1
|
Mironova N, Vlassov V. Surveillance of Tumour Development: The Relationship Between Tumour-Associated RNAs and Ribonucleases. Front Pharmacol 2019; 10:1019. [PMID: 31572192 PMCID: PMC6753386 DOI: 10.3389/fphar.2019.01019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 08/09/2019] [Indexed: 12/14/2022] Open
Abstract
Tumour progression is accompanied by rapid cell proliferation, loss of differentiation, the reprogramming of energy metabolism, loss of adhesion, escape of immune surveillance, induction of angiogenesis, and metastasis. Both coding and regulatory RNAs expressed by tumour cells and circulating in the blood are involved in all stages of tumour progression. Among the important tumour-associated RNAs are intracellular coding RNAs that determine the routes of metabolic pathways, cell cycle control, angiogenesis, adhesion, apoptosis and pathways responsible for transformation, and intracellular and extracellular non-coding RNAs involved in regulation of the expression of their proto-oncogenic and oncosuppressing mRNAs. Considering the diversity/variability of biological functions of RNAs, it becomes evident that extracellular RNAs represent important regulators of cell-to-cell communication and intracellular cascades that maintain cell proliferation and differentiation. In connection with the elucidation of such an important role for RNA, a surge in interest in RNA-degrading enzymes has increased. Natural ribonucleases (RNases) participate in various cellular processes including miRNA biogenesis, RNA decay and degradation that has determined their principal role in the sustention of RNA homeostasis in cells. Findings were obtained on the contribution of some endogenous ribonucleases in the maintenance of normal cell RNA homeostasis, which thus prevents cell transformation. These findings directed attention to exogenous ribonucleases as tools to compensate for the malfunction of endogenous ones. Recently a number of proteins with ribonuclease activity were discovered whose intracellular function remains unknown. Thus, the comprehensive investigation of physiological roles of RNases is still required. In this review we focused on the control mechanisms of cell transformation by endogenous ribonucleases, and the possibility of replacing malfunctioning enzymes with exogenous ones.
Collapse
Affiliation(s)
- Nadezhda Mironova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Valentin Vlassov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
2
|
Shang Y. LncRNA THOR acts as a retinoblastoma promoter through enhancing the combination of c-myc mRNA and IGF2BP1 protein. Biomed Pharmacother 2018; 106:1243-1249. [PMID: 30119193 DOI: 10.1016/j.biopha.2018.07.052] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 07/02/2018] [Accepted: 07/07/2018] [Indexed: 02/09/2023] Open
Abstract
Long non-coding RNA (lncRNA) THOR is an extremely conserved lncRNA with specifically expressed in testis while widespreadly exist in human multiple cancer tissues. The high expression of it significantly promotes the occurrence and progression of melanoma, non-small cell lung cancer, osteosarcoma and renal cell carcinoma. However, the expression pattern and effects of lncRNA THOR in the progression of retinoblastoma remain unclear. As a result, this study was conducted to discovery the expression and roles of lncRNA THOR in the malignant phenotype transformation of retinoblastoma cells, as well as its underlying mechanism. Our results demonstrated that lncRNA THOR was over-expressed in the retina tissues from retinoblastoma patients and retinoblastoma Y79 and WERI-Rb1 cell lines. Down-regulation of lncRNA THOR with siRNA significantly repressed cell growth, migration and S phase accumulation, while induced cell apoptosis and G1 phase reduction and reduced the expression of c-myc. Besides, knockdown of c-myc promoted cell apoptosis and suppressed cell proliferation. Furthermore, RNA pull down and PIP assays showed that up-regulation of lncRNA THOR enhanced the combination of IGF2BP1 protein and c-myc RNA. And lncRNA THOR up-regulation obviously increased the tumorigenesis of Y79 cells in vivo. In conclusion, this study makes clear that lncRNA THOR is up-regulated in retinoblastoma, and its over-expression significantly enhances the malignant phenotype transformation of retinoblastoma cells through up-regulating c-myc expression via enhancing its combination with TGF2BP1 protein. Overall, our study illustrates that lncRNA THOR/c-myc molecular cascade might be another potent target for retinoblastoma treatment.
Collapse
Affiliation(s)
- Yamin Shang
- Department of Pediatrics, Huaihe Hospital of Henan University, Kaifeng, 475000, Henan, China.
| |
Collapse
|
3
|
Assessing specific oligonucleotides and small molecule antibiotics for the ability to inhibit the CRD-BP-CD44 RNA interaction. PLoS One 2014; 9:e91585. [PMID: 24622399 PMCID: PMC3951440 DOI: 10.1371/journal.pone.0091585] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 02/12/2014] [Indexed: 11/19/2022] Open
Abstract
Studies on Coding Region Determinant-Binding Protein (CRD-BP) and its orthologs have confirmed their functional role in mRNA stability and localization. CRD-BP is present in extremely low levels in normal adult tissues, but it is over-expressed in many types of aggressive human cancers and in neonatal tissues. Although the exact role of CRD-BP in tumour progression is unclear, cumulative evidence suggests that its ability to physically associate with target mRNAs is an important criterion for its oncogenic role. CRD-BP has high affinity for the 3′UTR of the oncogenic CD44 mRNA and depletion of CRD-BP in cells led to destabilization of CD44 mRNA, decreased CD44 expression, reduced adhesion and disruption of invadopodia formation. Here, we further characterize the CRD-BP-CD44 RNA interaction and assess specific antisense oligonucleotides and small molecule antibiotics for their ability to inhibit the CRD-BP-CD44 RNA interaction. CRD-BP has a high affinity for binding to CD44 RNA nts 2862–3055 with a Kd of 645 nM. Out of ten antisense oligonucleotides spanning nts 2862–3055, only three antisense oligonucleotides (DD4, DD7 and DD10) were effective in competing with CRD-BP for binding to 32P-labeled CD44 RNA. The potency of DD4, DD7 and DD10 in inhibiting the CRD-BP-CD44 RNA interaction in vitro correlated with their ability to specifically reduce the steady-state level of CD44 mRNA in cells. The aminoglycoside antibiotics neomycin, paramomycin, kanamycin and streptomycin effectively inhibited the CRD-BP-CD44 RNA interaction in vitro. Assessing the potential inhibitory effect of aminoglycoside antibiotics including neomycin on the CRD-BP-CD44 mRNA interaction in cells proved difficult, likely due to their propensity to non-specifically bind nucleic acids. Our results have important implications for future studies in finding small molecules and nucleic acid-based inhibitors that interfere with protein-RNA interactions.
Collapse
|
4
|
Insulin-like growth factor 2 mRNA-binding proteins (IGF2BPs): post-transcriptional drivers of cancer progression? Cell Mol Life Sci 2012; 70:2657-75. [PMID: 23069990 PMCID: PMC3708292 DOI: 10.1007/s00018-012-1186-z] [Citation(s) in RCA: 552] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 09/28/2012] [Accepted: 10/01/2012] [Indexed: 12/21/2022]
Abstract
The insulin-like growth factor-2 mRNA-binding proteins 1, 2, and 3 (IGF2BP1, IGF2BP2, IGF2BP3) belong to a conserved family of RNA-binding, oncofetal proteins. Several studies have shown that these proteins act in various important aspects of cell function, such as cell polarization, migration, morphology, metabolism, proliferation and differentiation. In this review, we discuss the IGF2BP family’s role in cancer biology and how this correlates with their proposed functions during embryogenesis. IGF2BPs are mainly expressed in the embryo, in contrast with comparatively lower or negotiable levels in adult tissues. IGF2BP1 and IGF2BP3 have been found to be re-expressed in several aggressive cancer types. Control of IGF2BPs’ expression is not well understood; however, let-7 microRNAs, β-catenin (CTNNB1) and MYC have been proposed to be involved in their regulation. In contrast to many other RNA-binding proteins, IGF2BPs are almost exclusively observed in the cytoplasm where they associate with target mRNAs in cytoplasmic ribonucleoprotein complexes (mRNPs). During development, IGF2BPs are required for proper nerve cell migration and morphological development, presumably involving the control of cytoskeletal remodeling and dynamics, respectively. Likewise, IGF2BPs modulate cell polarization, adhesion and migration in tumor-derived cells. Moreover, they are highly associated with cancer metastasis and the expression of oncogenic factors (KRAS, MYC and MDR1). However, a pro-metastatic role of IGF2BPs remains controversial due to the lack of ‘classical’ in vivo studies. Nonetheless, IGF2BPs could provide valuable targets in cancer treatment with many of their in vivo roles to be fully elucidated.
Collapse
|
5
|
UU/UA dinucleotide frequency reduction in coding regions results in increased mRNA stability and protein expression. Mol Ther 2012; 20:954-9. [PMID: 22434136 PMCID: PMC3345983 DOI: 10.1038/mt.2012.29] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
UU and UA dinucleotides are rare in mammalian genes and may offer natural selection against endoribonuclease-mediated mRNA decay. This study hypothesized that reducing UU and UA (UW) dinucleotides in the mRNA-coding sequence, including the codons and the dicodon boundaries, may promote resistance to mRNA decay, thereby increasing protein production. Indeed, protein expression from UW-reduced coding regions of enhanced green fluorescent protein (EGFP), luciferase, interferon-α, and hepatitis B surface antigen (HBsAg) was higher when compared to the wild-type protein expression. The steady-state level of UW-reduced EGFP mRNA was higher and the mRNA half-life was also longer. Ectopic expression of the endoribonuclease, RNase L, did not reduce the wild type or UW-reduced mRNA. A mutant form of the mRNA decay-promoting protein, tristetraprolin (TTP/ZFP36), which has a point mutation in the zinc-finger domain (C124R), was used. The wild-type EGFP mRNA but not the UW-reduced mRNA responded to the dominant negative action of the C124R ZFP36/TTP mutant. The results indicate the efficacy of the described rational approach to formulate a general scheme for boosting recombinant protein production in mammalian cells.
Collapse
|
6
|
Tomecki R, Dziembowski A. Novel endoribonucleases as central players in various pathways of eukaryotic RNA metabolism. RNA (NEW YORK, N.Y.) 2010; 16:1692-1724. [PMID: 20675404 PMCID: PMC2924532 DOI: 10.1261/rna.2237610] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
For a long time it has been assumed that the decay of RNA in eukaryotes is mainly carried out by exoribonucleases, which is in contrast to bacteria, where endoribonucleases are well documented to initiate RNA degradation. In recent years, several as yet unknown endonucleases have been described, which has changed our view on eukaryotic RNA metabolism. Most importantly, it was shown that the primary eukaryotic 3' --> 5' exonuclease, the exosome complex has the ability to endonucleolytically cleave its physiological RNA substrates, and novel endonucleases involved in both nuclear and cytoplasmic RNA surveillance pathways were discovered concurrently. In addition, endoribonucleases responsible for long-known processing steps in the maturation pathways of various RNA classes were recently identified. Moreover, one of the most intensely studied RNA decay pathways--RNAi--is controlled and stimulated by the action of different endonucleases. Furthermore, endoribonucleolytic cleavages executed by various enzymes are also the hallmark of RNA degradation and processing in plant chloroplasts. Finally, multiple context-specific endoribonucleases control qualitative and/or quantitative changes of selected transcripts under particular conditions in different eukaryotic organisms. The aim of this review is to discuss the impact of all of these discoveries on our current understanding of eukaryotic RNA metabolism.
Collapse
Affiliation(s)
- Rafal Tomecki
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, University of Warsaw, 02-106 Warsaw, Poland
| | | |
Collapse
|
7
|
Barnes T, Kim WC, Mantha AK, Kim SE, Izumi T, Mitra S, Lee CH. Identification of Apurinic/apyrimidinic endonuclease 1 (APE1) as the endoribonuclease that cleaves c-myc mRNA. Nucleic Acids Res 2009; 37:3946-58. [PMID: 19401441 PMCID: PMC2709568 DOI: 10.1093/nar/gkp275] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2009] [Revised: 04/01/2009] [Accepted: 04/13/2009] [Indexed: 11/28/2022] Open
Abstract
Endonucleolytic cleavage of the coding region determinant (CRD) of c-myc mRNA appears to play a critical role in regulating c-myc mRNA turnover. Using (32)P-labeled c-myc CRD RNA as substrate, we have purified and identified two endoribonucleases from rat liver polysomes that are capable of cleaving the transcript in vitro. A 17-kDa enzyme was identified as RNase1. Apurinic/apyrimidinic (AP) DNA endonuclease 1 (APE1) was identified as the 35-kDa endoribonuclease that preferentially cleaves in between UA and CA dinucleotides of c-myc CRD RNA. APE1 was further confirmed to be the 35-kDa endoribonuclease because: (i) the endoribonuclease activity of the purified 35-kDa native enzyme was specifically immuno-depleted with APE1 monoclonal antibody, and (ii) recombinant human APE1 generated identical RNA cleavage patterns as the native liver enzyme. Studies using E96A and H309N mutants of APE1 suggest that the endoribonuclease activity for c-myc CRD RNA shares the same active center with the AP-DNA endonuclease activity. Transient knockdown of APE1 in HeLa cells led to increased steady-state level of c-myc mRNA and its half-life. We conclude that the ability to cleave RNA dinucleotides is a previously unidentified function of APE1 and it can regulate c-myc mRNA level possibly via its endoribonuclease activity.
Collapse
Affiliation(s)
- Tavish Barnes
- Chemistry Program, University of Northern British Columbia, 3333 University Way, Prince George, British Columbia V2N 4Z9, Canada, Sealy Center for Molecular Medicine and Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555 and Health Sciences Center, Louisiana State University, New Orleans, LA 70112, USA
| | - Wan-Cheol Kim
- Chemistry Program, University of Northern British Columbia, 3333 University Way, Prince George, British Columbia V2N 4Z9, Canada, Sealy Center for Molecular Medicine and Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555 and Health Sciences Center, Louisiana State University, New Orleans, LA 70112, USA
| | - Anil K. Mantha
- Chemistry Program, University of Northern British Columbia, 3333 University Way, Prince George, British Columbia V2N 4Z9, Canada, Sealy Center for Molecular Medicine and Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555 and Health Sciences Center, Louisiana State University, New Orleans, LA 70112, USA
| | - Sang-Eun Kim
- Chemistry Program, University of Northern British Columbia, 3333 University Way, Prince George, British Columbia V2N 4Z9, Canada, Sealy Center for Molecular Medicine and Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555 and Health Sciences Center, Louisiana State University, New Orleans, LA 70112, USA
| | - Tadahide Izumi
- Chemistry Program, University of Northern British Columbia, 3333 University Way, Prince George, British Columbia V2N 4Z9, Canada, Sealy Center for Molecular Medicine and Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555 and Health Sciences Center, Louisiana State University, New Orleans, LA 70112, USA
| | - Sankar Mitra
- Chemistry Program, University of Northern British Columbia, 3333 University Way, Prince George, British Columbia V2N 4Z9, Canada, Sealy Center for Molecular Medicine and Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555 and Health Sciences Center, Louisiana State University, New Orleans, LA 70112, USA
| | - Chow H. Lee
- Chemistry Program, University of Northern British Columbia, 3333 University Way, Prince George, British Columbia V2N 4Z9, Canada, Sealy Center for Molecular Medicine and Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555 and Health Sciences Center, Louisiana State University, New Orleans, LA 70112, USA
| |
Collapse
|
8
|
Kim WC, Lee CH. The role of mammalian ribonucleases (RNases) in cancer. Biochim Biophys Acta Rev Cancer 2009; 1796:99-113. [PMID: 19463900 DOI: 10.1016/j.bbcan.2009.05.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2008] [Revised: 05/08/2009] [Accepted: 05/13/2009] [Indexed: 01/01/2023]
Abstract
Ribonucleases (RNases) are a group of enzymes that cleave RNAs at phosphodiester bonds resulting in remarkably diverse biological consequences. This review focuses on mammalian RNases that are capable of, or potentially capable of, cleaving messenger RNA (mRNA) as well as other RNAs in cells and play roles in the development of human cancers. The aims of this review are to provide an overview of the roles of currently known mammalian RNases, and the evidence that associate them as regulators of tumor development. The roles of these RNases as oncoproteins and/or tumor suppressors in influencing cell growth, apoptosis, angiogenesis, and other cellular hallmarks of cancer will be presented and discussed. The RNases under discussion include RNases from the conventional mRNA decay pathways, RNases that are activated under cellular stress, RNases from the miRNA pathway, and RNases with multifunctional activity.
Collapse
Affiliation(s)
- Wan-Cheol Kim
- Chemistry Program, University of Northern British Columbia, 3333 University Way, Prince George, BC, Canada V2N 4Z9
| | | |
Collapse
|
9
|
Weidensdorfer D, Stöhr N, Baude A, Lederer M, Köhn M, Schierhorn A, Buchmeier S, Wahle E, Hüttelmaier S. Control of c-myc mRNA stability by IGF2BP1-associated cytoplasmic RNPs. RNA (NEW YORK, N.Y.) 2009; 15:104-15. [PMID: 19029303 PMCID: PMC2612774 DOI: 10.1261/rna.1175909] [Citation(s) in RCA: 247] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2008] [Accepted: 10/20/2008] [Indexed: 05/18/2023]
Abstract
The RNA-binding protein IGF2BP1 (IGF-II mRNA binding protein 1) stabilizes the c-myc RNA by associating with the Coding Region instability Determinant (CRD). If and how other proteins cooperate with IGF2BP1 in promoting stabilization of the c-myc mRNA via the CRD remained elusive. Here, we identify various RNA-binding proteins that associate with IGF2BP1 in an RNA-dependent fashion. Four of these proteins (HNRNPU, SYNCRIP, YBX1, and DHX9) were essential to ensure stabilization of the c-myc mRNA via the CRD. These factors associate with IGF2BP1 in a CRD-dependent manner, co-distribute with IGF2BP1 in non-polysomal fractions comprising c-myc mRNA, and colocalize with IGF2BP1 in the cytoplasm. A selective shift of relative c-myc mRNA levels to the polysomal fraction is observed upon IGF2BP1 knockdown. These findings suggest that IGF2BP1 in complex with at least four proteins promotes CRD-mediated mRNA stabilization. Complex formation at the CRD presumably limits the transfer of c-myc mRNA to the polysomal fraction and subsequent translation-coupled decay.
Collapse
Affiliation(s)
- Doreen Weidensdorfer
- NBL3-NWG6 ZAMED, Department of Medicine, Martin Luther University Halle-Wittenberg, 06120 Halle, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Bassett T, Harpur B, Poon HY, Kuo KH, Lee CH. Effective stimulation of growth in MCF-7 human breast cancer cells by inhibition of syntaxin18 by external guide sequence and ribonuclease P. Cancer Lett 2008; 272:167-75. [PMID: 18722709 DOI: 10.1016/j.canlet.2008.07.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2008] [Revised: 04/22/2008] [Accepted: 07/10/2008] [Indexed: 10/21/2022]
Abstract
Syntaxin18 (Stx18) is an endoplasmic reticulum (ER)-membrane bound SNARE protein involved in membrane trafficking between the ER and Golgi as well as in phagocytosis. Stx18 has also been shown to physically interact with proteins involved in the cell cycle and apoptosis. These findings suggest the possible role of Stx18 in regulating cell growth. In this study, we used theoretically designed external guide sequence molecule which utilizes RNase P to cleave Stx18 mRNA and down-regulate Stx18 levels in MCF-7 human breast cancer cells. We showed that down-regulation of Stx18 leads to significant enhancement of growth in MCF-7 cells. Consistent with this finding was the observation that over-expression of Stx18 using the CMV promoter led to suppression of cell growth. Over-expressing Stx18 had no effect on c-myc mRNA expression and half-life, suggesting that the mechanism does not involve control at the transcriptional and post-transcriptional level of the c-myc gene. Finally, we showed that Stx18 is over-expressed in clinical human breast cancer. Overall, this study showed that Stx18 plays a role in the growth of human breast cancer cells and provided the basis for further investigation in determining whether it can be used as a prognostic marker and as a molecular target in the treatment of breast cancer.
Collapse
Affiliation(s)
- Tyler Bassett
- Chemistry Program, University of Northern British Columbia, 3333 University Way, Prince George, BC, Canada V2N 4Z9
| | | | | | | | | |
Collapse
|
11
|
Sparanese D, Lee CH. CRD-BP shields c-myc and MDR-1 RNA from endonucleolytic attack by a mammalian endoribonuclease. Nucleic Acids Res 2007; 35:1209-21. [PMID: 17264115 PMCID: PMC1851641 DOI: 10.1093/nar/gkl1148] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The c-myc mRNA coding region determinant-binding protein (CRD-BP) has high affinity for the coding region determinant (CRD) of c-myc mRNA. Such affinity is believed to protect c-myc CRD from endonucleolytic attack. We have recently purified a mammalian endoribonuclease which can cleave within the c-myc CRD in vitro. The availability of this purified endonuclease has made it possible to directly test the interaction between CRD-BP and the endonuclease in regulating c-myc CRD RNA cleavage. In this study, we have identified the coding region of MDR-1 RNA as a new target for CRD-BP. CRD-BP has the same affinity for c-myc CRD nts 1705-1886 and MDR-1 RNA nts 746-962 with K(d) of 500 nM. The concentration-dependent affinity of CRD-BP to these transcripts correlated with the concentration-dependent blocking of endonuclease-mediated cleavage by CRD-BP. In contrast, three other recombinant proteins tested which had no affinity for c-myc CRD did not block endonuclease-mediated cleavage. Finally, we have identified RNA sequences required for CRD-BP binding. These results provide the first direct evidence that CRD-BP can indeed protect c-myc CRD cleavage initiated by an endoribonuclease, and the framework for further investigation into the interactions between CRD-BP, c-myc mRNA, MDR-1 mRNA and the endoribonuclease in cells.
Collapse
Affiliation(s)
| | - Chow H. Lee
- *To whom correspondence should be addressed. Tel: +250 960 5413; Fax: +250 960 5170;
| |
Collapse
|
12
|
Tafech A, Bennett WR, Mills F, Lee CH. Identification of c-myc coding region determinant RNA sequences and structures cleaved by an RNase1-like endoribonuclease. ACTA ACUST UNITED AC 2006; 1769:49-60. [PMID: 17198736 DOI: 10.1016/j.bbaexp.2006.11.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2006] [Revised: 11/14/2006] [Accepted: 11/30/2006] [Indexed: 11/29/2022]
Abstract
The coding region of c-myc mRNA encompassing the coding region determinant (CRD) nucleotides (nts) 1705-1792 is critical in regulating c-myc mRNA stability. This is in part due to the susceptibility of c-myc CRD RNA to attack by an endoribonuclease. We have previously purified and characterized a mammalian endoribonuclease that cleaves c-myc CRD RNA in vitro. This enzyme is tentatively identified as a 35 kDa RNase1-like endonuclease. In an effort to understand the sequence and secondary structure requirements for RNA cleavage by this enzyme, we have determined the secondary structure of the c-myc CRD RNA nts 1705-1792 using RNase probing technique. The secondary structure of c-myc CRD RNA possesses five stems; two of which contain 4 base pairs (stems I and V) and three consisting of 3 base pairs (stems II, III, and IV). Endonucleolytic assays using the c-myc CRD and several c-myc CRD mutants as substrates led to the following conclusions: (i) the enzyme prefers to cleave in between the dinucleotides UA, CA, and UG in single-stranded regions; (ii) the enzyme is more specific towards UA dinucleotides. These properties further distinguish the enzyme from previously described mammalian endonuclease that cleaves c-myc mRNA in vitro.
Collapse
Affiliation(s)
- Alaeddin Tafech
- Chemistry Program, University of Northern British Columbia, 3333 University Way, Prince George, Canada BC V2N 4Z9
| | | | | | | |
Collapse
|