1
|
van den Akker GGH, Zacchini F, Housmans BAC, van der Vloet L, Caron MMJ, Montanaro L, Welting TJM. Current Practice in Bicistronic IRES Reporter Use: A Systematic Review. Int J Mol Sci 2021; 22:5193. [PMID: 34068921 PMCID: PMC8156625 DOI: 10.3390/ijms22105193] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/05/2021] [Accepted: 05/12/2021] [Indexed: 12/26/2022] Open
Abstract
Bicistronic reporter assays have been instrumental for transgene expression, understanding of internal ribosomal entry site (IRES) translation, and identification of novel cap-independent translational elements (CITE). We observed a large methodological variability in the use of bicistronic reporter assays and data presentation or normalization procedures. Therefore, we systematically searched the literature for bicistronic IRES reporter studies and analyzed methodological details, data visualization, and normalization procedures. Two hundred fifty-seven publications were identified using our search strategy (published 1994-2020). Experimental studies on eukaryotic adherent cell systems and the cell-free translation assay were included for further analysis. We evaluated the following methodological details for 176 full text articles: the bicistronic reporter design, the cell line or type, transfection methods, and time point of analyses post-transfection. For the cell-free translation assay, we focused on methods of in vitro transcription, type of translation lysate, and incubation times and assay temperature. Data can be presented in multiple ways: raw data from individual cistrons, a ratio of the two, or fold changes thereof. In addition, many different control experiments have been suggested when studying IRES-mediated translation. In addition, many different normalization and control experiments have been suggested when studying IRES-mediated translation. Therefore, we also categorized and summarized their use. Our unbiased analyses provide a representative overview of bicistronic IRES reporter use. We identified parameters that were reported inconsistently or incompletely, which could hamper data reproduction and interpretation. On the basis of our analyses, we encourage adhering to a number of practices that should improve transparency of bicistronic reporter data presentation and improve methodological descriptions to facilitate data replication.
Collapse
Affiliation(s)
- Guus Gijsbertus Hubert van den Akker
- Department of Orthopedic Surgery, Maastricht University, Medical Center+, 6229 ER Maastricht, The Netherlands; (G.G.H.v.d.A.); (B.A.C.H.); (L.v.d.V.); (M.M.J.C.)
| | - Federico Zacchini
- Department of Experimental, Diagnostic and Specialty Medicine, Bologna University, I-40138 Bologna, Italy; (F.Z.); (L.M.)
- Centro di Ricerca Biomedica Applicata—CRBA, Bologna University, Policlinico di Sant’Orsola, I-40138 Bologna, Italy
| | - Bas Adrianus Catharina Housmans
- Department of Orthopedic Surgery, Maastricht University, Medical Center+, 6229 ER Maastricht, The Netherlands; (G.G.H.v.d.A.); (B.A.C.H.); (L.v.d.V.); (M.M.J.C.)
| | - Laura van der Vloet
- Department of Orthopedic Surgery, Maastricht University, Medical Center+, 6229 ER Maastricht, The Netherlands; (G.G.H.v.d.A.); (B.A.C.H.); (L.v.d.V.); (M.M.J.C.)
| | - Marjolein Maria Johanna Caron
- Department of Orthopedic Surgery, Maastricht University, Medical Center+, 6229 ER Maastricht, The Netherlands; (G.G.H.v.d.A.); (B.A.C.H.); (L.v.d.V.); (M.M.J.C.)
| | - Lorenzo Montanaro
- Department of Experimental, Diagnostic and Specialty Medicine, Bologna University, I-40138 Bologna, Italy; (F.Z.); (L.M.)
- Centro di Ricerca Biomedica Applicata—CRBA, Bologna University, Policlinico di Sant’Orsola, I-40138 Bologna, Italy
- Programma Dipartimentale in Medicina di Laboratorio, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni 15, I-40138 Bologna, Italy
| | - Tim Johannes Maria Welting
- Department of Orthopedic Surgery, Maastricht University, Medical Center+, 6229 ER Maastricht, The Netherlands; (G.G.H.v.d.A.); (B.A.C.H.); (L.v.d.V.); (M.M.J.C.)
| |
Collapse
|
2
|
Terenin IM, Smirnova VV, Andreev DE, Dmitriev SE, Shatsky IN. A researcher's guide to the galaxy of IRESs. Cell Mol Life Sci 2017; 74:1431-1455. [PMID: 27853833 PMCID: PMC11107752 DOI: 10.1007/s00018-016-2409-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 11/01/2016] [Accepted: 11/02/2016] [Indexed: 12/25/2022]
Abstract
The idea of internal initiation is frequently exploited to explain the peculiar translation properties or unusual features of some eukaryotic mRNAs. In this review, we summarize the methods and arguments most commonly used to address cases of translation governed by internal ribosome entry sites (IRESs). Frequent mistakes are revealed. We explain why "cap-independent" does not readily mean "IRES-dependent" and why the presence of a long and highly structured 5' untranslated region (5'UTR) or translation under stress conditions cannot be regarded as an argument for appealing to internal initiation. We carefully describe the known pitfalls and limitations of the bicistronic assay and artefacts of some commercially available in vitro translation systems. We explain why plasmid DNA transfection should not be used in IRES studies and which control experiments are unavoidable if someone decides to use it anyway. Finally, we propose a workflow for the validation of IRES activity, including fast and simple experiments based on a single genetic construct with a sequence of interest.
Collapse
Affiliation(s)
- Ilya M Terenin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia.
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119334, Russia.
| | - Victoria V Smirnova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
- Department of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Dmitri E Andreev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Sergey E Dmitriev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119334, Russia
- Department of Biochemistry, Biological Faculty, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Ivan N Shatsky
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia.
| |
Collapse
|
3
|
Smirnova VV, Terenin IM, Khutornenko AA, Andreev DE, Dmitriev SE, Shatsky IN. Does HIV-1 mRNA 5'-untranslated region bear an internal ribosome entry site? Biochimie 2016; 121:228-37. [DOI: 10.1016/j.biochi.2015.12.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 12/11/2015] [Indexed: 12/18/2022]
|
4
|
Noderer WL, Flockhart RJ, Bhaduri A, Diaz de Arce AJ, Zhang J, Khavari PA, Wang CL. Quantitative analysis of mammalian translation initiation sites by FACS-seq. Mol Syst Biol 2014; 10:748. [PMID: 25170020 PMCID: PMC4299517 DOI: 10.15252/msb.20145136] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
An approach combining fluorescence-activated cell sorting and high-throughput DNA sequencing
(FACS-seq) was employed to determine the efficiency of start codon recognition for all possible
translation initiation sites (TIS) utilizing AUG start codons. Using FACS-seq, we measured
translation from a genetic reporter library representing all 65,536 possible TIS sequences spanning
the −6 to +5 positions. We found that the motif RYMRMVAUGGC enhanced start codon
recognition and translation efficiency. However, dinucleotide interactions, which cannot be conveyed
by a single motif, were also important for modeling TIS efficiency. Our dataset combined with
modeling allowed us to predict genome-wide translation initiation efficiency for all mRNA
transcripts. Additionally, we screened somatic TIS mutations associated with tumorigenesis to
identify candidate driver mutations consistent with known tumor expression patterns. Finally, we
implemented a quantitative leaky scanning model to predict alternative initiation sites that produce
truncated protein isoforms and compared predictions with ribosome footprint profiling data. The
comprehensive analysis of the TIS sequence space enables quantitative predictions of translation
initiation based on genome sequence.
Collapse
Affiliation(s)
- William L Noderer
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Ross J Flockhart
- The Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Aparna Bhaduri
- The Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA The Program in Cancer Biology, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Jiajing Zhang
- The Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Paul A Khavari
- The Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA Veterans Affairs Palo Alto Healthcare System, Palo Alto, CA, USA
| | - Clifford L Wang
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| |
Collapse
|
5
|
Major source of antigenic peptides for the MHC class I pathway is produced during the pioneer round of mRNA translation. Proc Natl Acad Sci U S A 2011; 108:11572-7. [PMID: 21709220 DOI: 10.1073/pnas.1104104108] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The MHC class I antigen presentation pathway allows the immune system to distinguish between self and nonself. Despite extensive research on the processing of antigenic peptides, little is known about their origin. Here, we show that mRNAs carrying premature stop codons that prevent the production of full-length proteins via the nonsense-mediated decay pathway still produce a majority of peptide substrates for the MHC class I pathway by a noncanonical mRNA translation process. Blocking the interaction of the translation initiation factor eIF4E with the cap structure suppresses the synthesis of full-length proteins but has only a limited effect on the production of antigenic peptides. These results reveal an essential cell biological function for a class of translation products derived during the pioneer round of mRNA translation and will have important implications for understanding how the immune system detects cells harboring pathogens and generates tolerance.
Collapse
|
6
|
Shatsky IN, Dmitriev SE, Terenin IM, Andreev DE. Cap- and IRES-independent scanning mechanism of translation initiation as an alternative to the concept of cellular IRESs. Mol Cells 2010; 30:285-93. [PMID: 21052925 DOI: 10.1007/s10059-010-0149-1] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Accepted: 09/30/2010] [Indexed: 12/30/2022] Open
Abstract
During the last decade the concept of cellular IRES-elements has become predominant to explain the continued expression of specific proteins in eukaryotic cells under conditions when the cap-dependent translation initiation is inhibited. However, many cellular IRESs regarded as cornerstones of the concept, have been compromised by several recent works using a number of modern techniques. This review analyzes the sources of artifacts associated with identification of IRESs and describes a set of control experiments, which should be performed before concluding that a 5' UTR of eukaryotic mRNA does contain an IRES. Hallmarks of true IRES-elements as exemplified by well-documented IRESs of viral origin are presented. Analysis of existing reports allows us to conclude that there is a constant confusion of the cap-independent with the IRES-directed translation initiation. In fact, these two modes of translation initiation are not synonymous. We discuss here not numerous reports pointing to the existence of a cap- and IRES-independent scanning mechanism of translation initiation based on utilization of special RNA structures called cap-independent translational enhancers (CITE). We describe this mechanism and suggest it as an alternative to the concept of cellular IRESs.
Collapse
Affiliation(s)
- Ivan N Shatsky
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia.
| | | | | | | |
Collapse
|
7
|
Abstract
Internal ribosome entry sites (IRESs) are specialized mRNA elements that allow recruitment of eukaryotic ribosomes to naturally uncapped mRNAs or to capped mRNAs under conditions in which cap-dependent translation is inhibited. Putative cellular IRESs have been proposed to play crucial roles in stress responses, development, apoptosis, cell cycle control, and neuronal function. However, most of the evidence for cellular IRES activity rests on bicistronic reporter assays, the reliability of which has been questioned. Here, the mechanisms underlying cap-independent translation of cellular mRNAs and the contributions of such translation to cellular protein synthesis are discussed. I suggest that the division of cellular mRNAs into mutually exclusive categories of "cap-dependent" and "IRES-dependent" should be reconsidered and that the implications of cellular IRES activity need to be incorporated into our models of cap-dependent initiation.
Collapse
Affiliation(s)
- Wendy V Gilbert
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
| |
Collapse
|
8
|
Bone KR, Gruper Y, Goldenberg D, Levanon D, Groner Y. Translation regulation of Runx3. Blood Cells Mol Dis 2010; 45:112-6. [PMID: 20554226 DOI: 10.1016/j.bcmd.2010.04.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2010] [Accepted: 04/06/2010] [Indexed: 11/25/2022]
Abstract
Runx3 protein products that are translated from the distal (P1)- and proximal (P2)-promoter transcripts appear on Western blots as a 47-46kDa doublet corresponding to full-length proteins bearing the P1- and P2-N-termini respectively. An additional 44kDa protein band, the origin and nature of which was unclear, is also detected. Transfection of full-length Runx3 cDNA bearing the P2 N-terminus (P2-cDNA) into HEK293 cells resulted in expression of both 46 and 44kDa proteins. Sequence analysis of the P2-cDNA revealed an in-frame ATG 90bp downstream (+90ATG) of the proximal +1ATG. Insertion of an N-terminal HA-tag into P2-cDNA immediately downstream of the +1ATG produced HA-tagged 46kDa and untagged 44kDa proteins, consistent with the possibility that the latter was translated through initiation at the internal +90ATG site. Deleting or blocking the activity of the +1ATG, the natural cap-dependent translation initiation site in P2-cDNA, abrogated production of the 46kDa Runx3 protein while facilitating production of the 44kDa product. These findings supported the notion that Runx3 44kDa protein resulted from internal translation initiation at the +90ATG. Northern blot and RT-PCR analyses performed on RNA from P2-cDNA transfected cells showed a single transcript and product respectively, of the expected size, ruling out the possibility that the 44kDa protein was translated from transcripts originating at a cryptic promoter or produced by alternative splicing. Taken together, the data indicate that the 44kDa protein results from translation initiation at the internal ATG and that Runx3, like its family members Runx1 and Runx2, contains a mechanism for internal mRNA translation initiation.
Collapse
Affiliation(s)
- Karen Rae Bone
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, Israel
| | | | | | | | | |
Collapse
|
9
|
Jeong JH, Jin JS, Kim HN, Kang SM, Liu JC, Lengner CJ, Otto F, Mundlos S, Stein JL, van Wijnen AJ, Lian JB, Stein GS, Choi JY. Expression of Runx2 transcription factor in non-skeletal tissues, sperm and brain. J Cell Physiol 2008; 217:511-7. [PMID: 18636555 DOI: 10.1002/jcp.21524] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Runx2 is a master transcription factor for chondrocyte and osteoblast differentiation and bone formation. However expression of Runx2 (by RT-PCR), has been reported in non-skeletal tissues such as breast, T cells and testis. To better define Runx2 activity in non-skeletal tissues, we examined transgenic (Tg) mice expressing LacZ gene under control of 3.0 kb (3 kb Tg) or 1.0 kb (1 kb Tg) of the Runx2 distal (P1) promoter, Runx2 LacZ knock-in (Runx2(+/LacZ)) and Runx2/P1 LacZ knock-in (Runx2/P1(+/LacZ)). In the Runx2 3 kb Tg mouse, beta-galactosidase (beta-gal) expression appeared in various non-skeletal tissues including testis, skin, adrenal gland and brain. beta-gal expression from both 3 kb and 1 kb Tg, reflecting activity of the Runx2 promoter, was readily detectable in seminiferous tubules of the testis and the epididymis. At the single cell level, beta-gal was detected in spermatids and mature sperms not in sertoli or Leydig cells. We also detected a positive signal from the Runx2(+/LacZ) and Runx2/P1(+/LacZ) mice. Indeed, Runx2 expression was observed in isolated mature sperms, which was confirmed by RT-PCR and Western blot analysis. Runx2, however, was not related to sex determination and sperm motility. Runx2 mediated beta-gal activity is also found robustly in the hippocampus and frontal lobe of the brain in Runx2(+/LacZ). Collectively, these results indicate that Runx2 is expressed in several non-skeletal tissues particularly sperms of testis and hippocampus of brain. It suggests that Runx2 may play an important role in male reproductive organ testis and brain.
Collapse
Affiliation(s)
- Jae-Hwan Jeong
- Department of Biochemistry and Cell Biology, School of Medicine, Cell and Matrix Research Institute, Skeletal Diseases Genome Research Center, Kyungpook National University, Daegu, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Kayed H, Jiang X, Keleg S, Jesnowski R, Giese T, Berger MR, Esposito I, Löhr M, Friess H, Kleeff J. Regulation and functional role of the Runt-related transcription factor-2 in pancreatic cancer. Br J Cancer 2007; 97:1106-15. [PMID: 17876328 PMCID: PMC2360444 DOI: 10.1038/sj.bjc.6603984] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Recent evidence suggests that Runt-related transcription factors play a role in different human tumours. In the present study, the localisation of the Runt-related transcription factor-2 (Runx2), its transcriptional activity, as well as its regulation of expression was analysed in human pancreatic ductal adenocarcinoma (PDAC). Quantitative real-time PCR and immunohistochemistry were used for Runx2 expression and localisation analysis. Runt-related transcription factor-2 expression was silenced using specific siRNA oligonucleotides in pancreatic cancer cells (Panc-1) and immortalised pancreatic stellate cells (IPSCs). Overexpression of Runx2 was achieved using a full-length expression vector. TGF-β1, BMP2, and other cytokines were assessed for their potential to regulate Runx2 expression. There was a 6.1-fold increase in median Runx2 mRNA levels in PDAC tissues compared to normal pancreatic tissues (P<0.0001). Runt-related transcription factor-2 was localised in pancreatic cancer cells, tubular complexes, and PanIN lesions of PDAC tissues as well as in tumour-associated fibroblasts/stellate cells. Coculture of IPSCs and Panc-1 cells, as well as treatment with TGF-β1 and BMP2, led to increased Runx2 expression in Panc-1 cells. Runt-related transcription factor-2 overexpression was associated with decreased MMP1 release as well as decreased growth and invasion of Panc-1 cells. These effects were reversed by Runx2 silencing. In conclusion, Runx2 is overexpressed in PDAC, where it is regulated by certain cytokines such as TGF-β1 and BMP2 in an auto- and paracrine manner. In addition, Runx2 has the potential to regulate the transcription of extracellular matrix modulators such as SPARC and MMP1, thereby influencing the tumour microenvironment.
Collapse
Affiliation(s)
- H Kayed
- Department of General Surgery, University of Heidelberg, Heidelberg, Germany
| | - X Jiang
- Department of General Surgery, University of Heidelberg, Heidelberg, Germany
| | - S Keleg
- Department of General Surgery, University of Heidelberg, Heidelberg, Germany
| | - R Jesnowski
- Molecular Gastroenterology Unit, German Cancer Research Centre, Heidelberg, Germany
- Department of Medicine II, University of Heidelberg, Mannheim, Germany
| | - T Giese
- Institute of Immunology, University of Heidelberg, Heidelberg, Germany
| | - M R Berger
- Unit of Toxicology and Chemotherapy, German Cancer Research Centre, Heidelberg, Germany
| | - I Esposito
- Institute of Pathology, University of Heidelberg, Heidelberg, Germany
| | - M Löhr
- Molecular Gastroenterology Unit, German Cancer Research Centre, Heidelberg, Germany
- Department of Medicine II, University of Heidelberg, Mannheim, Germany
| | - H Friess
- Department of General Surgery, University of Heidelberg, Heidelberg, Germany
| | - J Kleeff
- Department of General Surgery, University of Heidelberg, Heidelberg, Germany
- Department of Surgery, Technical University of Munich, Ismaningerstrasse 22, Munich 81675, Germany. E-mail:
| |
Collapse
|
11
|
Kozak M. Lessons (not) learned from mistakes about translation. Gene 2007; 403:194-203. [PMID: 17888589 DOI: 10.1016/j.gene.2007.08.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2007] [Revised: 08/16/2007] [Accepted: 08/27/2007] [Indexed: 01/01/2023]
Abstract
Some popular ideas about translational regulation in eukaryotes have been recognized recently as mistakes. One example is the rejection of a long-standing idea about involvement of S6 kinase in translation of ribosomal proteins. Unfortunately, new proposals about how S6 kinase might regulate translation are based on evidence that is no better than the old. Recent findings have also forced rejection of some popular ideas about the function of sequences at the 3' end of viral mRNAs and rejection of some ideas about internal ribosome entry sequences (IRESs). One long-held belief was that tissue-specific translation via an IRES underlies the neurotropism of poliovirus and the attenuation of Sabin vaccine strains. Older experiments that appeared to support this belief and recent experiments that refute it are discussed. The hypothesis that dyskeratosis congenita is caused by a defect in IRES-mediated translation is probably another mistaken idea. The supporting evidence, such as it is, comes from a mouse model of the disease and is contradicted by studies carried out with cells from affected patients. The growing use of IRESs as tools to study other questions about translation is discussed and lamented. The inefficient function of IRESs (if they are IRESs) promotes misunderstandings. I explain again why it is not valid to invoke a special mechanism of initiation based on the finding that edeine (at very low concentrations) does not inhibit the translation of a putative IRES from cricket paralysis virus. I explain why new assays, devised to rule out splicing in tests with dicistronic vectors, are not valid and why experiments with IRESs are not a good way to investigate the mechanism whereby microRNAs inhibit translation.
Collapse
Affiliation(s)
- Marilyn Kozak
- Department of Biochemistry, Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ 08854, USA.
| |
Collapse
|
12
|
Sharma A, Masri J, Jo OD, Bernath A, Martin J, Funk A, Gera J. Protein kinase C regulates internal initiation of translation of the GATA-4 mRNA following vasopressin-induced hypertrophy of cardiac myocytes. J Biol Chem 2007; 282:9505-9516. [PMID: 17284439 DOI: 10.1074/jbc.m608874200] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
GATA-4 is a key member of the GATA family of transcription factors involved in cardiac development and growth as well as in cardiac hypertrophy and heart failure. Our previous studies suggest that GATA-4 protein synthesis may be translationally regulated. We report here that the 518-nt long 5'-untranslated region (5'-UTR) of the GATA-4 mRNA, which is predicted to form stable secondary structures (-65 kcal/mol) such as to be inhibitory to cap-dependent initiation, confers efficient translation to monocistronic reporter mRNAs in cell-free extracts. Moreover, uncapped GATA-4 5'-UTR containing monocistronic reporter mRNAs continue to be well translated while capped reporters are insensitive to the inhibition of initiation by cap-analog, suggesting a cap-independent mechanism of initiation. Utilizing a dicistronic luciferase mRNA reporter containing the GATA-4 5'-UTR within the intercistronic region, we demonstrate that this leader sequence confers functional internal ribosome entry site (IRES) activity. The activity of the GATA-4 IRES is unaffected in trans-differentiating P19CL6 cells, however, is strongly stimulated immediately following arginine-vasopressin exposure of H9c2 ventricular myocytes. IRES activity is then maintained at submaximal levels during hypertrophic growth of these cells. Supraphysiological Ca(2+) levels diminished stimulation of IRES activity immediately following exposure to vasopressin and inhibition of protein kinase C activity utilizing a pseudosubstrate peptide sequence blocked IRES activity during hypertrophy. Thus, our data suggest a mechanism for GATA-4 protein synthesis under conditions of reduced global cap-dependent translation, which is maintained at a submaximal level during hypertrophic growth and point to the regulation of GATA-4 IRES activity by sarco(ER)-reticular Ca(2+) stores and PKC.
Collapse
Affiliation(s)
- Anushree Sharma
- Department of Research & Development, Greater Los Angeles Veterans Affairs Healthcare System, Los Angeles, California 91343
| | - Janine Masri
- Department of Research & Development, Greater Los Angeles Veterans Affairs Healthcare System, Los Angeles, California 91343
| | - Oak D Jo
- Department of Research & Development, Greater Los Angeles Veterans Affairs Healthcare System, Los Angeles, California 91343
| | - Andrew Bernath
- Department of Research & Development, Greater Los Angeles Veterans Affairs Healthcare System, Los Angeles, California 91343
| | - Jheralyn Martin
- Department of Research & Development, Greater Los Angeles Veterans Affairs Healthcare System, Los Angeles, California 91343
| | - Alexander Funk
- Department of Research & Development, Greater Los Angeles Veterans Affairs Healthcare System, Los Angeles, California 91343
| | - Joseph Gera
- Department of Research & Development, Greater Los Angeles Veterans Affairs Healthcare System, Los Angeles, California 91343; Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California 90048.
| |
Collapse
|