1
|
Wang Q, Zhang C, Pang Y, Cheng M, Wang R, Chen X, Ji T, Yang Y, Zhang J, Zhong C. Comprehensive analysis of bulk, single-cell RNA sequencing, and spatial transcriptomics revealed IER3 for predicting malignant progression and immunotherapy efficacy in glioma. Cancer Cell Int 2024; 24:332. [PMID: 39354533 PMCID: PMC11443732 DOI: 10.1186/s12935-024-03511-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 09/18/2024] [Indexed: 10/03/2024] Open
Abstract
BACKGROUND As part of stress-triggered molecules, immediate early response 3 (IER3) dysregulation has been reported to sustain pro-oncogenic pathways and precede malignant transformation. However, the role of IER3 in glioma pathology is ill-defined. METHODS Immunohistochemistry (IHC) assay and publicly available glioma datasets were used to calculate the IER3 expression level in glioma. Wound healing, invasion and cell counting kit-8 (CCK8) assays were applied to measure the cell viability and capacities of migration and invasion of glioma cells in vitro. The immunofluorescence (IF) assay was used to assess the expression associations of IER3 with CCL2 and TGFBI. Cox regression analysis and Kaplan-Meier (K-M) curve were introduced to compute the prognosis-predicting value of IER3. Variations in copy number (CNVs), single nucleotide (SNVs), and methylation profiles were analyzed to illustrate the epigenetic modifications of IER3. Gliomas were divided into two subgroups using the restricted cubic spline (RCS) method. RESULTS IER3: was overexpressed and hypomethylated in gliomas and significantly associated with the dismal prognosis of glioma samples. Samples in the high IER3 subgroup were characterized by increased infiltration of tumor-associated monocytes/macrophages (TAMMs), as well as the elevated sensitivity to Dabrafenib, an inhibitor of BRAF. In addition, this subgroup demonstrated a low mutation rate of IDH, high gain rates of BRAF, ELTD1, and PDGFA. Gliomas with relatively low IER3 expression demonstrated a less invasive subtype and were featured by favorable prognosis, increased response to immunotherapy, and adjuvant chemotherapy plus radiotherapy. The IF assay revealed that IER3 was co-localized and co-expressed with TGFBI. The glioma cells with small interfering RNA (siRNA)-silenced IER3 displayed lower migration, invasion, proliferation, and cell viability than the control group. CONCLUSIONS In this study, we identified IER3 upregulation as an essential biomarker that could assist in adjuvant therapy and prognosis prediction for gliomas.
Collapse
Affiliation(s)
- Qi Wang
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Chunyu Zhang
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ying Pang
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Meng Cheng
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Rui Wang
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xu Chen
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Tongjie Ji
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yuntong Yang
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jing Zhang
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
- Institute for Advanced Study, Tongji University, Shanghai, China
| | - Chunlong Zhong
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
2
|
Serafino A, Krasnowska EK, Romanò S, De Gregorio A, Colone M, Dupuis ML, Bonucci M, Ravagnan G, Stringaro A, Fuggetta MP. The Synergistic Combination of Curcumin and Polydatin Improves Temozolomide Efficacy on Glioblastoma Cells. Int J Mol Sci 2024; 25:10572. [PMID: 39408901 PMCID: PMC11477178 DOI: 10.3390/ijms251910572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/23/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
Glioblastoma (GBL) is one of the more malignant primary brain tumors; it is currently treated by a multimodality strategy including surgery, and radio- and chemotherapy, mainly consisting of temozolomide (TMZ)-based chemotherapy. Tumor relapse often occurs due to the establishment of TMZ resistance, with a patient median survival time of <2 years. The identification of natural molecules with strong anti-tumor activity led to the combination of these compounds with conventional chemotherapeutic agents, developing protocols for integrated anticancer therapies. Curcumin (CUR), resveratrol (RES), and its glucoside polydatin (PLD) are widely employed in the pharmaceutical and nutraceutical fields, and several studies have demonstrated that the combination of these natural products was more cytotoxic than the individual compounds alone against different cancers. Some of us recently demonstrated the synergistic efficacy of the sublingual administration of a new nutraceutical formulation of CUR+PLD in reducing tumor size and improving GBL patient survival. To provide some experimental evidence to reinforce these clinical results, we investigated if pretreatment with a combination of CUR+PLD can improve TMZ cytotoxicity on GBL cells by analyzing the effects on cell cycle, viability, morphology, expression of proteins related to cell proliferation, differentiation, apoptosis or autophagy, and the actin network. Cell viability was assessed using the MTT assay or a CytoSmart cell counter. CalcuSyn software was used to study the CUR+PLD synergism. The morphology was evaluated by optical and scanning electron microscopy, and protein expression was analyzed by Western blot. Flow cytometry was used for the cell cycle, autophagic flux, and apoptosis analyses. The results provide evidence that CUR and PLD, acting in synergy with each other, strongly improve the efficacy of alkylating anti-tumor agents such as TMZ on drug-resistant GBL cells through their ability to affect survival, differentiation, and tumor invasiveness.
Collapse
Affiliation(s)
- Annalucia Serafino
- Institute of Translational Pharmacology, National Research Council of Italy (CNR), 00133 Rome, Italy; (E.K.K.); (S.R.); (A.D.G.); (G.R.); (M.P.F.)
| | - Ewa Krystyna Krasnowska
- Institute of Translational Pharmacology, National Research Council of Italy (CNR), 00133 Rome, Italy; (E.K.K.); (S.R.); (A.D.G.); (G.R.); (M.P.F.)
| | - Sabrina Romanò
- Institute of Translational Pharmacology, National Research Council of Italy (CNR), 00133 Rome, Italy; (E.K.K.); (S.R.); (A.D.G.); (G.R.); (M.P.F.)
| | - Alex De Gregorio
- Institute of Translational Pharmacology, National Research Council of Italy (CNR), 00133 Rome, Italy; (E.K.K.); (S.R.); (A.D.G.); (G.R.); (M.P.F.)
| | - Marisa Colone
- National Center for Drug Research and Evaluation, Italian National Institute of Health (ISS), 00161 Rome, Italy; (M.C.); (M.L.D.); (A.S.)
| | - Maria Luisa Dupuis
- National Center for Drug Research and Evaluation, Italian National Institute of Health (ISS), 00161 Rome, Italy; (M.C.); (M.L.D.); (A.S.)
| | - Massimo Bonucci
- Association for Research on Integrative Oncology Therapies (ARTOI) Foundation, 00165 Rome, Italy;
| | - Giampietro Ravagnan
- Institute of Translational Pharmacology, National Research Council of Italy (CNR), 00133 Rome, Italy; (E.K.K.); (S.R.); (A.D.G.); (G.R.); (M.P.F.)
| | - Annarita Stringaro
- National Center for Drug Research and Evaluation, Italian National Institute of Health (ISS), 00161 Rome, Italy; (M.C.); (M.L.D.); (A.S.)
| | - Maria Pia Fuggetta
- Institute of Translational Pharmacology, National Research Council of Italy (CNR), 00133 Rome, Italy; (E.K.K.); (S.R.); (A.D.G.); (G.R.); (M.P.F.)
| |
Collapse
|
3
|
Construction and validation of a novel apoptosis-associated prognostic signature related to osteosarcoma metastasis and immune infiltration. Transl Oncol 2022; 22:101452. [PMID: 35598382 PMCID: PMC9126984 DOI: 10.1016/j.tranon.2022.101452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/20/2022] [Accepted: 05/08/2022] [Indexed: 11/22/2022] Open
Abstract
Osteosarcoma is one of the most aggressive diseases which often develops metastasis. Apoptosis relates to the recurrence and metastasis of osteosarcoma and the related signature could predict the prognosis of patients. A novel apoptosis-associated prognosis signature related to osteosarcoma metastasis and immune infiltration has been developed. The signature could help to predict the prognosis of osteosarcoma patients and serve as the potential targets for anti-cancer treatment.
Background Apoptosis played vital roles in the formation and progression of osteosarcoma. However, no studies elucidated the prognostic relationships between apoptosis-associated genes (AAGs) and osteosarcoma. Methods The differentially expressed genes associated with osteosarcoma metastasis and apoptosis were identified from GEO and MSigDB databases. The apoptosis-associated prognostic signature was established through univariate and multivariate cox regression analyses. The Kaplan–Meier (KM) survival curve, ROC curve and nomogram were constructed to investigate the predictive value of this signature. CIBERSORT algorithm and ssGSEA were used to explore the relationships between immune infiltration and AAG signature. The above results were validated in another GEO dataset and the expression of AAGs was also validated in osteosarcoma patient samples by immunohistochemistry. Results HSPB1 and IER3 were involved in AAG signature. In training and validation datasets, apoptosis-associated risk scores were negatively related to patient survival rates and the AAG signature was regarded as the independent prognostic factor. ROC and calibration curves demonstrated the signature and nomogram were reliable. GSEA revealed the signature related to immune-associated pathways. ssGSEA indicated that one immune cell and three immune functions were significantly dysregulated. The immunohistochemistry analyses of patients’ samples revealed that AAGs were significantly differently expressed between metastasis and non-metastasis osteosarcomas. Conclusions The present study identified and validated a novel apoptosis-associated prognostic signature related to osteosarcoma metastasis. It could serve as the potential biomarker and therapeutic targets for osteosarcoma in the future.
Collapse
|
4
|
Mucignat-Caretta C, Denaro L, D'Avella D, Caretta A. Protein Kinase A Distribution Differentiates Human Glioblastoma from Brain Tissue. Cancers (Basel) 2017; 10:cancers10010002. [PMID: 29267253 PMCID: PMC5789352 DOI: 10.3390/cancers10010002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 12/13/2017] [Accepted: 12/13/2017] [Indexed: 12/17/2022] Open
Abstract
Brain tumor glioblastoma has no clear molecular signature and there is no effective therapy. In rodents, the intracellular distribution of the cyclic AMP (cAMP)-dependent protein kinase (Protein kinase A, PKA) R2Alpha subunit was previously shown to differentiate tumor cells from healthy brain cells. Now, we aim to validate this observation in human tumors. The distribution of regulatory (R1 and R2) and catalytic subunits of PKA was examined via immunohistochemistry and Western blot in primary cell cultures and biopsies from 11 glioblastoma patients. Data were compared with information obtained from 17 other different tumor samples. The R1 subunit was clearly detectable only in some samples. The catalytic subunit was variably distributed in the different tumors. Similar to rodent tumors, all human glioblastoma specimens showed perinuclear R2 distribution in the Golgi area, while it was undetectable outside the tumor. To test the effect of targeting PKA as a therapeutic strategy, the intracellular cyclic AMP concentration was modulated with different agents in four human glioblastoma cell lines. A significant increase in cell death was detected after increasing cAMP levels or modulating PKA activity. These data raise the possibility of targeting the PKA intracellular pathway for the development of diagnostic and/or therapeutic tools for human glioblastoma.
Collapse
Affiliation(s)
- Carla Mucignat-Caretta
- Department of Molecular Medicine, University of Padova, Padova 35131, Italy.
- Biostructures and Biosystems National Institute, Rome 00136, Italy.
| | - Luca Denaro
- Department of Neuroscience, University of Padova, Padova 35131, Italy.
| | - Domenico D'Avella
- Department of Neuroscience, University of Padova, Padova 35131, Italy.
| | - Antonio Caretta
- Biostructures and Biosystems National Institute, Rome 00136, Italy.
- Department of Food and Drug, University of Parma, Parma 43121, Italy.
| |
Collapse
|
5
|
IER3 is a crucial mediator of TAp73β-induced apoptosis in cervical cancer and confers etoposide sensitivity. Sci Rep 2015; 5:8367. [PMID: 25666857 PMCID: PMC4322356 DOI: 10.1038/srep08367] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Accepted: 01/09/2015] [Indexed: 12/14/2022] Open
Abstract
Infection with high-risk human papillomaviruses (HPVs) causes cervical cancer. E6 oncoprotein, an HPV gene product, inactivates the major gatekeeper p53. In contrast, its isoform, TAp73β, has become increasingly important, as it is resistant to E6. However, the intracellular signaling mechanisms that account for TAp73β tumor suppressor activity in cervix are poorly understood. Here, we identified that IER3 is a novel target gene of TAp73β. In particular, TAp73β exclusively transactivated IER3 in cervical cancer cells, whereas p53 and TAp63 failed to do. IER3 efficiently induced apoptosis, and its knockdown promoted survival of HeLa cells. In addition, TAp73β-induced cell death, but not p53-induced cell death, was inhibited upon IER3 silencing. Moreover, etoposide, a DNA-damaging chemotherapeutics, upregulated TAp73β and IER3 in a c-Abl tyrosine kinase-dependent manner, and the etoposide chemosensitivity of HeLa cells was largely determined by TAp73β-induced IER3. Of interest, cervical carcinomas from patients express no observable levels of two proteins. Thus, our findings suggest that IER3 is a putative tumor suppressor in the cervix, and the c-Ab1/p73β/IER3 axis is a novel and crucial signaling pathway that confers etoposide chemosensitivity. Therefore, TAp73β and IER3 induction would be a valuable checkpoint for successful therapeutic intervention of cervical carcinoma patients.
Collapse
|
6
|
Barbosa DJ, Capela JP, de Lourdes Bastos M, Carvalho F. In vitro models for neurotoxicology research. Toxicol Res (Camb) 2015; 4:801-842. [DOI: 10.1039/c4tx00043a] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023] Open
Abstract
The nervous system has a highly complex organization, including many cell types with multiple functions, with an intricate anatomy and unique structural and functional characteristics; the study of its (dys)functionality following exposure to xenobiotics, neurotoxicology, constitutes an important issue in neurosciences.
Collapse
Affiliation(s)
- Daniel José Barbosa
- REQUIMTE (Rede de Química e Tecnologia)
- Laboratório de Toxicologia
- Departamento de Ciências Biológicas
- Faculdade de Farmácia
- Universidade do Porto
| | - João Paulo Capela
- REQUIMTE (Rede de Química e Tecnologia)
- Laboratório de Toxicologia
- Departamento de Ciências Biológicas
- Faculdade de Farmácia
- Universidade do Porto
| | - Maria de Lourdes Bastos
- REQUIMTE (Rede de Química e Tecnologia)
- Laboratório de Toxicologia
- Departamento de Ciências Biológicas
- Faculdade de Farmácia
- Universidade do Porto
| | - Félix Carvalho
- REQUIMTE (Rede de Química e Tecnologia)
- Laboratório de Toxicologia
- Departamento de Ciências Biológicas
- Faculdade de Farmácia
- Universidade do Porto
| |
Collapse
|
7
|
Oligodendroglia metabolically support axons and contribute to neurodegeneration. Nature 2012; 487:443-8. [PMID: 22801498 PMCID: PMC3408792 DOI: 10.1038/nature11314] [Citation(s) in RCA: 1165] [Impact Index Per Article: 97.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Accepted: 06/13/2012] [Indexed: 12/29/2022]
Abstract
Oligodendroglia support axon survival and function through mechanisms independent of myelination, and their dysfunction leads to axon degeneration in several diseases. The cause of this degeneration has not been determined, but lack of energy metabolites such as glucose or lactate has been proposed. Lactate is transported exclusively by monocarboxylate transporters, and changes to these transporters alter lactate production and use. Here we show that the most abundant lactate transporter in the central nervous system, monocarboxylate transporter 1 (MCT1, also known as SLC16A1), is highly enriched within oligodendroglia and that disruption of this transporter produces axon damage and neuron loss in animal and cell culture models. In addition, this same transporter is reduced in patients with, and in mouse models of, amyotrophic lateral sclerosis, suggesting a role for oligodendroglial MCT1 in pathogenesis. The role of oligodendroglia in axon function and neuron survival has been elusive; this study defines a new fundamental mechanism by which oligodendroglia support neurons and axons.
Collapse
|
8
|
Yamashita K, Nakashima S, You F, Hayashi SI, Iwama T. Overexpression of immediate early gene X-1 (IEX-1) enhances γ-radiation-induced apoptosis of human glioma cell line, U87-MG. Neuropathology 2009; 29:20-4. [DOI: 10.1111/j.1440-1789.2008.00932.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|