheresis that exposes isolated white blood cells to 8-methoxypsoralen (8-MOP) and ultraviolet-A (UV-A) light is used for the management of cutaneous T-cell lymphoma and graft-versus-host disease. 8-MOP binds to DNA of both tumor and normal cells, thus increasing the risk of carcinogenesis of normal cells; and also kills both tumor and normal cells with no selectivity after UV-A irradiation. Hexaminolevulinate (HAL)-induced protoporphyrin-IX is a potent photosensitizer that localizes at membranous structures outside of the nucleus of a cell. HAL-mediated photodynamic therapy selectively destroys activated/transformed lymphocytes and induces systemic anti-tumor immunity. The aim of the present study was to explore the possibility of using HAL instead of 8-MOP to kill cells after UV-A exposure. METHODS Human T-cell lymphoma Jurkat and Karpas 299 cell lines were used to evaluate cell photoinactivation after 8-MOP and/or HAL plus UV-A light with cell proliferation and long term survival assays. The mode of cell death was also analyzed by fluorescence microscopy. RESULTS Cell proliferation was decreased by HAL/UV-A, 8-MOP/UV-A or HAL/8-MOP/UV-A. At sufficient doses, the cells were killed by all the regimens; however, the mode of cell death was dependent on the treatment conditions. 8-MOP/UV-A produced apoptotic death exclusively; whereas both apoptosis and necrosis were induced by HAL/UV-A. CONCLUSION 8-MOP can be replaced by HAL to inactivate the Jurkat and Karpas 299 T-cell lymphoma cells after UV-A irradiation via apoptosis and necrosis. This finding may have an impact on improved efficacy of photopheresis.
Collapse
Affiliation(s)
- B Cunderlíková
- Department of Pathology, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway; International Laser Centre, Bratislava, Slovakia
| | - V Vasovič
- Department of Pathology, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - L L Randeberg
- Department of Electronics and Telecommunications, Norwegian University of Science and Technology, Trondheim, Norway
| | - E Christensen
- Department of Dermatology, St Olav's University Hospital HF, Trondheim, Norway; Department of Cancer Research and Molecular Medicine, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - T Warloe
- Department of Gastric Surgery, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - J M Nesland
- Department of Pathology, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway; Faculty Division, Medical Faculty, University of Oslo, Oslo, Norway
| | - Q Peng
- Department of Pathology, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway; Key Laboratory of Micro/Nano Photonics Structure (Ministry of Education), Fudan University, Shanghai, China.
| |
Collapse
|
9
|
Abstract
Haplotype-mismatched transplantation offers a unique opportunity to treat patients without a suitable matched related or unrelated donor. Indeed, related haplo-donors are usually extremely motivated, immediately available, and can provide additional stem or immune cells when required, a most important feature in the context of high-risk malignancies. Immunomagneticallly selected CD34(+) stem cell grafts enable rapid and sustained trilineage engraftment. However, the associated delay in immune reconstitution results in significant risk for severe infectious complications and malignant relapse. The infusion of T lymphocytes selectively depleted of their anti-host reactive components represents a most interesting approach to accelerate post-transplant T-cell recovery. Such a strategy relies on ex vivo donor cell activation against host antigens and their selective elimination. Immunotoxins and magnetic beads could target antigens such as CD25 with impressive results. Photodepletion of alloreactive T cells represents an appealing alternative to both eliminate anti-host immune T cells and spare resting T cells to fight infections. Interestingly, regulatory T cells can be retained after such treatment, and have been found to transform non-regulatory into regulatory T cells, a finding that may be of utmost importance in both prevention and control of graft-versus-host disease (GVHD). Efforts to promote efficient antigen presentation and selective allodepletion promise to accelerate immune reconstitution without GVHD and to address the most crucial issues in haplo-mismatched and other types of transplants.
Collapse
Affiliation(s)
- Jean-Philippe Bastien
- Division of Hematology and Stem Cell Transplantation, Maisonneuve-Rosemont Hospital Research Center, Department of Medicine, Université de Montréal, Montreal, Canada
| | | | | |
Collapse
|
10
|
Dye Sensitizers for Photodynamic Therapy. MATERIALS 2013; 6:817-840. [PMID: 28809342 PMCID: PMC5512801 DOI: 10.3390/ma6030817] [Citation(s) in RCA: 549] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 02/20/2013] [Accepted: 02/22/2013] [Indexed: 01/18/2023]
Abstract
Photofrin® was first approved in the 1990s as a sensitizer for use in treating cancer via photodynamic therapy (PDT). Since then a wide variety of dye sensitizers have been developed and a few have been approved for PDT treatment of skin and organ cancers and skin diseases such as acne vulgaris. Porphyrinoid derivatives and precursors have been the most successful in producing requisite singlet oxygen, with Photofrin® still remaining the most efficient sensitizer (quantum yield = 0.89) and having broad food and drug administration (FDA) approval for treatment of multiple cancer types. Other porphyrinoid compounds that have received approval from US FDA and regulatory authorities in other countries include benzoporphyrin derivative monoacid ring A (BPD-MA), meta-tetra(hydroxyphenyl)chlorin (m-THPC), N-aspartyl chlorin e6 (NPe6), and precursors to endogenous protoporphyrin IX (PpIX): 1,5-aminolevulinic acid (ALA), methyl aminolevulinate (MAL), hexaminolevulinate (HAL). Although no non-porphyrin sensitizer has been approved for PDT applications, a small number of anthraquinone, phenothiazine, xanthene, cyanine, and curcuminoid sensitizers are under consideration and some are being evaluated in clinical trials. This review focuses on the nature of PDT, dye sensitizers that have been approved for use in PDT, and compounds that have entered or completed clinical trials as PDT sensitizers.
Collapse
|
11
|
Abstract
Photodynamic therapy (PDT) is a promising novel therapeutic procedure for the management of a variety of solid tumors and many non-malignant diseases. PDT has been described as having a significant effect on the immune system, which may be either immunostimulatory or, in some circumstances, immunosuppressive. The immunosuppressive effects of PDT have nearly all been concerned with the suppression of the contact hypersensitivity reaction in mice. Here, we review the immunosuppressive aspects of PDT treatment and discuss some additional mechanisms that may be involved.
Collapse
Affiliation(s)
- Pawel Mroz
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA.
| | | |
Collapse
|
12
|
Impact of photodynamic therapy on inflammatory cells during human chronic periodontitis. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2010; 101:348-54. [PMID: 20813541 DOI: 10.1016/j.jphotobiol.2010.08.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Revised: 08/06/2010] [Accepted: 08/10/2010] [Indexed: 12/14/2022]
Abstract
The aim of this study was to evaluate the effects of the photodynamic therapy (PDT) on the inflammatory infiltrate and on the collagen network organization in human advanced chronic periodontitis. Two different drug delivery systems (DDS) were tested (liposomes and nanoemulsions) to determine if the effects of PDT could differ according to the DDS used. Sixteen patients presenting two teeth with chronic advanced periodontitis and important tooth mobility with clinical indication of extraction were included in the group liposomes (group L, n=8) or in the group nanoemulsions (group N, n=8) in order to compare the effects of each DDS. Seven days before extractions one tooth of each patient was treated with PDT using phthalocyanine derivatives as photosensitizers and the contralateral tooth was taken as control. In group L the density of gingival collagen fibers (66±19%) was significantly increased (p<0.02) when compared to controls (35±21%). Concerning the antigen-presenting cells, PDT had differential effects depending on the drug delivery system; the number of macrophages was significantly decreased (p<0.05) in group L while the number of Langerhans cells was significantly decreased in group N (p<0.02). These findings demonstrate that PDT presents an impact on gingival inflammatory phenomenon during chronic periodontitis and leads to a specific decrease of antigen-presenting cells populations according to the drug delivery system used.
Collapse
|
13
|
Trannoy L, Roelen D, Koekkoek K, Brand A. Impact of Photodynamic Treatment with Meso-substituted Porphyrin on the Immunomodulatory Capacity of White Blood Cell-containing Red Blood Cell Products. Photochem Photobiol 2010; 86:223-30. [DOI: 10.1111/j.1751-1097.2009.00624.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|