1
|
Lopes M, Louzada S, Gama-Carvalho M, Chaves R. Pericentromeric satellite RNAs as flexible protein partners in the regulation of nuclear structure. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1868. [PMID: 38973000 DOI: 10.1002/wrna.1868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/17/2024] [Accepted: 05/28/2024] [Indexed: 07/09/2024]
Abstract
Pericentromeric heterochromatin is mainly composed of satellite DNA sequences. Although being historically associated with transcriptional repression, some pericentromeric satellite DNA sequences are transcribed. The transcription events of pericentromeric satellite sequences occur in highly flexible biological contexts. Hence, the apparent randomness of pericentromeric satellite transcription incites the discussion about the attribution of biological functions. However, pericentromeric satellite RNAs have clear roles in the organization of nuclear structure. Silencing pericentromeric heterochromatin depends on pericentromeric satellite RNAs, that, in a feedback mechanism, contribute to the repression of pericentromeric heterochromatin. Moreover, pericentromeric satellite RNAs can also act as scaffolding molecules in condensate subnuclear structures (e.g., nuclear stress bodies). Since the formation/dissociation of nuclear condensates provides cell adaptability, pericentromeric satellite RNAs can be an epigenetic platform for regulating (sub)nuclear structure. We review current knowledge about pericentromeric satellite RNAs that, irrespective of the meaning of biological function, should be functionally addressed in regular and disease settings. This article is categorized under: RNA Methods > RNA Analyses in Cells RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Mariana Lopes
- CytoGenomics Lab-Department of Genetics and Biotechnology (DGB), University of Trás os Montes and Alto Douro (UTAD), Vila Real, Portugal
- BioISI: Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Lisbon, Portugal
| | - Sandra Louzada
- CytoGenomics Lab-Department of Genetics and Biotechnology (DGB), University of Trás os Montes and Alto Douro (UTAD), Vila Real, Portugal
- BioISI: Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Lisbon, Portugal
| | - Margarida Gama-Carvalho
- BioISI: Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Lisbon, Portugal
| | - Raquel Chaves
- CytoGenomics Lab-Department of Genetics and Biotechnology (DGB), University of Trás os Montes and Alto Douro (UTAD), Vila Real, Portugal
- BioISI: Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Lisbon, Portugal
- RISE-Health: Health Research Network, Faculty of Medicine, University of Porto, Porto, Portugal
- CACTMAD: Trás-os-Montes and Alto Douro Academic Clinic Center,University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| |
Collapse
|
2
|
Zhang D, Li L, Li M, Cao X. Biological functions and clinic significance of SAF‑A (Review). Biomed Rep 2024; 20:88. [PMID: 38665420 PMCID: PMC11040223 DOI: 10.3892/br.2024.1776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
As one member of the heterogeneous ribonucleoprotein (hnRNP) family, scaffold attachment factor A (SAF-A) or hnRNP U, is an abundant nuclear protein. With RNA and DNA binding activities, SAF-A has multiple functions. The present review focused on the biological structure and different roles of SAF-A and SAF-A-related diseases. It was found that SAF-A maintains the higher-order chromatin organization via RNA and DNA, and regulates transcription at the initiation and elongation stages. In addition to regulating pre-mRNA splicing, mRNA transportation and stabilization, SAF-A participates in double-strand breaks and mitosis repair. Therefore, the aberrant expression and mutation of SAF-A results in tumors and impaired neurodevelopment. Moreover, SAF-A may play a role in the anti-virus system. In conclusion, due to its essential biological functions, SAF-A may be a valuable clinical prediction factor or therapeutic target. Since the role of SAF-A in tumors and viral infections may be controversial, more animal experiments and clinical assays are needed.
Collapse
Affiliation(s)
- Daiquan Zhang
- Department of Traditional Chinese Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Li Li
- Immune Mechanism and Therapy of Major Diseases of Luzhou Key Laboratory, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Mengni Li
- Department of Pediatrics, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, P.R. China
| | - Xinmei Cao
- Immune Mechanism and Therapy of Major Diseases of Luzhou Key Laboratory, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| |
Collapse
|
3
|
Podgornaya OI. Nuclear organization by satellite DNA, SAF-A/hnRNPU and matrix attachment regions. Semin Cell Dev Biol 2022; 128:61-68. [PMID: 35484025 DOI: 10.1016/j.semcdb.2022.04.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/18/2022] [Accepted: 04/18/2022] [Indexed: 12/15/2022]
Abstract
The need of large-scale chromatin organization in the nucleus has become more and more appreciated. The higher order nuclear organization ultimately regulate a plethora of biological processes including transcription, DNA replication, and DNA repair. In this context, it is of critical importance to understand the mechanisms that allow higher order nuclear organization. Scaffold Attachment Factor A (SAF-A/hnRNPU), which was originally identified as the component of nuclear matrix, has emerged as an important regulator of higher order nuclear organization. It is shown that SAF-A/hnRNPU binds to tandem repeats (TRs) and scaffold/matrix attachment regions (S/MAR) in a sequence-non-specific, but structure-specific manner (e.g. DNA curvature). Recent studies showed that SAF-A interacts with chromatin-associated RNAs (caRNAs) to regulate interphase chromatin structures in a transcription-dependent manner. It is proposed that SAF-A/hnRNPU and caRNAs form a dynamic, transcriptionally responsive chromatin mesh that organizes chromatin in a large scale. The common structural features of S/MAR and pericentromeric (periCEN) TR promotes SAF-A-mediated association with each other. Collectively a model is presented wherein SAF-A/hnRNPU and periCEN TR are the key players in large-scale nuclear organization that supports general transcription.
Collapse
Affiliation(s)
- O I Podgornaya
- Institute of Cytology RAS, St. Petersburg State University, Russia.
| |
Collapse
|
4
|
Cytogenetic Analysis, Heterochromatin Characterization and Location of the rDNA Genes of Hycleus scutellatus (Coleoptera, Meloidae); A Species with an Unexpected High Number of rDNA Clusters. INSECTS 2021; 12:insects12050385. [PMID: 33925926 PMCID: PMC8146434 DOI: 10.3390/insects12050385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/17/2021] [Accepted: 04/23/2021] [Indexed: 01/12/2023]
Abstract
Simple Summary The family Meloidae contains approximately 3000 species, commonly known as blister beetles for their ability to secrete a substance called cantharidin, which causes irritation and blistering in contact with animal or human skin. In recent years there have been numerous studies focused on the anticancer action of cantharidin and its derivatives. Despite the recent interest in blister beetles, cytogenetic and molecular studies in this group are scarce and most of them use only classical chromosome staining techniques. The main aim of our study was to provide new information in Meloidae. In this study, cytogenetic and molecular analyses were applied for the first time in the family Meloidae. We applied fluorescence staining with DAPI and the position of ribosomal DNA in Hycleus scutellatus was mapped by FISH. Hycleus is one of the most species-rich genera of Meloidae but no cytogenetic data have yet been published for this particular genus. Additionally, we isolated a satellite DNA family located within the pericentromeric regions of all chromosomes. The results obtained in this study may be a suitable starting point to initiate more extensive cytogenetic analyses in this important species-rich genus, and in the family Meloidae in general. Abstract Meloidae are commonly known as blister beetles, so called for the secretion of cantharidin, a toxic substance that causes irritation and blistering. There has been a recent increase in the interest of the cantharidin anticancer potential of this insect group. Cytogenetic and molecular data in this group are scarce. In this study, we performed a karyotype analysis of Hycleus scutellatus, an endemic species of the Iberian Peninsula. We determined its chromosome number, 2n = 20, as well as the presence of the X and Y sex chromosomes. In addition to a karyotype analysis, we carried out DAPI staining. By fluorescence in situ hybridization we mapped the rDNA clusters on 12 different chromosomes. Compared to others, this species shows an unusually high number of chromosomes carrying rDNA. This is one of the highest numbers of rDNA sites found in the Polyphaga suborder (Coleoptera). Additionally, we isolated a satellite DNA family (Hyscu-H), which was located within the pericentromeric regions of all chromosomes, including the sex chromosomes. The results suggest that Hyscu-H is likely to be one of the most abundant satellite DNA repeats in H. scutellatus.
Collapse
|
5
|
Thakur J, Packiaraj J, Henikoff S. Sequence, Chromatin and Evolution of Satellite DNA. Int J Mol Sci 2021; 22:ijms22094309. [PMID: 33919233 PMCID: PMC8122249 DOI: 10.3390/ijms22094309] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/16/2021] [Accepted: 04/17/2021] [Indexed: 12/15/2022] Open
Abstract
Satellite DNA consists of abundant tandem repeats that play important roles in cellular processes, including chromosome segregation, genome organization and chromosome end protection. Most satellite DNA repeat units are either of nucleosomal length or 5–10 bp long and occupy centromeric, pericentromeric or telomeric regions. Due to high repetitiveness, satellite DNA sequences have largely been absent from genome assemblies. Although few conserved satellite-specific sequence motifs have been identified, DNA curvature, dyad symmetries and inverted repeats are features of various satellite DNAs in several organisms. Satellite DNA sequences are either embedded in highly compact gene-poor heterochromatin or specialized chromatin that is distinct from euchromatin. Nevertheless, some satellite DNAs are transcribed into non-coding RNAs that may play important roles in satellite DNA function. Intriguingly, satellite DNAs are among the most rapidly evolving genomic elements, such that a large fraction is species-specific in most organisms. Here we describe the different classes of satellite DNA sequences, their satellite-specific chromatin features, and how these features may contribute to satellite DNA biology and evolution. We also discuss how the evolution of functional satellite DNA classes may contribute to speciation in plants and animals.
Collapse
Affiliation(s)
- Jitendra Thakur
- Department of Biology, Emory University, Atlanta, GA 30322, USA;
- Correspondence:
| | - Jenika Packiaraj
- Department of Biology, Emory University, Atlanta, GA 30322, USA;
| | - Steven Henikoff
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA;
- Fred Hutchinson Cancer Research Center, Howard Hughes Medical Institute, Seattle, WA 98109, USA
| |
Collapse
|
6
|
Ivanova NG, Ostromyshenskii D, Podgornaya O. Tandem Repeat-Based Probes Support the Loop Model of Pericentromere Packing. Cytogenet Genome Res 2021; 161:93-102. [PMID: 33601374 DOI: 10.1159/000513228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 08/18/2020] [Indexed: 11/19/2022] Open
Abstract
Constitutive heterochromatin is the most mysterious part of the eukaryotic genome. It forms vital chromosome regions such as the centromeric and the pericentromeric ones. The main component of heterochromatic regions are tandem repeats (TR), and their specific organization complicates assembly, annotation, and mapping of these regions. Unannotated and unmapped TR arrays are still present in database contigs. In this study, we used a set of TR in the genomes of the pig (Sus scrofa) and the Chinese hamster (Cricetulus griseus) identified with the help of bioinformatics techniques and determined the specificity of the designed probes. The signal of the 4 pig TR probes in spermatogenic cells was often ring-shaped, especially in primary spermatocytes. The rings were located in the regions relatively weakly stained with DAPI. The unique assembly of the centromeric region was traced using the hamster meiotic chromosomes. The probe specific to chromosome 5 was used. Two signals, arranged as rings, were seen at the pachytene stage, similar to those in the pig spermatogenic cells. In the spermatogenic cells of both pig and hamster, the rings appeared on the chromosomes with pericentromeric TR probes. Our observations support the loop model of the centromeric region, the size of the loops being about 50 kb.
Collapse
Affiliation(s)
- Nadezhda G Ivanova
- Laboratory of Non-coding DNA, Institute of Cytology RAS, St. Petersburg, Russian Federation,
| | | | - Olga Podgornaya
- Laboratory of Non-coding DNA, Institute of Cytology RAS, St. Petersburg, Russian Federation.,Department of Cytology and Histology, St. Petersburg State University, St. Petersburg, Russian Federation
| |
Collapse
|
7
|
Podgornaya OI, Ostromyshenskii DI, Enukashvily NI. Who Needs This Junk, or Genomic Dark Matter. BIOCHEMISTRY (MOSCOW) 2018; 83:450-466. [PMID: 29626931 DOI: 10.1134/s0006297918040156] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Centromeres (CEN), pericentromeric regions (periCEN), and subtelomeric regions (subTel) comprise the areas of constitutive heterochromatin (HChr). Tandem repeats (TRs or satellite DNA) are the main components of HChr forming no less than 10% of the mouse and human genome. HChr is assembled within distinct structures in the interphase nuclei of many species - chromocenters. In this review, the main classes of HChr repeat sequences are considered in the order of their number increase in the sequencing reads of the mouse chromocenters (ChrmC). TRs comprise ~70% of ChrmC occupying the first place. Non-LTR (-long terminal repeat) retroposons (mainly LINE, long interspersed nuclear element) are the next (~11%), and endogenous retroviruses (ERV; LTR-containing) are in the third position (~9%). HChr is not enriched with ERV in comparison with the whole genome, but there are differences in distribution of certain elements: while MaLR-like elements (ERV3) are dominant in the whole genome, intracisternal A-particles and corresponding LTR (ERV2) are prevalent in HChr. Most of LINE in ChrmC is represented by the 2-kb fragment at the end of the 2nd open reading frame and its flanking regions. Almost all tandem repeats classified as CEN or periCEN are contained in ChrmC. Our previous classification revealed 60 new mouse TR families with 29 of them being absent in ChrmC, which indicates their location on chromosome arms. TR transcription is necessary for maintenance of heterochromatic status of the HChr genome part. A burst of TR transcription is especially important in embryogenesis and other cases of radical changes in the cell program, including carcinogenesis. The recently discovered mechanism of epigenetic regulation with noncoding sequences transcripts, long noncoding RNA, and its role in embryogenesis and pluripotency maintenance is discussed.
Collapse
Affiliation(s)
- O I Podgornaya
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, 194064, Russia.
| | | | | |
Collapse
|
8
|
W-enriched satellite sequence in the Indian meal moth, Plodia interpunctella (Lepidoptera, Pyralidae). Chromosome Res 2017; 25:241-252. [PMID: 28500471 DOI: 10.1007/s10577-017-9558-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 04/24/2017] [Accepted: 04/27/2017] [Indexed: 10/19/2022]
Abstract
The W chromosome of most lepidopteran species represents the largest heterochromatin entity in the female genome. Although satellite DNA is a typical component of constitutive heterochromatin, there are only a few known satellite DNAs (satDNAs) located on the W chromosome in moths and butterflies. In this study, we isolated and characterized new satDNA (PiSAT1) from microdissected W chromosomes of the Indian meal moth, Plodia interpunctella. Even though the PiSAT1 is mainly localized near the female-specific segment of the W chromosome, short arrays of this satDNA also occur on autosomes and/or the Z chromosome. Probably due to the predominant location in the non-recombining part of the genome, PiSAT1 exhibits a relatively large nucleotide variability in its monomers. However, at least a part of all predicted functional motifs is located in conserved regions. Moreover, we detected polyadenylated transcripts of PiSAT1 in all developmental stages and in both sexes (female and male larvae, pupae and adults). Our results suggest a potential structural and functional role of PiSAT1 in the P. interpunctella genome, which is consistent with accumulating evidence for the important role of satDNAs in eukaryotic genomes.
Collapse
|
9
|
Hacisuleyman E, Goff LA, Trapnell C, Williams A, Henao-Mejia J, Sun L, McClanahan P, Hendrickson DG, Sauvageau M, Kelley DR, Morse M, Engreitz J, Lander ES, Guttman M, Lodish HF, Flavell R, Raj A, Rinn JL. Topological organization of multichromosomal regions by the long intergenic noncoding RNA Firre. Nat Struct Mol Biol 2014; 21:198-206. [PMID: 24463464 PMCID: PMC3950333 DOI: 10.1038/nsmb.2764] [Citation(s) in RCA: 471] [Impact Index Per Article: 47.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 12/30/2013] [Indexed: 02/07/2023]
Abstract
RNA, including long noncoding RNA (lncRNA), is known to be an abundant and important structural component of the nuclear matrix. However, the molecular identities, functional roles and localization dynamics of lncRNAs that influence nuclear architecture remain poorly understood. Here, we describe one lncRNA, Firre, that interacts with the nuclear-matrix factor hnRNPU through a 156-bp repeating sequence and localizes across an ~5-Mb domain on the X chromosome. We further observed Firre localization across five distinct trans-chromosomal loci, which reside in spatial proximity to the Firre genomic locus on the X chromosome. Both genetic deletion of the Firre locus and knockdown of hnRNPU resulted in loss of colocalization of these trans-chromosomal interacting loci. Thus, our data suggest a model in which lncRNAs such as Firre can interface with and modulate nuclear architecture across chromosomes.
Collapse
Affiliation(s)
- Ezgi Hacisuleyman
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts, USA
| | - Loyal A. Goff
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts, USA
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Cole Trapnell
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts, USA
| | - Adam Williams
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Jorge Henao-Mejia
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Lei Sun
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, USA
| | - Patrick McClanahan
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - David G. Hendrickson
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts, USA
| | - Martin Sauvageau
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts, USA
| | - David R. Kelley
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts, USA
| | - Michael Morse
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts, USA
| | - Jesse Engreitz
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts, USA
| | - Eric S. Lander
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts, USA
| | - Mitch Guttman
- Department of Biology, California Institute of Technology, Pasadena, California, USA
| | - Harvey F. Lodish
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Richard Flavell
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
- Howard Hughes Medical Institute, Boston, Massachusetts, USA
| | - Arjun Raj
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - John L. Rinn
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts, USA
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| |
Collapse
|
10
|
Lorite P, Torres MI, Palomeque T. Characterization of two unrelated satellite DNA families in the Colorado potato beetle Leptinotarsa decemlineata (Coleoptera, Chrysomelidae). BULLETIN OF ENTOMOLOGICAL RESEARCH 2013; 103:538-546. [PMID: 23448367 DOI: 10.1017/s0007485313000060] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The Colorado potato beetle (Leptinotarsa decemlineata, family Chrysomelidae),a phytophagous insect, which feeds preferably on potatoes, constitutes a serious pest of this crop and causes extensive damage to tomatoes and egg plants. It has a remarkable ability to develop resistance quickly against insecticides and shows a diversified and flexible life history. Consequently, the control of this pest has become difficult, requiring the development of new alternative biotechnology-based strategies. Such strategies require a thorough knowledge of the beetle’s genome,including the repetitive DNA. Satellite DNA (stDNA), composed of long arrays of tandemly arranged repeat units, constitutes the major component of heterochromatin and is located mainly in centromeric and telomeric chromosomal regions. We have studied two different unrelated satellite-DNA families of which the consensus sequences were 295 and 109bp in length, named LEDE-I and LEDE-II, respectively.Both were AT-rich (70.8% and 71.6%, respectively). Predictive models of sequence-dependent DNA bending and the study of electrophoretic mobility on non-denaturing polyacrylamide gels have shown that the DNA was curved in both satellite-DNA families. Among other features, the chromosome localization of both stDNAs has been studied. In situ hybridization performed on meiotic and mitoticnuclei showed chromosomes, including the X chromosome, with zero, one, or two stDNAs. In recent years, it has been proposed that the repetitive DNA may play a key role in biological diversification processes. This is the first molecular and cytogenetic study conducted on L. decemlineata repetitive DNA and specifically on stDNA, which is one of the important constituents of eukaryotic genomes.
Collapse
Affiliation(s)
- Pedro Lorite
- Departamento de Biología Experimental, Universidad de Jaén, 23071 Jaén, Spain
| | | | | |
Collapse
|
11
|
Soldi M, Bonaldi T. The proteomic investigation of chromatin functional domains reveals novel synergisms among distinct heterochromatin components. Mol Cell Proteomics 2013; 12:764-80. [PMID: 23319141 PMCID: PMC3591667 DOI: 10.1074/mcp.m112.024307] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Chromatin is a highly dynamic, well-structured nucleoprotein complex of DNA and proteins that controls virtually all DNA transactions. Chromatin dynamicity is regulated at specific loci by the presence of various associated proteins, histones, post-translational modifications, histone variants, and DNA methylation. Until now the characterization of the proteomic component of chromatin domains has been held back by the challenge of enriching distinguishable, homogeneous regions for subsequent mass spectrometry analysis. Here we describe a modified protocol for chromatin immunoprecipitation combined with quantitative proteomics based on stable isotope labeling by amino acids in cell culture to identify known and novel histone modifications, variants, and complexes that specifically associate with silent and active chromatin domains. Our chromatin proteomics strategy revealed unique functional interactions among various chromatin modifiers, suggesting new regulatory pathways, such as a heterochromatin-specific modulation of DNA damage response involving H2A.X and WICH, both enriched in silent domains. Chromatin proteomics expands the arsenal of tools for deciphering how all the distinct protein components act together to enforce a given region-specific chromatin status.
Collapse
Affiliation(s)
- Monica Soldi
- Department of Experimental Oncology, European Institute of Oncology (IEO), Via Adamello 16, Milan, Italy
| | | |
Collapse
|
12
|
Podgornaya O, Gavrilova E, Stephanova V, Demin S, Komissarov A. Large tandem repeats make up the chromosome bar code: a hypothesis. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2013; 90:1-30. [PMID: 23582200 DOI: 10.1016/b978-0-12-410523-2.00001-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Much of tandem repeats' functional nature in any genome remains enigmatic because there are only few tools available for dissecting and elucidating the functions of repeated DNA. The large tandem repeat arrays (satellite DNA) found in two mouse whole-genome shotgun assemblies were classified into 4 superfamilies, 8 families, and 62 subfamilies. With the simplified variant of chromosome positioning of different tandem repeats, we noticed the nonuniform distribution instead of the positions reported for mouse major and minor satellites. It is visible that each chromosome possesses a kind of unique code made up of different large tandem repeats. The reference genomes allow marking only internal tandem repeats, and even with such a limited data, the colored "bar code" made up of tandem repeats is visible. We suppose that tandem repeats bare the mechanism for chromosomes to recognize the regions to be associated. The associations, initially established via RNA, become fixed by histone modifications (the histone or chromatin code) and specific proteins. In such a way, associations, being at the beginning flexible and regulated, that is, adjustable, appear as irreversible and inheritable in cell generations. Tandem repeat multiformity tunes the developed nuclei 3D pattern by sequential steps of associations. Tandem repeats-based chromosome bar code could be the carrier of the genome structural information; that is, the order of precise tandem repeat association is the DNA morphogenetic program. Tandem repeats are the cores of the distinct 3D structures postulated in "gene gating" hypothesis.
Collapse
|
13
|
Timofeeva OA, Chasovskikh S, Lonskaya I, Tarasova NI, Khavrutskii L, Tarasov SG, Zhang X, Korostyshevskiy VR, Cheema A, Zhang L, Dakshanamurthy S, Brown ML, Dritschilo A. Mechanisms of unphosphorylated STAT3 transcription factor binding to DNA. J Biol Chem 2012; 287:14192-200. [PMID: 22378781 PMCID: PMC3340179 DOI: 10.1074/jbc.m111.323899] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Phosphorylation of signal transducer and activator of transcription 3 (STAT3) on a single tyrosine residue in response to growth factors, cytokines, interferons, and oncogenes activates its dimerization, translocation to the nucleus, binding to the interferon γ (gamma)-activated sequence (GAS) DNA-binding site and activation of transcription of target genes. STAT3 is constitutively phosphorylated in various cancers and drives gene expression from GAS-containing promoters to promote tumorigenesis. Recently, roles for unphosphorylated STAT3 (U-STAT3) have been described in response to cytokine stimulation, in cancers, and in maintenance of heterochromatin stability. However, the mechanisms underlying U-STAT3 binding to DNA has not been fully investigated. Here, we explore STAT3-DNA interactions by atomic force microscopy (AFM) imaging. We observed that U-STAT3 molecules bind to the GAS DNA-binding site as dimers and monomers. In addition, we observed that U-STAT3 binds to AT-rich DNA sequence sites and recognizes specific DNA structures, such as 4-way junctions and DNA nodes, within negatively supercoiled plasmid DNA. These structures are important for chromatin organization and our data suggest a role for U-STAT3 as a chromatin/genome organizer. Unexpectedly, we found that a C-terminal truncated 67.5-kDa STAT3 isoform recognizes single-stranded spacers within cruciform structures that also have a role in chromatin organization and gene expression. This isoform appears to be abundant in the nuclei of cancer cells and, therefore, may have a role in regulation of gene expression. Taken together, our data highlight novel mechanisms by which U-STAT3 binds to DNA and supports U-STAT3 function as a transcriptional activator and a chromatin/genomic organizer.
Collapse
Affiliation(s)
- Olga A Timofeeva
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC 20057, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Sjakste N, Bielskiene K, Bagdoniene L, Labeikyte D, Gutcaits A, Vassetzky Y, Sjakste T. Tightly bound to DNA proteins: Possible universal substrates for intranuclear processes. Gene 2012; 492:54-64. [PMID: 22001404 DOI: 10.1016/j.gene.2011.09.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Revised: 09/08/2011] [Accepted: 09/22/2011] [Indexed: 01/05/2023]
Affiliation(s)
- N Sjakste
- Faculty of Medicine, University of Latvia, Šarlotes 1a, LV1001, Riga, Latvia
| | | | | | | | | | | | | |
Collapse
|
15
|
|
16
|
Sjakste T, Paramonova N, Grislis Z, Trapina I, Kairisa D. Analysis of the single-nucleotide polymorphism in the 5'UTR and part of intron I of the sheep MSTN gene. DNA Cell Biol 2011; 30:433-44. [PMID: 21323579 DOI: 10.1089/dna.2010.1153] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The myostatin (MSTN) gene region encompassing the 5'UTR and part of intron I was sequenced in animals of two herds of Latvian Darkhead sheep to extend data on the ovine MSTN gene polymorphism and to provide information useful for local breed conservation. Two and four polymorphic loci were revealed in the 5'UTR and intron I. Four and five local haplotypes were constructed, respectively. The genotyping data obtained and that previously reported for the same genomic region were combined in one dataset for the haplotype analysis. Recombination events were detected between loci (c.-40, c.-37) in the 5'UTR and (c.373+18, c.373+101) and (c.373+101, c.373+241) in intron I. Single-nucleotide polymorphisms at c.373+249 and c.373+323 appear to be involved in the strong linkage (p < 0.01). Linkage blocks (c.373+241, c.373+243) and (c.373+241, c.373+259) were revealed at nominal (p < 0.05) level of probability. Haplotype-specific patterns of the transcription factor binding sites predicted in silico were constructed to evaluate a putative functional significance of the particular alleles and haplotypes. A nucleotide at c.373+18 was shown to influence the pre-mRNA secondary structure. DNA curvature predicted in silico for allele c.373+101C was proven experimentally. A possible impact of the particular polymorphisms on the transcription and/or splicing efficiency is discussed.
Collapse
Affiliation(s)
- Tatjana Sjakste
- Genomics and Bioinformatics, Institute of Biology of the University of Latvia, Salaspils, Latvia.
| | | | | | | | | |
Collapse
|
17
|
Sjakste N, Bagdoniene L, Gutcaits A, Labeikyte D, Bielskiene K, Trapiņa I, Muižnieks I, Vassetzky Y, Sjakste T. Proteins tightly bound to DNA: new data and old problems. BIOCHEMISTRY (MOSCOW) 2010; 75:1240-51. [PMID: 21166641 DOI: 10.1134/s0006297910100056] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Proteins tightly bound to DNA (TBP) comprise a group of proteins that remain bound to DNA after usual deproteinization procedures such as salting out and treatment with phenol or chloroform. TBP bind to DNA by covalent phosphotriester and noncovalent ionic and hydrogen bonds. Some TBP are conservative, and they are usually covalently bound to DNA. However, the TBP composition is very diverse and significantly different in different tissues and in different organisms. TBP include transcription factors, enzymes of the ubiquitin-proteasome system, phosphatases, protein kinases, serpins, and proteins of retrotransposons. Their distribution within the genome is nonrandom. However, the DNA primary structure or DNA curvatures do not define the affinity of TBP to DNA. But there are repetitive DNA sequences with which TBP interact more often. The TBP distribution within genes and chromosomes depends on a cell's physiological state, differentiation type, and stage of organism development. TBP do not interact with DNA in the sites of its association with nuclear matrix and most likely they are not components of the latter.
Collapse
|
18
|
Kubben N, Voncken JW, Demmers J, Calis C, van Almen G, Pinto Y, Misteli T. Identification of differential protein interactors of lamin A and progerin. Nucleus 2010; 1:513-25. [PMID: 21327095 PMCID: PMC3027055 DOI: 10.4161/nucl.1.6.13512] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 08/30/2010] [Accepted: 09/03/2010] [Indexed: 01/11/2023] Open
Abstract
The nuclear lamina is an interconnected meshwork of intermediate filament proteins underlying the nuclear envelope. The lamina is an important regulator of nuclear structural integrity as well as nuclear processes, including transcription, DNA replication and chromatin remodeling. The major components of the lamina are A- and B-type lamins. Mutations in lamins impair lamina functions and cause a set of highly tissue-specific diseases collectively referred to as laminopathies. The phenotypic diversity amongst laminopathies is hypothesized to be caused by mutations affecting specific protein interactions, possibly in a tissue-specific manner. Current technologies to identify interaction partners of lamin A and its mutants are hampered by the insoluble nature of lamina components. To overcome the limitations of current technologies, we developed and applied a novel, unbiased approach to identify lamin A-interacting proteins. This approach involves expression of the high-affinity OneSTrEP-tag, precipitation of lamin-protein complexes after reversible protein cross-linking and subsequent protein identification by mass spectrometry. We used this approach to identify in mouse embryonic fibroblasts and cardiac myocyte NklTAg cell lines proteins that interact with lamin A and its mutant isoform progerin, which causes the premature aging disorder Hutchinson-Gilford progeria syndrome (HGPS). We identified a total of 313 lamina-interacting proteins, including several novel lamin A interactors, and we characterize a set of 35 proteins which preferentially interact with lamin A or progerin.
Collapse
Affiliation(s)
- Nard Kubben
- Center for Heart Failure Research; Cardiovascular Research Institute Maastricht; Maastricht, The Netherlands
- National Cancer Institute; National Institutes of Health; Bethesda, MD USA
| | - Jan Willem Voncken
- Department of Molecular Genetics; GROW School for Oncology and Developmental Biology; Maastricht, The Netherlands
| | | | - Chantal Calis
- Department of Clinical Genetics; Maastricht University; Maastricht, The Netherlands
| | - Geert van Almen
- Center for Heart Failure Research; Cardiovascular Research Institute Maastricht; Maastricht, The Netherlands
| | - Yigal Pinto
- Heart Failure Research Center; Medical Center; Amsterdam, The Netherlands
| | - Tom Misteli
- National Cancer Institute; National Institutes of Health; Bethesda, MD USA
| |
Collapse
|
19
|
Monti V, Manicardi GC, Mandrioli M. Distribution and molecular composition of heterochromatin in the holocentric chromosomes of the aphid Rhopalosiphum padi (Hemiptera: Aphididae). Genetica 2010; 138:1077-84. [DOI: 10.1007/s10709-010-9493-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Accepted: 08/27/2010] [Indexed: 11/24/2022]
|
20
|
Malyavantham KS, Bhattacharya S, Barbeitos M, Mukherjee L, Xu J, Fackelmayer FO, Berezney R. Identifying functional neighborhoods within the cell nucleus: proximity analysis of early S-phase replicating chromatin domains to sites of transcription, RNA polymerase II, HP1gamma, matrin 3 and SAF-A. J Cell Biochem 2009; 105:391-403. [PMID: 18618731 DOI: 10.1002/jcb.21834] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Higher order chromatin organization in concert with epigenetic regulation is a key process that determines gene expression at the global level. The organization of dynamic chromatin domains and their associated protein factors is intertwined with nuclear function to create higher levels of functional zones within the cell nucleus. As a step towards elucidating the organization and dynamics of these functional zones, we have investigated the spatial proximities among a constellation of functionally related sites that are found within euchromatic regions of the cell nucleus including: HP1gamma, nascent transcript sites (TS), active DNA replicating sites in early S-phase (PCNA) and RNA polymerase II sites. We report close associations among these different sites with proximity values specific for each combination. Analysis of matrin 3 and SAF-A sites demonstrates that these nuclear matrix proteins are highly proximal with the functionally related sites as well as to each other and display closely aligned and overlapping regions following application of the minimal spanning tree (MST) algorithm to visualize higher order network-like patterns. Our findings suggest that multiple factors within the nuclear microenvironment collectively form higher order combinatorial arrays of function. We propose a model for the organization of these functional neighborhoods which takes into account the proximity values of the individual sites and their spatial organization within the nuclear architecture.
Collapse
|
21
|
Abstract
The study of insect satellite DNAs (satDNAs) indicates the evolutionary conservation of certain features despite their sequence heterogeneity. Such features can include total length, monomer length, motifs, particular regions and/or secondary and tertiary structures. satDNAs may act as protein-binding sites, structural domains or sites for epigenetic modifications. The selective constraints in the evolution of satDNAs may be due to the satDNA sequence interaction with specific proteins important in heterochromatin formation and possible a role in controlling gene expression. The transcription of satDNA has been described in vertebrates, invertebrates and plants. In insects, differential satDNA expression has been observed in different cells, developmental stages, sex and caste of the individuals. These transcription differences may suggest their involvement in gene-regulation processes. In addition, the satDNA or its transcripts appear to be involved in heterochromatin formation and in chromatin-elimination processes. The importance of transposable elements to insect satDNA is shown by their presence as a constituent of satDNA in several species of insects (including possible active elements). In addition, they may be involved in the formation of centromeres and telomeres and in the homogenization and expansion of satDNA.
Collapse
Affiliation(s)
- T Palomeque
- Departamento de Biología Experimental, Area de Genética, Universidad de Jaén, Jaén, Spain.
| | | |
Collapse
|
22
|
Enukashvily NI, Donev R, Waisertreiger ISR, Podgornaya OI. Human chromosome 1 satellite 3 DNA is decondensed, demethylated and transcribed in senescent cells and in A431 epithelial carcinoma cells. Cytogenet Genome Res 2007; 118:42-54. [PMID: 17901699 DOI: 10.1159/000106440] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2006] [Accepted: 03/16/2007] [Indexed: 11/19/2022] Open
Abstract
Constitutive heterochromatin mainly consists of different classes of satellite DNAs and is defined as a transcriptionally inactive chromatin that remains compact throughout the cell cycle. The aim of this work was to investigate the level of condensation, methylation and transcriptional status of centromeric (alphoid DNA) and pericentromeric satellites (human satellite 3, HS3) in tissues (lymphocytes, placenta cells) and in cultured primary (MRC5, VH-10, AT2Sp) and malignant (A431) cells. We found that alphoid DNA remained condensed and heavily methylated in all the cell types. The HS3 of chromosome 1 (HS3-1) but not of chromosome 9 (HS3-9) was strongly decondensed and demethylated in A431 cells. The same observation was made for aged embryonic lung (MRC5) and juvenile foreskin (VH-10) fibroblasts obtained at late passages (32(nd) and 23(rd), respectively). Decondensation was also found in ataxia telangiectasia AT2Sp fibroblasts at the 16(th) passage. One of the manifestations of the disease is premature aging. The level of HS3-1 decondensation was higher in aged primary fibroblasts as compared to A431. The HS3-1 extended into the territory of neighbouring chromosomes. An RT-PCR product was detected in A431 and senescent MRC5 fibroblasts using primers specific for HS3-1. The RNA was polyadenylated and transcribed from the reverse chain. Our results demonstrate the involvement of satellite DNA in associations between human chromosomes and intermingling of chromosome territories. The invading satellite DNA can undergo decondensation to a certain level. This process is accompanied by demethylation and transcription.
Collapse
|
23
|
Fiorini A, Gouveia FDS, Fernandez MA. Scaffold/Matrix Attachment Regions and intrinsic DNA curvature. BIOCHEMISTRY (MOSCOW) 2006; 71:481-8. [PMID: 16732725 DOI: 10.1134/s0006297906050038] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recent approaches have failed to detect nucleotide sequence motifs in Scaffold/Matrix Attachment Regions (S/MARs). The lack of any known motifs, together with the confirmation that some S/MARs are not associated to any peculiar sequence, indicates that some structural elements, such as DNA curvature, have a role in chromatin organization and on their efficiency in protein binding. Similar to DNA curvature, S/MARs are located close to promoters, replication origins, and multiple nuclear processes like recombination and breakpoint sites. The chromatin structure in these regulatory regions is important to chromosome organization for accurate regulation of nuclear processes. In this article we review the biological importance of the co-localization between bent DNA sites and S/MARs.
Collapse
Affiliation(s)
- A Fiorini
- Departamento de Biologia Celular e Genética, Universidade Estadual de Maringá Maringá, Paraná 87020-900, Brazil
| | | | | |
Collapse
|
24
|
Platts AE, Quayle AK, Krawetz SA. In-silico prediction and observations of nuclear matrix attachment. Cell Mol Biol Lett 2006; 11:191-213. [PMID: 16847565 PMCID: PMC6276010 DOI: 10.2478/s11658-006-0016-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2005] [Accepted: 02/26/2006] [Indexed: 11/30/2022] Open
Abstract
The nuclear matrix is a functionally adaptive structural framework interior to the nuclear envelope. The nature and function of this nuclear organizer remains the subject of widespread discussion in the epigenetic literature. To draw this discussion together with a view to suggest a way forward we summarize the biochemical evidence for the modalities of DNA-matrix binding alongside the in-silico predictions. Concordance is exhibited at various, but not all levels. On the one hand, both the reiteration and sequence similarity of some elements of Matrix Attachment Regions suggest conservation. On the other hand, in-silico predictions suggest additional unique components. In bringing together biological and sequence evidence we conclude that binding may be hierarchical in nature, reflective of a biological role in replicating, transcribing and potentiating chromatin. Nuclear matrix binding may well be more complex than the widely accepted simple loop model.
Collapse
Affiliation(s)
- Adrian E. Platts
- Department of Obstetrics and Gynecology, University School of Medicine, 253 C.S. Mott Center, 275 E Hancock, Detroit, MI 48201 USA
| | - Amelia K. Quayle
- The Center for Molecular Medicine and Genetics, University School of Medicine, 253 C.S. Mott Center, 275 E Hancock, Detroit, MI 48201 USA
| | - Stephen A. Krawetz
- Department of Obstetrics and Gynecology, University School of Medicine, 253 C.S. Mott Center, 275 E Hancock, Detroit, MI 48201 USA
- The Center for Molecular Medicine and Genetics, University School of Medicine, 253 C.S. Mott Center, 275 E Hancock, Detroit, MI 48201 USA
- Institute for Scientific Computing Wayne State, University School of Medicine, 253 C.S. Mott Center, 275 E Hancock, Detroit, MI 48201 USA
| |
Collapse
|
25
|
Kuznetsova IS, Prusov AN, Enukashvily NI, Podgornaya OI. New types of mouse centromeric satellite DNAs. Chromosome Res 2005; 13:9-25. [PMID: 15791408 DOI: 10.1007/s10577-005-2346-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2004] [Revised: 10/15/2004] [Accepted: 10/15/2004] [Indexed: 11/28/2022]
Abstract
Genomic databases do not contain complete sequences of the centromeric regions. We created a pUC19-based library of DNA fragments from isolated chromocentres of interphase nuclei. In this library we have found major satellite (MaSat) and two new satellite sequences - MS3 and MS4. The computer analysis of MS3 and MS4 sequences by alignment, fragment curved state and search for MAR motifs in comparison with the mouse major and minor satellite (MiSat) DNA has shown them to be new satellite fragments. Southern blot of MS3 and MS4 with total DNA digested by restriction enzymes shows the ladder characteristic of satellite DNA. 2.2% of the total DNA consists of MS3, the monomer of which is 150 bp long. The MS4 monomer is 300 bp long and accounts for 1.6% of the total DNA. On metaphase chromosomes MS3 and MS4 are located at the centromeric region. FISH analysis of L929 nuclei during the cell cycle showed relative positions of MaSat, MiSat, MS3, and MS4. All mapped satDNA fragments except MaSat belong to the outer layer of the chromocentres in the G0/G1 phase. MS3 is likely to be involved in the centromere formation. The mouse genome contains at least four satDNA types: AT-rich (MaSat and MiSat), and CG-rich (MS3 and MS4).
Collapse
Affiliation(s)
- Inna S Kuznetsova
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia
| | | | | | | |
Collapse
|
26
|
Rouleux-Bonnin F, Bigot S, Bigot Y. Structural and transcriptional features of Bombus terrestris satellite DNA and their potential involvement in the differentiation process. Genome 2005; 47:877-88. [PMID: 15499402 DOI: 10.1139/g04-053] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A unique satellite DNA family was characterized in the genome of the bumble bee, Bombus terrestris. Sequence analysis revealed that it contains two wide palindromes of about 160 and 190 bp, respectively, that span 75% of the repeated unit. One feature of this satellite DNA is that it accounts for different amounts of genomic DNA in males and females. The DNA curvature and bendability were determined by migration on PAGE and by computer analysis. It has been correlated with the presence of dA/dT stretches repeated in phase with the helix turn and with the presence of the deformable dinucleotide CA-TG embedded in some of these A-T-rich regions. Transcription of the satellite DNA was also analyzed by Northern blot hybridization and RT-PCR. Multimeric transcripts spanning several satellite DNA units were found in RNA samples from males, workers, and queens. These transcripts resulted from a specific transcription occurring on one DNA strand in the embryos or on both DNA strands in imagoes. The involvement of DNA curvature in the organization of the satellite DNA and the function of the satellite transcripts is discussed.
Collapse
Affiliation(s)
- Florence Rouleux-Bonnin
- Laboratoire d'Etude des Parasites Génétiques (LEPG), UFR des Sciences et Techniques, Université François Rabelais, Parc Grandmont, 37200 Tours, France.
| | | | | |
Collapse
|
27
|
Ciobanu D, Grechko VV, Darevsky IS, Kramerov DA. New satellite DNA in Lacerta s. str. lizards (Sauria: Lacertidae): evolutionary pathways and phylogenetic impact. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2005; 302:505-16. [PMID: 15390352 DOI: 10.1002/jez.b.21014] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A new tandemly repeated (satellite) DNA family namely Agi160, from Lacerta agilis and Lacerta strigata (Lacerta sensu stricto (s. str.), Linnaeus 1758) have been cloned and sequenced. Agi160 is found in the above two species, as well as two other representatives of the same genus, L. viridis and L. media. DNA hybridization did not reveal it in Darevskia, Podarcis, Zootoca, Eremias, Ophisops, and Gallotia - the other genera of the family Lacertidae. The results suggest that Agi160 is a Lacerta s. str. specific family of tandem DNA repeats. However, a comparison between sequences of Agi160 and CLsat repeat units revealed 60 bp regions 62-74% identical. The latter is a satellite DNA family typical for Darevskia (syn. "L. saxicola complex") (Grechko et al., Molecular-genetic classification and phylogenetic relatedness of some species of Lacertidae lizards by taxonoprint data. Mol Biol 32:172-183, 1988.). Both Agi160 and CLsat tandem repeats share several common features (e.g., the same AT content and distribution of multiple short A-T runs, internal structure of repeated units, the presence of conservative regions). These data are indicative of their common origin and a possibly strong selective pressure upon conserving both satellites. A comparative analysis of structure, organization, and abundance of these two families of satDNA reveals evolutionary pathways that led to their formation and divergence. The data are consistent with the hypotheses of the concerted evolution of satellite DNA families. The possibility of use of Agi160 as a phylogenetic tool, defining relationships within Lacerta s. str., as well as within the whole family of Lacertidae is discussed.
Collapse
Affiliation(s)
- Doina Ciobanu
- Engelhardt Institute of Molecular Biology, Russian Academy of Science, 119991, Moscow, Russia.
| | | | | | | |
Collapse
|
28
|
Böhm F, Kappes F, Scholten I, Richter N, Matsuo H, Knippers R, Waldmann T. The SAF-box domain of chromatin protein DEK. Nucleic Acids Res 2005; 33:1101-10. [PMID: 15722484 PMCID: PMC549417 DOI: 10.1093/nar/gki258] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2004] [Revised: 01/31/2005] [Accepted: 01/31/2005] [Indexed: 01/16/2023] Open
Abstract
DEK is an abundant chromatin protein in metazoans reaching copy numbers of several millions/nucleus. Previous work has shown that human DEK, a protein of 375 amino acids, has two functional DNA-binding domains, of which one resides in a central part of the molecule and contains sequences corresponding to the scaffold attachment factor-box (SAF-box) domain as found in a growing number of nuclear proteins. Isolated SAF-box peptides (amino acids 137-187) bind weakly to DNA in solution, but when many SAF-box peptides are brought into close proximity on the surface of Sephadex beads, cooperative effects lead to a high affinity to DNA. Furthermore, a peptide (amino acids 87-187) that includes a sequence on the N-terminal side of the SAF-box binds efficiently to DNA. This peptide prefers four-way junction DNA over straight DNA and induces supercoils in relaxed circular DNA just like the full-length DEK. Interestingly, however, the 87-187 amino acid peptide introduces negative supercoils in contrast to the full-length DEK, which is known to introduce positive supercoils. We found that two adjacent regions (amino acids 68-87 and 187-250) are necessary for the formation of positive supercoils. Our data contribute to the ongoing characterization of the abundant and ubiquitous DEK chromatin protein.
Collapse
Affiliation(s)
- Friederike Böhm
- Department of Biology, University of Konstanz78457 Konstanz, Germany
- Department of Biochemistry, Molecular Biology and Biophysics, University of MinnesotaMinneapolis, MN 55455, USA
| | - Ferdinand Kappes
- Department of Biology, University of Konstanz78457 Konstanz, Germany
- Department of Biochemistry, Molecular Biology and Biophysics, University of MinnesotaMinneapolis, MN 55455, USA
| | - Ingo Scholten
- Department of Biology, University of Konstanz78457 Konstanz, Germany
- Department of Biochemistry, Molecular Biology and Biophysics, University of MinnesotaMinneapolis, MN 55455, USA
| | - Nicole Richter
- Department of Biology, University of Konstanz78457 Konstanz, Germany
- Department of Biochemistry, Molecular Biology and Biophysics, University of MinnesotaMinneapolis, MN 55455, USA
| | - Hiroshi Matsuo
- Department of Biochemistry, Molecular Biology and Biophysics, University of MinnesotaMinneapolis, MN 55455, USA
| | - Rolf Knippers
- Department of Biology, University of Konstanz78457 Konstanz, Germany
- Department of Biochemistry, Molecular Biology and Biophysics, University of MinnesotaMinneapolis, MN 55455, USA
| | - Tanja Waldmann
- To whom correspondence should be addressed at Max Planck Institute for Immunology Stübeweg 51, D-79108 Freiburg, Germany. Tel: +49 761 5108377; Fax: +49 761 5108220;
| |
Collapse
|
29
|
Enukashvily N, Donev R, Sheer D, Podgornaya O. Satellite DNA binding and cellular localisation of RNA helicase P68. J Cell Sci 2005; 118:611-22. [PMID: 15657085 DOI: 10.1242/jcs.01605] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
We purified a 68-kDa protein from the mouse nuclear matrix using ion exchange and affinity chromatography. Column fractions were tested for specific binding to mouse minor satellite DNA using a gel mobility shift assay. The protein was identified by mass spectrometry as RNA helicase P68. In fixed cells, P68 was found to shuttle in and out of SC35 domains, forming fibres and granules in a cell-cycle dependent manner. Analysis of the P68 sequence revealed a short potential coiled-coil domain that might be involved in the formation of P68 fibres. Contacts between centromeres and P68 granules were observed during all phases of the cycle but they were most prominent in mitosis. At this stage, P68 was found in both the centromeric regions and the connections between chromosomes. Direct interaction of P68/DEAD box RNA helicase with satellite DNAs in vitro has not been demonstrated for any other members of the RNA helicase family.
Collapse
Affiliation(s)
- Natella Enukashvily
- Cell Cultures Department, Institute of Cytology, Tikhoretsky, 4, St Petersburg, 194064, Russia.
| | | | | | | |
Collapse
|
30
|
Pons J, Bruvo B, Petitpierre E, Plohl M, Ugarkovic D, Juan C. Complex structural features of satellite DNA sequences in the genus Pimelia (Coleoptera: Tenebrionidae): random differential amplification from a common 'satellite DNA library'. Heredity (Edinb) 2004; 92:418-27. [PMID: 14997181 DOI: 10.1038/sj.hdy.6800436] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The major satellites of the nine species of the subgenera Pimelia s. str. and Amblyptera characterised in this paper are composed of longer monomers (500 and 700 bp) than those described previously in 26 Pimelia s. str. taxa (357 bp, a sequence called PIM357). Sequence analysis reveals partial similarity among these satellites and with the PIM357 monomers. The discrepancy between the phylogeny obtained based on three mitochondrial and two nuclear markers and that deduced from satellite DNA (stDNA) sequences suggests that the different Pimelia satellites were already present in a common ancestor forming what has been called a 'satellite DNA library'. Thus, the satellite profiles in the living species result from a random amplification of sequences from that 'library' during diversification of the species. However, species-specific turnover in the sequences has occurred at different rates. They have included abrupt replacements, a gradual divergence and, in other cases, no apparent change in sequence composition over a considerable evolutionary time. The results also suggest a common evolutionary origin of all these Pimelia satellite sequences, involving several rearrangements. We propose that the repeat unit of about 500 bp has originated from the insertion of a DNA fragment of 141 bp into the PIM357 unit. The 705-bp repeats have originated from a 32-bp direct duplication and the insertion of a 141-bp fragment in inverted orientation relative to a basic structure of 533 bp.
Collapse
Affiliation(s)
- J Pons
- Laboratori de Genètica, Departament de Biologia, Universitat de les Illes Balears, 07122 Palma de Mallorca, Balearic Islands, Spain.
| | | | | | | | | | | |
Collapse
|
31
|
Voronin AP, Lobov IB, Gilson E, Podgornaya OI. A telomere-binding protein (TRF2/MTBP) from mouse nuclear matrix with motives of an intermediate filament-type rod domain. ACTA ACUST UNITED AC 2004; 6:205-18. [PMID: 14987434 DOI: 10.1089/109454503322733054] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In previous work, we identified a telomeric DNA-binding protein (termed telomere-membrane binding protein, MTBP) in the envelope of the frog oocyte nucleus and raised antibodies against it. Here we present immunological evidence which suggests strongly that MTBP is identical with the vertebrate telomeric DNA-binding protein TRF2 (telomere-repeat factor 2). MTBP/TRF2 possesses motif which resembles rod domain characteristic of intermediate filament (IF) proteins as shown by immunological cross-reactivity with characteristic antibodies, as well as amino acid sequence homology. Anti-MTBP antibodies recognised a protein of the same M, as TRF2 in extracts of mouse nuclei and nuclear matrix as shown by ion-exchange chromatography, gel shift assays, and Western blots. This mouse MTBP analogue forms more stable complexes with the vertebrate telomeric DNA fragment (T(2)AG(3))(135) than with the corresponding fragment from Tetrahymena (T(2)G(4))(130). Proteins in each of these complexes are recognised by anti-MTBP antibody. In situ hybridization with the vertebrate telomeric DNA sequence (T(2)AG(3))(135) and immunofluorescence with anti-MTBP antibody had shown earlier that these are co-localised in the nucleus of mouse cells, and here MTBP is shown to be associated with the residual membrane of hepatocyte nuclei using Western blotting and immunofluorescence. Some immunofluorescence signal from MTBP is localized at chromosome extremities on metaphase plates from mouse cell culture, but the main signal is seen in patches scattered around the chromosomes which were identified as remnants of the nuclear envelope by double labelling with antibodies against lamin B. These observations suggest that MTBP/TRF2 is a good candidate for the attachment of telomeres to the nuclear envelope in somatic cells.
Collapse
Affiliation(s)
- Alexey P Voronin
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
| | | | | | | |
Collapse
|
32
|
Podgornaya OI, Voronin AP, Enukashvily NI, Matveev IV, Lobov IB. Structure-specific DNA-binding proteins as the foundation for three-dimensional chromatin organization. INTERNATIONAL REVIEW OF CYTOLOGY 2003; 224:227-96. [PMID: 12722952 DOI: 10.1016/s0074-7696(05)24006-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Any functions of tandem repetitive sequences need proteins that specifically bind to them. Telomere-binding TRF2/MTBP attaches telomeres to the nuclear envelope in interphase due to its rod-domain-like motif. Interphase nuclei organized as a number of sponge-like ruffly round chromosome territories that could be rotated from outside. SAF-A/hnRNP-U and p68-helicase are proteins suitable to do that. Their location in the interchromosome territory space, ATPase domains, and the ability to be bound by satellite DNAs (satDNA) make them part of the wires used to help chromosome territory rotates. In case of active transcription p68-helicase can be involved in the formation of local "gene expression matrices" and due to its satDNA-binding specificity cause the rearrangement of the local chromosome territory. The marks of chromatin rearrangement, which have to be heritable, could be provided by SAF-A/hnRNP-U. During telophase unfolding the proper chromatin arrangement is restored according to these marks. The structural specificity of both proteins to the satDNAs provides a regulative but relatively stable mode of binding. The structural specificity of protein binding could help to find the "magic" centromeric sequence. With future investigations of proteins with the structural specificity of binding during early embryogenesis, when heterochromatin formation goes on, the molecular mechanisms of the "gene gating" hypothesis (Blobel, 1985) will be confirmed.
Collapse
Affiliation(s)
- O I Podgornaya
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia
| | | | | | | | | |
Collapse
|
33
|
Tolstonog GV, Sabasch M, Traub P. Cytoplasmic intermediate filaments are stably associated with nuclear matrices and potentially modulate their DNA-binding function. DNA Cell Biol 2002; 21:213-39. [PMID: 12015898 DOI: 10.1089/10445490252925459] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The tight association of cytoplasmic intermediate filaments (cIFs) with the nucleus and the isolation of crosslinkage products of vimentin with genomic DNA fragments, including nuclear matrix attachment regions (MARs) from proliferating fibroblasts, point to a participation of cIFs in nuclear activities. To test the possibility that cIFs are complementary nuclear matrix elements, the nuclei of a series of cultured cells were subjected to the Li-diiodosalicylate (LIS) extraction protocol developed for the preparation of nuclear matrices and analyzed by immunofluorescence microscopy and immunoblotting with antibodies directed against lamin B and cIF proteins. When nuclei released from hypotonically swollen L929 suspension cells in the presence of digitonin or Triton X-100 were exposed to such strong shearing forces that a considerable number were totally disrupted, a thin, discontinuous layer of vimentin IFs remained tenaciously adhering to still intact nuclei, in apparent coalignment with the nuclear lamina. Even in broken nuclei, the distribution of vimentin followed that of lamin B in areas where the lamina still appeared intact. The same retention of vimentin together with desmin and glial IFs was observed on the nuclei isolated from differentiating C2C12 myoblast and U333 glioma cells, respectively. Nuclei from epithelial cells shed their residual perinuclear IF layers as coherent cytoskeletal ghosts, except for small fractions of vimentin and cytokeratin IFs, which remained in a dot-to cap-like arrangement on the nuclear surface, in apparent codistribution with lamin B. LIS extraction did not bring about a reduction in the cIF protein contents of such nuclei upon their transformation into nuclear matrices. Moreover, in whole mount preparations of mouse embryo fibroblasts, DNA/chromatin emerging from nuclei during LIS extraction mechanically and chemically cleaned the nuclear surface and perinuclear area from loosely anchored cytoplasmic material with the production of broad, IF-free annular spaces, but left substantial fractions of the vimentin IFs in tight association with the nuclear surface. Accordingly, double-immunogold electron microscopy of fixed and permeabilized fibroblasts disclosed a close neighborhood of vimentin IFs and lamin B, with a minimal distance between the nanogold particles of ca. 30 nm. These data indicate an extremely solid interconnection of cIFs with structural elements of the nuclear matrix, and make them, together with their susceptibility to crosslinkage to MARs and other genomic DNA sequences under native conditions, complementary or even integral constituents of the karyoskeleton.
Collapse
|