1
|
Faienza MF, Giardinelli S, Annicchiarico A, Chiarito M, Barile B, Corbo F, Brunetti G. Nutraceuticals and Functional Foods: A Comprehensive Review of Their Role in Bone Health. Int J Mol Sci 2024; 25:5873. [PMID: 38892062 PMCID: PMC11172758 DOI: 10.3390/ijms25115873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/16/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
Bone health is the result of a tightly regulated balance between bone modeling and bone remodeling, and alterations of these processes have been observed in several diseases both in adult and pediatric populations. The imbalance in bone remodeling can ultimately lead to osteoporosis, which is most often associated with aging, but contributing factors can already act during the developmental age, when over a third of bone mass is accumulated. The maintenance of an adequate bone mass is influenced by genetic and environmental factors, such as physical activity and diet, and particularly by an adequate intake of calcium and vitamin D. In addition, it has been claimed that the integration of specific nutraceuticals such as resveratrol, anthocyanins, isoflavones, lycopene, curcumin, lutein, and β-carotene and the intake of bioactive compounds from the diet such as honey, tea, dried plums, blueberry, and olive oil can be efficient strategies for bone loss prevention. Nutraceuticals and functional foods are largely used to provide medical or health benefits, but there is an urge to determine which products have adequate clinical evidence and a strong safety profile. The aim of this review is to explore the scientific and clinical evidence of the positive role of nutraceuticals and functional food in bone health, focusing both on molecular mechanisms and on real-world studies.
Collapse
Affiliation(s)
- Maria Felicia Faienza
- Pediatric Unit, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari “A. Moro”, 70124 Bari, Italy; (M.F.F.)
| | - Silvia Giardinelli
- Department of Medical Sciences, Pediatrics, University of Ferrara, 44121 Ferrara, Italy
| | - Alessia Annicchiarico
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, 70125 Bari, Italy; (A.A.); (B.B.)
| | - Mariangela Chiarito
- Pediatric Unit, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari “A. Moro”, 70124 Bari, Italy; (M.F.F.)
| | - Barbara Barile
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, 70125 Bari, Italy; (A.A.); (B.B.)
| | - Filomena Corbo
- Department of Pharmacy-Drug Sciences, University of Bari “A. Moro”, 70125 Bari, Italy;
| | - Giacomina Brunetti
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, 70125 Bari, Italy; (A.A.); (B.B.)
| |
Collapse
|
2
|
Kulczyński B, Sidor A, Brzozowska A, Gramza-Michałowska A. The role of carotenoids in bone health-A narrative review. Nutrition 2024; 119:112306. [PMID: 38211461 DOI: 10.1016/j.nut.2023.112306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/12/2023] [Accepted: 11/21/2023] [Indexed: 01/13/2024]
Abstract
Osteoporosis constitutes a serious challenge for public health. Dietary patterns belong to important, modifiable risk factors of this disease. Therefore, what and in what quantities we consume on a daily basis are extremely relevant. It is commonly known that bone health is positively affected by vitamins (e.g., vitamin D and vitamin K) as well as mineral components (e.g., calcium and magnesium). However, the human diet consists of many other groups of compounds that exhibit a potential antiosteoporotic and supporting bone-building effect. These dietary components include carotenoids. This paper presents a broad review of studies on the influence of particular carotenoids (β-carotene, lutein, zeaxanthin, β-cryptoxanthin, and lycopene) on bones. The paper discusses up-to-date in vitro experiments and research on animal models and presents how the results translate into clinical effect in humans.
Collapse
Affiliation(s)
- Bartosz Kulczyński
- Department of Gastronomy Science and Functional Foods, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Poznań, Poland
| | - Andrzej Sidor
- Department of Gastronomy Science and Functional Foods, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Poznań, Poland
| | - Anna Brzozowska
- Department of Gastronomy Science and Functional Foods, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Poznań, Poland
| | - Anna Gramza-Michałowska
- Department of Gastronomy Science and Functional Foods, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Poznań, Poland.
| |
Collapse
|
3
|
Fawzy El-Sayed KM, Cosgarea R, Sculean A, Doerfer C. Can vitamins improve periodontal wound healing/regeneration? Periodontol 2000 2024; 94:539-602. [PMID: 37592831 DOI: 10.1111/prd.12513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/13/2023] [Accepted: 07/19/2023] [Indexed: 08/19/2023]
Abstract
Periodontitis is a complex inflammatory disorder of the tooth supporting structures, associated with microbial dysbiosis, and linked to a number if systemic conditions. Untreated it can result in an irreversible damage to the periodontal structures and eventually teeth loss. Regeneration of the lost periodontium requires an orchestration of a number of biological events on cellular and molecular level. In this context, a set of vitamins have been advocated, relying their beneficial physiological effects, to endorse the biological regenerative events of the periodontium on cellular and molecular levels. The aim of the present article is to elaborate on the question whether or not vitamins improve wound healing/regeneration, summarizing the current evidence from in vitro, animal and clinical studies, thereby shedding light on the knowledge gap in this field and highlighting future research needs. Although the present review demonstrates the current heterogeneity in the available evidence and knowledge gaps, findings suggest that vitamins, especially A, B, E, and CoQ10, as well as vitamin combinations, could exert positive attributes on the periodontal outcomes in adjunct to surgical or nonsurgical periodontal therapy.
Collapse
Affiliation(s)
- Karim M Fawzy El-Sayed
- Oral Medicine and Periodontology Department, Faculty of Oral and Dental Medicine, Cairo University, Giza, Egypt
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian Albrechts University, Kiel, Germany
| | - Raluca Cosgarea
- Department of Periodontology, Operative and Preventive Dentistry, University of Bonn, Bonn, Germany
- Department of Periodontology and Peri-implant Diseases, Philips University Marburg, Marburg, Germany
- Clinic for Prosthetic Dentistry, University Iuliu-Hatieganu, Cluj-Napoca, Romania
| | - Anton Sculean
- Department of Periodontology, University of Bern, Bern, Switzerland
| | - Christof Doerfer
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian Albrechts University, Kiel, Germany
| |
Collapse
|
4
|
Kurokawa Y, Fujii G, Tomono S, Miyamoto S, Hamoya T, Takahashi M, Narita T, Komiya M, Kobayashi M, Higami Y, Mutoh M. The Radical Scavenger NZ-419 Suppresses Intestinal Polyp Development in Apc-Mutant Mice. J Clin Med 2020; 9:jcm9010270. [PMID: 31963747 PMCID: PMC7019572 DOI: 10.3390/jcm9010270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/14/2020] [Accepted: 01/15/2020] [Indexed: 11/16/2022] Open
Abstract
Colorectal cancer is the fourth leading cause of cancer death worldwide, and it is important to establish effective methods for preventing colorectal cancer. One effective prevention strategy could be the use of antioxidants. However, the role of the direct antioxidative function of antioxidants against carcinogenesis has not been clarified. Thus, we aimed to determine whether the direct removal of reactive oxygen species by a hydroxyl radical scavenger, NZ-419, could inhibit colorectal carcinogenesis. NZ-419 is a creatinine metabolite that has been shown to be safe and to inhibit the progression of chronic kidney disease in rats, and it is now under clinical development. In the present study, we demonstrated that NZ-419 eliminated reactive oxygen species production in HCT116 cells after H2O2 stimulation and suppressed H2O2-induced Nrf2 promoter transcriptional activity. The administration of 500 ppm NZ-419 to Apc-mutant Min mice for 8 weeks resulted in a decrease in the number of polyps in the middle segment of the small intestine to 62.4% of the value in the untreated control (p < 0.05 vs. control group). As expected, NZ-419 treatment affected the levels of reactive carbonyl species, which are oxidative stress markers in the serum of Min mice. Suppression of the mRNA levels of the proliferation-associated factor c-Myc was observed in intestinal polyps of Min mice after NZ-419 treatment, with a weak suppression of epithelial cell proliferation assessed by proliferation cell nuclear antigen (PCNA) staining in the intestinal polyps. This study demonstrated that NZ-419 suppress the development of intestinal polyps in Min mice, suggesting the utility of radical scavenger/antioxidants as a cancer chemopreventive agent.
Collapse
Affiliation(s)
- Yurie Kurokawa
- Epidemiology and Prevention Division, Research Center for Cancer Prevention and Screening, National Cancer Center, Tokyo 104-0045, Japan; (Y.K.); (S.M.); (T.H.); (M.T.); (T.N.); (M.K.)
- Laboratory of Molecular Pathology and Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba 278-8510, Japan; (M.K.); (Y.H.)
| | - Gen Fujii
- Central Radioisotope Division, National Cancer Center Research, Tokyo 104-0045, Japan;
| | - Susumu Tomono
- Department of Microbiology and Immunology, Aichi Medical University, Nagakute, Aichi 480-1195, Japan;
| | - Shingo Miyamoto
- Epidemiology and Prevention Division, Research Center for Cancer Prevention and Screening, National Cancer Center, Tokyo 104-0045, Japan; (Y.K.); (S.M.); (T.H.); (M.T.); (T.N.); (M.K.)
- Department of Cancer Cell Research, Sasaki Institute, Sasaki Foundation, Tokyo 101-0062, Japan
| | - Takahiro Hamoya
- Epidemiology and Prevention Division, Research Center for Cancer Prevention and Screening, National Cancer Center, Tokyo 104-0045, Japan; (Y.K.); (S.M.); (T.H.); (M.T.); (T.N.); (M.K.)
| | - Maiko Takahashi
- Epidemiology and Prevention Division, Research Center for Cancer Prevention and Screening, National Cancer Center, Tokyo 104-0045, Japan; (Y.K.); (S.M.); (T.H.); (M.T.); (T.N.); (M.K.)
| | - Takumi Narita
- Epidemiology and Prevention Division, Research Center for Cancer Prevention and Screening, National Cancer Center, Tokyo 104-0045, Japan; (Y.K.); (S.M.); (T.H.); (M.T.); (T.N.); (M.K.)
| | - Masami Komiya
- Epidemiology and Prevention Division, Research Center for Cancer Prevention and Screening, National Cancer Center, Tokyo 104-0045, Japan; (Y.K.); (S.M.); (T.H.); (M.T.); (T.N.); (M.K.)
| | - Masaki Kobayashi
- Laboratory of Molecular Pathology and Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba 278-8510, Japan; (M.K.); (Y.H.)
- Translational Research Center, Research Institute of Science and Technology, Tokyo University of Science, Chiba 278-8510, Japan
| | - Yoshikazu Higami
- Laboratory of Molecular Pathology and Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba 278-8510, Japan; (M.K.); (Y.H.)
- Translational Research Center, Research Institute of Science and Technology, Tokyo University of Science, Chiba 278-8510, Japan
| | - Michihiro Mutoh
- Epidemiology and Prevention Division, Research Center for Cancer Prevention and Screening, National Cancer Center, Tokyo 104-0045, Japan; (Y.K.); (S.M.); (T.H.); (M.T.); (T.N.); (M.K.)
- Translational Research Center, Research Institute of Science and Technology, Tokyo University of Science, Chiba 278-8510, Japan
- Division of Carcinogenesis and Cancer Prevention, National Cancer Center Research Institute, Tokyo 104-0045, Japan
- Correspondence: ; Tel.: +81-03-3542-2511 (ext. 3337)
| |
Collapse
|
5
|
Oliveira GR, Vargas-Sanchez PK, Fernandes RR, Ricoldi MST, Semeghini MS, Pitol DL, de Sousa LG, Siessere S, Bombonato-Prado KF. Lycopene influences osteoblast functional activity and prevents femur bone loss in female rats submitted to an experimental model of osteoporosis. J Bone Miner Metab 2019; 37:658-667. [PMID: 30357566 DOI: 10.1007/s00774-018-0970-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 10/12/2018] [Indexed: 12/26/2022]
Abstract
Antioxidant properties of several nutrients may influence bone metabolism, affording protection against damaging effects caused by oxidative stress. Thus, we hypothesized that lycopene may benefit bone tissue metabolism and functional activity of osteoblastic cells from bone marrow of osteoporotic female rats. Wistar rats were ovariectomized and paired with sham animals. In vitro evaluations were performed after 60 days of surgery, when cells were cultured in osteogenic medium and divided in control (C), ovariectomized (OVX) and ovariectomized + 1 μmol/L lycopene (OVXL) groups. Besides, in vivo studies were carried out to evaluate femur bone remodeling by histological and histomorphometric analyses after daily intake of 10 mg/kg of lycopene for 30 and 60 days after ovariectomy. Cell proliferation was significantly higher in OVX and OVXL groups after 10 days of culture. Alkaline phosphatase activity (ALP) was higher in OVXL group in later periods of cell culture, whereas its in situ detection was higher for this group in all experimental periods; nevertheless, mineralization did not show significant differences among the groups. There was a significant upregulation of genes Sp7, Runx2 and Bsp after 3 days and genes Runx2 and Bglap after 10 days from OVXL when compared to OVX. In vivo results demonstrated that daily intake of 10 mg/kg of lycopene for 60 days decreased bone loss in femur epiphysis in ovariectomized rats by maintaining trabecular bone similar to controls. Data obtained suggest that lycopene might benefit the functional activity of osteoblastic cells from ovariectomized rats, as well as avoid further bone resorption.
Collapse
Affiliation(s)
- Gustavo Ribeiro Oliveira
- Cell Culture Laboratory, Department of Morphology, Physiology and Basic Pathology, School of Dentistry of Ribeirão Preto, University of São Paulo, Avenida do Café s/n, Ribeirão Preto, SP, 14040-904, Brazil
| | - Paula Katherine Vargas-Sanchez
- Cell Culture Laboratory, Department of Morphology, Physiology and Basic Pathology, School of Dentistry of Ribeirão Preto, University of São Paulo, Avenida do Café s/n, Ribeirão Preto, SP, 14040-904, Brazil
| | - Roger Rodrigo Fernandes
- Cell Culture Laboratory, Department of Morphology, Physiology and Basic Pathology, School of Dentistry of Ribeirão Preto, University of São Paulo, Avenida do Café s/n, Ribeirão Preto, SP, 14040-904, Brazil
| | - Milla Sprone Tavares Ricoldi
- Cell Culture Laboratory, Department of Morphology, Physiology and Basic Pathology, School of Dentistry of Ribeirão Preto, University of São Paulo, Avenida do Café s/n, Ribeirão Preto, SP, 14040-904, Brazil
| | - Mayara Sgarbi Semeghini
- Cell Culture Laboratory, Department of Morphology, Physiology and Basic Pathology, School of Dentistry of Ribeirão Preto, University of São Paulo, Avenida do Café s/n, Ribeirão Preto, SP, 14040-904, Brazil
| | - Dimitrius Leonardo Pitol
- Cell Culture Laboratory, Department of Morphology, Physiology and Basic Pathology, School of Dentistry of Ribeirão Preto, University of São Paulo, Avenida do Café s/n, Ribeirão Preto, SP, 14040-904, Brazil
| | - Luiz Gustavo de Sousa
- Cell Culture Laboratory, Department of Morphology, Physiology and Basic Pathology, School of Dentistry of Ribeirão Preto, University of São Paulo, Avenida do Café s/n, Ribeirão Preto, SP, 14040-904, Brazil
| | - Selma Siessere
- Cell Culture Laboratory, Department of Morphology, Physiology and Basic Pathology, School of Dentistry of Ribeirão Preto, University of São Paulo, Avenida do Café s/n, Ribeirão Preto, SP, 14040-904, Brazil
| | - Karina Fittipaldi Bombonato-Prado
- Cell Culture Laboratory, Department of Morphology, Physiology and Basic Pathology, School of Dentistry of Ribeirão Preto, University of São Paulo, Avenida do Café s/n, Ribeirão Preto, SP, 14040-904, Brazil.
| |
Collapse
|
6
|
Hirata N, Ichimaru R, Tominari T, Matsumoto C, Watanabe K, Taniguchi K, Hirata M, Ma S, Suzuki K, Grundler FMW, Miyaura C, Inada M. Beta-Cryptoxanthin Inhibits Lipopolysaccharide-Induced Osteoclast Differentiation and Bone Resorption via the Suppression of Inhibitor of NF-κB Kinase Activity. Nutrients 2019; 11:nu11020368. [PMID: 30744180 PMCID: PMC6412436 DOI: 10.3390/nu11020368] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 01/31/2019] [Accepted: 02/04/2019] [Indexed: 11/16/2022] Open
Abstract
Beta-cryptoxanthin (β-cry) is a typical carotenoid found abundantly in fruit and vegetables such as the Japanese mandarin orange, persimmon, papaya, paprika, and carrot, and exerts various biological activities (e.g., antioxidant effects). We previously reported that β-cry suppressed lipopolysaccharide (LPS)-induced osteoclast differentiation via the inhibition of prostaglandin (PG) E₂ production in gingival fibroblasts and restored the alveolar bone loss in a mouse model for periodontitis in vivo. In this study, we investigated the molecular mechanism underlying the inhibitory effects of β-cry on osteoclast differentiation. In mouse calvarial organ cultures, LPS-induced bone resorption was suppressed by β-cry. In osteoblasts, β-cry inhibited PGE₂ production via the downregulation of the LPS-induced mRNA expression of cyclooxygenase (COX)-2 and membrane-bound PGE synthase (mPGES)-1, which are PGE synthesis-related enzymes, leading to the suppression of receptor activator of NF-κB ligand (RANKL) mRNA transcriptional activation. In an in vitro assay, β-cry directly suppressed the activity of the inhibitor of NF-κB kinase (IKK) β, and adding ATP canceled this IKKβ inhibition. Molecular docking simulation further suggested that β-cry binds to the ATP-binding pocket of IKKβ. In Raw264.7 cells, β-cry suppressed RANKL-mediated osteoclastogenesis. The molecular mechanism underlying the involvement of β-cry in LPS-induced bone resorption may involve the ATP-competing inhibition of IKK activity, resulting in the suppression of NF-κB signaling.
Collapse
Affiliation(s)
- Narumi Hirata
- Cooperative Major of Advanced Health Science, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan.
| | - Ryota Ichimaru
- Cooperative Major of Advanced Health Science, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan.
| | - Tsukasa Tominari
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan.
| | - Chiho Matsumoto
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan.
| | - Kenta Watanabe
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan.
| | - Keita Taniguchi
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan.
| | - Michiko Hirata
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan.
| | - Sihui Ma
- Graduate School of Sport Sciences, Waseda University, 2-579-15 Mikajima Tokorozawa-shi, Tokyo 359-1192, Japan.
| | - Katsuhiko Suzuki
- Faculty of Sport Sciences, Waseda University, 2-579-15 Mikajima Tokorozawa-shi, Tokyo 359-1192, Japan.
| | - Florian M W Grundler
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan.
- Institute of Crop Science and Resource Conservation, University of Bonn, Karlrobert-Kreiten-Strasse 13, 53115 Bonn, Germany.
| | - Chisato Miyaura
- Cooperative Major of Advanced Health Science, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan.
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan.
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan.
| | - Masaki Inada
- Cooperative Major of Advanced Health Science, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan.
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan.
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan.
| |
Collapse
|
7
|
Burri BJ, La Frano MR, Zhu C. Absorption, metabolism, and functions of β-cryptoxanthin. Nutr Rev 2016; 74:69-82. [PMID: 26747887 PMCID: PMC4892306 DOI: 10.1093/nutrit/nuv064] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 05/31/2015] [Accepted: 06/13/2015] [Indexed: 02/07/2023] Open
Abstract
β-Cryptoxanthin, a carotenoid found in fruits and vegetables such as tangerines, red peppers, and pumpkin, has several functions important for human health. Most evidence from observational, in vitro, animal model, and human studies suggests that β-cryptoxanthin has relatively high bioavailability from its common food sources, to the extent that some β-cryptoxanthin-rich foods might be equivalent to β-carotene-rich foods as sources of retinol. β-Cryptoxanthin is an antioxidant in vitro and appears to be associated with decreased risk of some cancers and degenerative diseases. In addition, many in vitro, animal model, and human studies suggest that β-cryptoxanthin-rich foods may have an anabolic effect on bone and, thus, may help delay osteoporosis.
Collapse
Affiliation(s)
- Betty J Burri
- B.J. Burri, M.R. La Frano, and C. Zhu are with the Western Human Nutrition Research Center, US Department of Agriculture/Agricultural Research Service, Department of Nutrition, University of California, Davis, California, USA.
| | - Michael R La Frano
- B.J. Burri, M.R. La Frano, and C. Zhu are with the Western Human Nutrition Research Center, US Department of Agriculture/Agricultural Research Service, Department of Nutrition, University of California, Davis, California, USA
| | - Chenghao Zhu
- B.J. Burri, M.R. La Frano, and C. Zhu are with the Western Human Nutrition Research Center, US Department of Agriculture/Agricultural Research Service, Department of Nutrition, University of California, Davis, California, USA
| |
Collapse
|
8
|
Terasaki M, Mutoh M, Fujii G, Takahashi M, Ishigamori R, Masuda S. Potential ability of xanthophylls to prevent obesity-associated cancer. World J Pharmacol 2014; 3:140-152. [DOI: 10.5497/wjp.v3.i4.140] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 10/02/2014] [Accepted: 11/03/2014] [Indexed: 02/06/2023] Open
Abstract
Obesity-associated cancers, including colon cancer and breast cancer, are increasing in Asian countries with Westernized lifestyles as exemplified by reduced physical activity and increased fat/sugar consumption. An excessive accumulation of visceral adipose tissue causes insulin resistance, dyslipidemia and adipocytokine imbalance, and these factors are suggested to be involved in cancer promotion. To prevent obesity-associated cancers, researcher attention is increasing on the so-called “functional foods”. In addition, new approaches to cancer control are in high demand, and using “functional foods” as supplemental or adjuvant agents in chemotherapy is thought to be a promising approach. One of these functional ingredients is xanthophylls, which are natural fat-soluble pigments found in fruits, vegetables, algae and other plants. Xanthophylls belong to the carotenoid class and have structures containing oxygen. Some studies have revealed that xanthophylls improve the inflammation status, serum triglyceride levels, blood pressure levels and liver function test values. Furthermore, recent studies show that xanthophylls possess high anti-cancer, anti-diabetic, anti-obesity and anti-oxidant properties. In this review, we highlight the recent findings for five xanthophylls, namely astaxanthin, β-cryptoxanthin, fucoxanthin, neoxanthin and zeaxanthin/lutein, and their relevance to cancer prevention.
Collapse
|
9
|
Lo KWH, Ashe KM, Kan HM, Laurencin CT. The role of small molecules in musculoskeletal regeneration. Regen Med 2013; 7:535-49. [PMID: 22817627 DOI: 10.2217/rme.12.33] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The uses of bone morphogenetic proteins and parathyroid hormone therapeutics are fraught with several fundamental problems, such as cost, protein stability, immunogenicity, contamination and supraphysiological dosage. These downsides may effectively limit their more universal use. Therefore, there is a clear need for alternative forms of biofactors to obviate the drawbacks of protein-based inductive factors for bone repair and regeneration. Our group has studied small molecules with the capacity to regulate osteoblast differentiation and mineralization because their inherent physical properties minimize limitations observed in protein growth factors. For instance, in general, small molecule inducers are usually more stable, highly soluble, nonimmunogenic, more affordable and require lower dosages. Small molecules with the ability to induce osteoblastic differentiation may represent the next generation of bone regenerative medicine. This review describes efforts to develop small molecule-based biofactors for induction, paying specific attention to their novel roles in bone regeneration.
Collapse
Affiliation(s)
- Kevin W-H Lo
- Institute for Regenerative Engineering, University of Connecticut Health Center, School of Medicine, Farmington, CT 06030, USA
| | | | | | | |
Collapse
|
10
|
Nishigaki M, Yamamoto T, Ichioka H, Honjo KI, Yamamoto K, Oseko F, Kita M, Mazda O, Kanamura N. β-cryptoxanthin regulates bone resorption related-cytokine production in human periodontal ligament cells. Arch Oral Biol 2013; 58:880-6. [PMID: 23452546 DOI: 10.1016/j.archoralbio.2013.01.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 01/10/2013] [Accepted: 01/11/2013] [Indexed: 10/27/2022]
Abstract
OBJECTIVE β-cryptoxanthin (β-cry) is a type of carotenoid found in certain fruits and vegetables. Although it has been shown that β-cry inhibits alveolar bone resorption, the molecular mechanisms for this have not yet been clarified. In the present study, we investigated the effects of β-cry on bone resorption related-cytokine production in human periodontal ligament (hPDL) cells. DESIGN hPDL cells were stimulated with β-cry (1×10(-7)mol/l), mechanical stress (1 or 6MPa), and P. gingivalis. The production of interleukin (IL)-1β, IL-6, IL-8, tumour necrosis factor (TNF)-α, osteoprotegerin (OPG), and receptor activator of nuclear factor kappa-B ligand (RANKL) were analyzed by RT-PCR and ELISA. RESULTS The production of IL-1β, IL-6, IL-8, and TNF-α was not induced in hPDL cells after stimulation with β-cry, although these cytokines were produced after stimulation with P. gingivalis. On the other hand, IL-6 and IL-8 were produced after exposure to 6MPa of mechanical stress. The production of IL-6 and IL-8 was significantly decreased by the addition of β-cry. Furthermore, β-cry up-regulated the production of OPG, but not RANKL. CONCLUSION β-cry inhibited the production of IL-6 and IL-8 induced by mechanical stress and periodontopathogenic bacteria in hPDL cells. Moreover, β-cry up-regulated OPG production. These results suggest that β-cry may prevent bone resorption in periodontitis.
Collapse
Affiliation(s)
- Masaru Nishigaki
- Department of Dental Medicine, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
Bone homeostasis is maintained through a balance between osteoblastic bone formation and osteoclastic bone resorption. Aging induces bone loss due to decreased osteoblastic bone formation and increased osteoclastic bone resorption. Osteoporosis with its accompanying decrease in bone mass is widely recognized as a major public health problem. Nutritional factors may play a role in the prevention of bone loss with aging. Among various carotenoids (carotene and xanthophylls including beta (β)-cryptoxanthin, lutein, lycopene, β-carotene, astaxanthin, and rutin), β-cryptoxanthin, which is abundant in Satsuma mandarin orange (Citrus unshiu MARC.), has been found to have a stimulatory effect on bone calcification in vitro. β-cryptoxanthin has stimulatory effects on osteoblastic bone formation and inhibitory effects on osteoclastic bone resorption in vitro, thereby increasing bone mass. β-cryptoxanthin has an effect on the gene expression of various proteins that are related osteoblastic bone formation and osteoclastic bone resororption in vitro. The intake of β-cryptoxanthin may have a preventive effect on bone loss in animal models for osteoporosis and in healthy human or postmenopausal women. Epidemiological studies suggest a potential role of β-cryptoxanthin as a sustainable nutritional approach to improving bone health of human subjects. β-Cryptoxanthin may be an osteogenic factor in preventing osteoporosis in human subjects.
Collapse
Affiliation(s)
- Masayoshi Yamaguchi
- Department of Foods and Nutrition, The University of Georgia, Athens, GA 30602-2771, USA.
| |
Collapse
|
12
|
Linden GJ, McClean KM, Woodside JV, Patterson CC, Evans A, Young IS, Kee F. Antioxidants and periodontitis in 60-70-year-old men. J Clin Periodontol 2009; 36:843-9. [DOI: 10.1111/j.1600-051x.2009.01468.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
13
|
Yamaguchi M. .BETA.-Cryptoxanthin and Bone Metabolism: The Preventive Role in Osteoporosis. ACTA ACUST UNITED AC 2008. [DOI: 10.1248/jhs.54.356] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Masayoshi Yamaguchi
- Division of Endocrinology and Metabolism and Lipids, Department of Medicine, Emory University School of Medicine
| |
Collapse
|
14
|
Abstract
Antiresorptive agents have proven to be effective therapies for the treatment of bone diseases associated with excessive osteoclast activity. Decreased osteoclast formation, inhibition of osteoclast actions, and reduced osteoclast survival represent mechanisms by which antiresorptive agents could act. The goals of this article are to present the evidence that antiresorptive agents can decrease osteoclast survival through apoptosis, to review the mechanisms by which they are thought to activate the apoptotic process, and to consider whether the actions on apoptosis fully account for the antiresorptive effects. As background, the apoptotic process will be briefly summarized together with the evidence that factors that promote osteoclast survival affect steps in the process. Following this, therapeutic agents that are both antiresorptive and can stimulate osteoclast apoptosis will be discussed. Other bone therapeutic agents that are either antiresorptive or apoptotic, but not both, will be described. Finally, newer antiresorptive compounds that elicit apoptosis and could represent potential therapeutic agents will be noted.
Collapse
Affiliation(s)
- Paula H Stern
- Department of Molecular Pharmacology and Biological Chemistry, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA.
| |
Collapse
|
15
|
Uchiyama S, Yamaguchi M. Anabolic effect of beta-cryptoxanthin in osteoblastic MC3T3-E1 cells is enhanced with 17beta-estradiol, genistein, or zinc sulfate in vitro: the unique effect with zinc on Runx2 and alpha1(I) collagen mRNA expressions. Mol Cell Biochem 2007; 307:209-19. [PMID: 17899321 DOI: 10.1007/s11010-007-9600-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2007] [Accepted: 08/23/2007] [Indexed: 11/29/2022]
Abstract
Whether the anabolic effect of beta-cryptoxanthin (CRP), a kind of carotenoid, on osteoblastic MC3T3-E1 cells are modulated in the presence of various hormones or nutrient factors were investigated. Cells were cultured for 72 h in a minimum essential medium containing 10% fetal bovine serum (FBS), and the cells with subconfluency were changed to a medium containing either vehicle or CRP (10(-8)-10(-6) M) in the presence or absence of various factors without FBS. Cells were cultured for 72 h. Protein content or alkaline phosphatase activity in osteoblastic cells were significantly increased after culture with CRP (10(-7) or 10(-6) M), 1,25-dihydroxyvitamin D(3) (VD(3); 10(-9) or 10(-8) M), 17beta-estradiol (E(2); 10(-9) M), genistein (10(-7) or 10(-6) M), or menaquinone-7 (MK-7; 10(-7) or 10(-6) M). The effect of CRP (10(-6) M) in increasing protein content in the cells was significantly enhanced in the presence of E(2) (10(-9) M) or genistein (10(-6) M). Gene expression in osteoblastic cells was determined using reverse transcription-polymerase chain reaction (RT-PCR). Culture with CRP (10(-7) or 10(-6) M) caused a significant increase in the expression of Runx2 and alkaline phosphatase mRNAs in the cells. Runx2 mRNA expression was significantly increased after culture with E(2) (10(-9) M) or MK-7 (10(-7) or 10(-6) M), but not VD(3) (10(-9) or 10(-8) M) or genistein (10(-7) or 10(-6) M). Alkaline phosphatase mRNA expression was significantly increased after culture with VD(3) (10(-9) or 10(-8) M), genistein (10(-7) or 10(-6) M), or MK-7 (10(-7) or 10(-6) M), but not E(2) (10(-10) or 10(-9) M). The effect of CRP (10(-7) or 10(-6) M) in increasing Runx2 or alkaline phosphatase mRNA expressions in the cells was not enhanced in the presence of VD(3), E(2), genistein, or MK-7. Culture with zinc sulfate (zinc; 10(-5) M) caused a significant increase in protein content or alkaline phosphatase activity in osteoblastic cells. The effect of CRP (10(-7) M) in increasing protein content or alkaline phosphatase activity in the cells was not significantly enhanced in the presence of zinc (10(-5) M). Culture with zinc (10(-5) M) caused a significant increase in alpha1(I) collagen mRNA expression, while it did not have a significant effect on Runx2 or osteocalcin mRNA expressions in the cells. The effect of CRP (10(-7) M) in increasing Runx2 or alpha1(I) collagen mRNA expressions was significantly enhanced in the presence of zinc (10(-6 )or 10(-5) M). Such an effect was not seen in the presence of cycloheximide (10(-7) M), an inhibitor of protein synthesis, or 5,6-dichloro-1-beta-D: -ribofuranosyl-benzimidazole (DRB; 10(-6) M), an inhibitor of transcriptional activity. This study demonstrates that the stimulatory effect of CRP on protein content in osteoblastic cells was additively enhanced with E(2) or genistein, and that the stimulatory effect of CRP on Runx2 or alpha1(I) collagen mRNA expressions was enhanced in the presence of zinc. Thus, the anabolic effect of CRP in osteoblastic MC3T3-E1 cells was modulated with a specific factor.
Collapse
Affiliation(s)
- Satoshi Uchiyama
- Laboratory of Endocrinology and Molecular Metabolism, Graduate School of Nutritional Sciences, University of Shizuoka, Shizuoka, Japan
| | | |
Collapse
|
16
|
Yamaguchi M, Uchiyama S, Nakagawa T. Anabolic Effects of Bee Pollen Cistus ladaniferus Extract in Osteoblastic MC3T3-E1 Cells In Vitro. ACTA ACUST UNITED AC 2007. [DOI: 10.1248/jhs.53.625] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Masayoshi Yamaguchi
- Laboratory of Endocrinology and Molecular Metabolism, Graduate School of Nutritional Sciences, University of Shizuoka
| | - Satoshi Uchiyama
- Laboratory of Endocrinology and Molecular Metabolism, Graduate School of Nutritional Sciences, University of Shizuoka
| | - Taeko Nakagawa
- Laboratory of Endocrinology and Molecular Metabolism, Graduate School of Nutritional Sciences, University of Shizuoka
| |
Collapse
|
17
|
Yamaguchi M. Regulatory mechanism of food factors in bone metabolism and prevention of osteoporosis. YAKUGAKU ZASSHI 2006; 126:1117-37. [PMID: 17077614 DOI: 10.1248/yakushi.126.1117] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Aging induces a decrease in bone mass, and osteoporosis with its accompanying decrease in bone mass is widely recognized as a major public health problem. Bone loss with increasing age may be due to decreased bone formation and increased bone resorption. Pharmacologic and nutritional factors may prevent bone loss with aging, although chemical compounds in food and plants which act on bone metabolism are poorly understood. We have found that isoflavones (including genistein and daidzein), which are contained in soybeans, have a stimulatory effect on osteoblastic bone formation and an inhibitory effect on osteoclastic bone resorption, thereby increasing bone mass. Menaquinone-7, an analogue of vitamin K(2) which is abundant in fermented soybeans, has been demonstrated to stimulate osteoblastic bone formation and to inhibit osteoclastic bone resorption. Of various carotenoids, beta-cryptoxanthin, which is abundant in Satsuma mandarin (Citrus unchiu MARC), has a stimulatory effect on osteoblastic bone formation and an inhibitory effect on osteoclastic bone resorption. The supplementation of these factors has a preventive effect on bone loss induced by ovariectomy in rats, which are an animal model of osteoporosis, and their intake has been shown to have a stimulatory effect on bone mass in humans. Factors with an anabolic effect on bone metabolism were found in extracts obtained from wasabi leafstalk (Wasabi japonica MATSUM), the marine alga Sargassum horneri, and bee pollen Cistus ladaniferus. Phytocomponent p-hydroxycinnamic acid was also found to have an anabolic effect on bone metabolism. Food chemical factors thus play a role in bone health and may be important in the prevention of bone loss with increasing age.
Collapse
Affiliation(s)
- Masayoshi Yamaguchi
- Laboratory of Endocrinology and Molecular Metabolism, Graduate School of Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka City 422-8526, Japan.
| |
Collapse
|
18
|
Yamaguchi M, Igarashi A, Uchiyama S, Sugawara K, Sumida T, Morita S, Ogawa H, Nishitani M, Kajimoto Y. Effect of .BETA.-Crytoxanthin on Circulating Bone Metabolic Markers: Intake of Juice (Citrus Unshiu) Supplemented with .BETA.-Cryptoxanthin Has an Effect in Menopausal Women. ACTA ACUST UNITED AC 2006. [DOI: 10.1248/jhs.52.758] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Masayoshi Yamaguchi
- Laboratory of Endocrinology and Molecular Metabolism, Graduate School of Nutritional Sciences, University of Shizuoka
| | - Aki Igarashi
- Laboratory of Endocrinology and Molecular Metabolism, Graduate School of Nutritional Sciences, University of Shizuoka
| | - Satoshi Uchiyama
- Laboratory of Endocrinology and Molecular Metabolism, Graduate School of Nutritional Sciences, University of Shizuoka
| | | | | | | | | | | | | |
Collapse
|