1
|
Wang Y, Wang H, Xu J, Wang J, You L, Bai Y, Guo J. Exploration of the Clinical Effect of Different Autotransfusion Methods on Patients With Femoral Shaft Fracture Surgery. J Clin Lab Anal 2024; 38:e25018. [PMID: 38468395 PMCID: PMC10959180 DOI: 10.1002/jcla.25018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/30/2023] [Accepted: 02/02/2024] [Indexed: 03/13/2024] Open
Abstract
OBJECTIVE To explore the clinical effect of predeposit, salvage, and hemodilution autotransfusion on patients with femoral shaft fracture (FSF) surgery. METHODS Selected patients with FSF were randomly divided into three groups: intraoperative blood salvage autotransfusion, preoperative hemodilution autohemotransfusion, and predeposit autotransfusion. Five days after the operation, the body temperature, heart rate, blood platelet (PLT), and hemoglobin (Hb) of patients were determined. The concentrations of EPO and GM-CSF in the three groups were calculated by ELISA. The content of CD14+ monocytes was calculated by FCM assay. The growth time and condition of the patient's callus were determined at the 30th, 45th, and 60th day after operation. Cox regression analysis was used to analyze the correlation between EPO, GM-CSF, CD14+ mononuclear content, callus growth, and autotransfusion methods. RESULTS There were no statistically significant differences in body temperature and heart rate between the three groups (p > 0.05). PLT and Hb in the Predeposit group were markedly increased compared with that in the Salvage and Hemodilution groups. The concentrations of EPO and GM-CSF in the Predeposit group were markedly increased compared with that in the Salvage and Hemodilution groups. The content of CD14+ monocytes in the Predeposit group was significantly higher than that in the Salvage and Hemodilution groups. Predeposit autotransfusion promotes callus growth more quickly. CONCLUSION Predeposit autotransfusion promoted the recovery of patients with FSF after the operation more quickly than salvage autotransfusion and hemodilution autotransfusion.
Collapse
Affiliation(s)
- Yujia Wang
- School of Gongli Hospital Medical TechnologyUniversity of Shanghai for Science and TechnologyShanghaiChina
| | - Huan Wang
- Department of Anesthesiology, Shanghai Gongli HospitalNaval Military Medical UniversityShanghaiChina
| | - Jiaming Xu
- Department of Anesthesiology, Shanghai Gongli HospitalNaval Military Medical UniversityShanghaiChina
| | - Jinhuo Wang
- Department of Anesthesiology, Shanghai Gongli HospitalNaval Military Medical UniversityShanghaiChina
| | - Laiwei You
- Department of Anesthesiology, Shanghai Gongli HospitalNaval Military Medical UniversityShanghaiChina
| | - Yu Bai
- Department of Anesthesiology, Shanghai Gongli HospitalNaval Military Medical UniversityShanghaiChina
| | - Jianrong Guo
- Department of Anesthesiology, Shanghai Gongli HospitalNaval Military Medical UniversityShanghaiChina
| |
Collapse
|
2
|
Cook-Mills JM, Averill SH, Lajiness JD. Asthma, allergy and vitamin E: Current and future perspectives. Free Radic Biol Med 2022; 179:388-402. [PMID: 34785320 PMCID: PMC9109636 DOI: 10.1016/j.freeradbiomed.2021.10.037] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/12/2021] [Accepted: 10/21/2021] [Indexed: 02/03/2023]
Abstract
Asthma and allergic disease result from interactions of environmental exposures and genetics. Vitamin E is one environmental factor that can modify development of allergy early in life and modify responses to allergen after allergen sensitization. Seemingly varied outcomes from vitamin E are consistent with the differential functions of the isoforms of vitamin E. Mechanistic studies demonstrate that the vitamin E isoforms α-tocopherol and γ-tocopherol have opposite functions in regulation of allergic inflammation and development of allergic disease, with α-tocopherol having anti-inflammatory functions and γ-tocopherol having pro-inflammatory functions in allergy and asthma. Moreover, global differences in prevalence of asthma by country may be a result, at least in part, of differences in consumption of these two isoforms of tocopherols. It is critical in clinical and animal studies that measurements of the isoforms of tocopherols be determined in vehicles for the treatments, and in the plasma and/or tissues before and after intervention. As allergic inflammation is modifiable by tocopherol isoforms, differential regulation by tocopherol isoforms provide a foundation for development of interventions to improve lung function in disease and raise the possibility of early life dietary interventions to limit the development of lung disease.
Collapse
Affiliation(s)
- Joan M Cook-Mills
- Herman B Wells Center for Pediatric Research, Departments of Pediatrics and Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| | - Samantha H Averill
- Herman B Wells Center for Pediatric Research, Departments of Pediatrics and Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Jacquelyn D Lajiness
- Herman B Wells Center for Pediatric Research, Departments of Pediatrics and Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| |
Collapse
|
3
|
Jin J, Li Y, Zhao Q, Chen Y, Fu S, Wu J. Coordinated regulation of immune contexture: crosstalk between STAT3 and immune cells during breast cancer progression. Cell Commun Signal 2021; 19:50. [PMID: 33957948 PMCID: PMC8101191 DOI: 10.1186/s12964-021-00705-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 01/11/2021] [Indexed: 12/24/2022] Open
Abstract
Recent insights into the molecular and cellular mechanisms underlying cancer development have revealed the tumor microenvironment (TME) immune cells to functionally affect the development and progression of breast cancer. However, insufficient evidence of TME immune modulators limit the clinical application of immunotherapy for advanced and metastatic breast cancers. Intercellular STAT3 activation of immune cells plays a central role in breast cancer TME immunosuppression and distant metastasis. Accumulating evidence suggests that targeting STAT3 and/or in combination with radiotherapy may enhance anti-cancer immune responses and rescue the systemic immunologic microenvironment in breast cancer. Indeed, apart from its oncogenic role in tumor cells, the functions of STAT3 in TME of breast cancer involve multiple types of immunosuppression and is associated with tumor cell metastasis. In this review, we summarize the available information on the functions of STAT3-related immune cells in TME of breast cancer, as well as the specific upstream and downstream targets. Additionally, we provide insights about the potential immunosuppression mechanisms of each type of evaluated immune cells. Video abstract.
Collapse
Affiliation(s)
- Jing Jin
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000 Sichuan People’s Republic of China
| | - Yi Li
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000 Sichuan People’s Republic of China
| | - Qijie Zhao
- Department of Radiologic Technology, Center of Excellence for Molecular Imaging (CEMI), Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200 Thailand
- Department of Pathophysiology, College of Basic Medical Science, Southwest Medical University, Luzhou, 646000 Sichuan People’s Republic of China
| | - Yue Chen
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000 Sichuan People’s Republic of China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, 646000 Sichuan People’s Republic of China
- Academician (Expert) Workstation of Sichuan Province, Luzhou, 646000 Sichuan People’s Republic of China
| | - Shaozhi Fu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000 Sichuan People’s Republic of China
| | - JingBo Wu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000 Sichuan People’s Republic of China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, 646000 Sichuan People’s Republic of China
- Academician (Expert) Workstation of Sichuan Province, Luzhou, 646000 Sichuan People’s Republic of China
| |
Collapse
|
4
|
Huang X, He C, Lin G, Lu L, Xing K, Hua X, Sun S, Mao Y, Song Y, Wang J, Li S. Induced CD10 expression during monocyte-to-macrophage differentiation identifies a unique subset of macrophages in pancreatic ductal adenocarcinoma. Biochem Biophys Res Commun 2020; 524:1064-1071. [PMID: 32070494 DOI: 10.1016/j.bbrc.2020.02.042] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 02/07/2020] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Tumor associated macrophages (TAMs) promoted pancreatic ductal adenocarcinoma (PDAC) initiation and progression. In this study we aimed to evaluate CD10 expression by monocytes/macrophages and its clinical significance in PDAC. METHODS Human CD14+ peripheral blood monocytes were isolated and cultured for 6-7 days to differentiate into macrophages in vitro. Monocytic THP-1 cells were cultured and treated with 100 ng/ml phorbol 12-myristate 13-acetate (PMA) for 72 h to induce macrophage differentiation. Reverse transcription-quantitative PCR, immunohistochemistry, immunofluorescence, multiplex immunohistochemical staining and flow cytometry were performed to detect CD10 expression. In addition, the correlations between CD10 expression and immune cells infiltration were investigated through TIMER or GEPIA. Finally, Kaplan-Meier plotter and GEPIA databases were adopted to evaluate the influence of CD10 on clinical prognosis. RESULTS Our results indicated that CD10 was expressed by a subset of human monocytes and many more cells expressed CD10 after differentiation into macrophages in vitro (13.19% vs. 41.39%; P < 0.0001). As for PDAC tissues, CD10 was correlated with immune cells infiltration and was expressed by a subset of TAMs. For THP-1 cells, PMA could induce CD10 expression through the MAPK pathway. The Kaplan-Meier plotter results suggested that CD10 expression had an impact on the prognosis of PDAC. CONCLUSIONS In this study we demonstrated that CD10 was expressed by human primary monocytes, human monocyte-derived macrophages and TAMs, and was correlated with poor prognosis in PDAC, suggesting CD10 to be a potential therapeutic target in PDAC.
Collapse
Affiliation(s)
- Xin Huang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China; Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, China; Department of Pancreatobiliary Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Chaobin He
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China; Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, China; Department of Pancreatobiliary Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Guohe Lin
- Department of Oncology, The Second Affiliated Hospital of AnHui Medical University, Hefei, China
| | - Lianghe Lu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China; Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, China; Department of Hepatic Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Kaili Xing
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China; Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, China; Department of Pancreatobiliary Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xin Hua
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China; Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, China; Department of Breast Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Shuxin Sun
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China; Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, China; Department of Pancreatobiliary Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yize Mao
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China; Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, China; Department of Pancreatobiliary Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yunda Song
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China; Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, China; Department of Pancreatobiliary Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jun Wang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China; Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, China; Department of Pancreatobiliary Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Shengping Li
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China; Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, China; Department of Pancreatobiliary Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China.
| |
Collapse
|
5
|
Lin Z, Xie X, Lin H, Fu M, Su L, Tong Y, Chen H, Wang H, Zhao J, Xia H, Zhang Y, Zhang R. Epistatic Association of CD14 and NOTCH2 Genetic Polymorphisms with Biliary Atresia in a Southern Chinese Population. MOLECULAR THERAPY. NUCLEIC ACIDS 2018; 13:590-595. [PMID: 30439647 PMCID: PMC6234514 DOI: 10.1016/j.omtn.2018.10.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 10/08/2018] [Accepted: 10/08/2018] [Indexed: 12/29/2022]
Abstract
Biliary atresia (BA) is the most common cause of endstage liver disease in infants with poor prognosis and high mortality. The etiology of BA is still unknown, but the genetic factors have been considered as an important player in BA. We investigated the association of two cis-regulated variants in CD14 (rs2569190) and NOTCH2 (rs835576) with BA susceptibility, using the largest case-control cohort, totaling 506 BA patients and 1,473 healthy controls in a Southern Chinese population. Significant epistatic interaction between the two variants in our samples was observed (p = 8.1E-03; OR = 2.78; 95% CI: 1.32-5.88). The expression of CD14 and NOTCH2 in the BA group was consistently lower than that in the control (CC) group (0.31 ± 0.02 versus 1.00 ± 0.14; p < 0.001), which might be related to the genetic susceptibility of the genes awaiting further validation.
Collapse
Affiliation(s)
- Zefeng Lin
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623 Guangdong, China
| | - Xiaoli Xie
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623 Guangdong, China
| | - Huiting Lin
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623 Guangdong, China
| | - Ming Fu
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623 Guangdong, China
| | - Liang Su
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623 Guangdong, China
| | - Yanlu Tong
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623 Guangdong, China
| | - Hongjiao Chen
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623 Guangdong, China
| | - Hezhen Wang
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623 Guangdong, China
| | - Jinglu Zhao
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623 Guangdong, China
| | - Huimin Xia
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623 Guangdong, China
| | - Yan Zhang
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623 Guangdong, China.
| | - Ruizhong Zhang
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623 Guangdong, China.
| |
Collapse
|
6
|
Pizzino G, Irrera N, Cucinotta M, Pallio G, Mannino F, Arcoraci V, Squadrito F, Altavilla D, Bitto A. Oxidative Stress: Harms and Benefits for Human Health. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:8416763. [PMID: 28819546 PMCID: PMC5551541 DOI: 10.1155/2017/8416763] [Citation(s) in RCA: 1918] [Impact Index Per Article: 274.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 07/05/2017] [Indexed: 02/07/2023]
Abstract
Oxidative stress is a phenomenon caused by an imbalance between production and accumulation of oxygen reactive species (ROS) in cells and tissues and the ability of a biological system to detoxify these reactive products. ROS can play, and in fact they do it, several physiological roles (i.e., cell signaling), and they are normally generated as by-products of oxygen metabolism; despite this, environmental stressors (i.e., UV, ionizing radiations, pollutants, and heavy metals) and xenobiotics (i.e., antiblastic drugs) contribute to greatly increase ROS production, therefore causing the imbalance that leads to cell and tissue damage (oxidative stress). Several antioxidants have been exploited in recent years for their actual or supposed beneficial effect against oxidative stress, such as vitamin E, flavonoids, and polyphenols. While we tend to describe oxidative stress just as harmful for human body, it is true as well that it is exploited as a therapeutic approach to treat clinical conditions such as cancer, with a certain degree of clinical success. In this review, we will describe the most recent findings in the oxidative stress field, highlighting both its bad and good sides for human health.
Collapse
Affiliation(s)
- Gabriele Pizzino
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Natasha Irrera
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Mariapaola Cucinotta
- Department of Biomedical Sciences, Dentistry and Morphological and Functional Images, University of Messina, Messina, Italy
| | - Giovanni Pallio
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Federica Mannino
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Vincenzo Arcoraci
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Francesco Squadrito
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Domenica Altavilla
- Department of Biomedical Sciences, Dentistry and Morphological and Functional Images, University of Messina, Messina, Italy
| | - Alessandra Bitto
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| |
Collapse
|
7
|
Galli F, Azzi A, Birringer M, Cook-Mills JM, Eggersdorfer M, Frank J, Cruciani G, Lorkowski S, Özer NK. Vitamin E: Emerging aspects and new directions. Free Radic Biol Med 2017; 102:16-36. [PMID: 27816611 DOI: 10.1016/j.freeradbiomed.2016.09.017] [Citation(s) in RCA: 256] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 09/11/2016] [Accepted: 09/22/2016] [Indexed: 12/30/2022]
Abstract
The discovery of vitamin E will have its 100th anniversary in 2022, but we still have more questions than answers regarding the biological functions and the essentiality of vitamin E for human health. Discovered as a factor essential for rat fertility and soon after characterized for its properties of fat-soluble antioxidant, vitamin E was identified to have signaling and gene regulation effects in the 1980s. In the same years the cytochrome P-450 dependent metabolism of vitamin E was characterized and a first series of studies on short-chain carboxyethyl metabolites in the 1990s paved the way to the hypothesis of a biological role for this metabolism alternative to vitamin E catabolism. In the last decade other physiological metabolites of vitamin E have been identified, such as α-tocopheryl phosphate and the long-chain metabolites formed by the ω-hydroxylase activity of cytochrome P-450. Recent findings are consistent with gene regulation and homeostatic roles of these metabolites in different experimental models, such as inflammatory, neuronal and hepatic cells, and in vivo in animal models of acute inflammation. Molecular mechanisms underlying these responses are under investigation in several laboratories and side-glances to research on other fat soluble vitamins may help to move faster in this direction. Other emerging aspects presented in this review paper include novel insights on the mechanisms of reduction of the cardiovascular risk, immunomodulation and antiallergic effects, neuroprotection properties in models of glutamate excitotoxicity and spino-cerebellar damage, hepatoprotection and prevention of liver toxicity by different causes and even therapeutic applications in non-alcoholic steatohepatitis. We here discuss these topics with the aim of stimulating the interest of the scientific community and further research activities that may help to celebrate this anniversary of vitamin E with an in-depth knowledge of its action as vitamin.
Collapse
Affiliation(s)
- Francesco Galli
- Department of Pharmaceutical Sciences, University of Perugia, Laboratory of Clinical Biochemistry and Nutrition, Via del Giochetto, 06126 Perugia, Italy.
| | - Angelo Azzi
- USDA-HNRCA at Tufts University, 711 Washington St., Boston, MA 02111, United States.
| | - Marc Birringer
- Department of Nutritional, Food and Consumer Sciences, Fulda University of Applied Sciences, Leipziger Straße 123, 36037 Fulda, Germany.
| | - Joan M Cook-Mills
- Allergy/Immunology Division, Northwestern University, 240 E Huron, Chicago, IL 60611, United States.
| | | | - Jan Frank
- Institute of Biological Chemistry and Nutrition, University of Hohenheim, Garbenstr. 28, 70599 Stuttgart, Germany.
| | - Gabriele Cruciani
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Italy.
| | - Stefan Lorkowski
- Institute of Nutrition, Friedrich Schiller University Jena, Dornburger Str. 25, 07743 Jena, Germany; Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD), Halle-Jena-Leipzig, Germany.
| | - Nesrin Kartal Özer
- Department of Biochemistry, Faculty of Medicine, Genetic and Metabolic Diseases Research Center (GEMHAM), Marmara University, 34854 Maltepe, Istanbul, Turkey.
| |
Collapse
|
8
|
Malavez Y, Voss OH, Gonzalez-Mejia ME, Parihar A, Doseff AI. Distinct contribution of protein kinase Cδ and protein kinase Cε in the lifespan and immune response of human blood monocyte subpopulations. Immunology 2015; 144:611-20. [PMID: 25322815 DOI: 10.1111/imm.12412] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 10/13/2014] [Accepted: 10/14/2014] [Indexed: 02/06/2023] Open
Abstract
Monocytes, key components of the immune system, are a heterogeneous population comprised of classical monocytes (CD16(-) ) and non-classical monocytes (CD16(+) ). Monocytes are short lived and undergo spontaneous apoptosis, unless stimulated. Dysregulation of monocyte numbers contribute to the pathophysiology of inflammatory diseases, yet the contribution of each subset remains poorly characterized. Protein kinase C (PKC) family members are central to monocyte biology; however, their role in regulating lifespan and immune function of CD16(-) and CD16(+) monocytes has not been studied. Here, we evaluated the contribution of PKCδ and PKCε in the lifespan and immune response of both monocyte subsets. We showed that CD16(+) monocytes are more susceptible to spontaneous apoptosis because of the increased caspase-3, -8 and -9 activities accompanied by higher kinase activity of PKCδ. Silencing of PKCδ reduced apoptosis in both CD16(+) and CD16(-) monocytes. CD16(+) monocytes express significantly higher levels of PKCε and produce more tumour necrosis factor-α in CD16(+) compared with CD16(-) monocytes. Silencing of PKCε affected the survival and tumour necrosis factor-α production. These findings demonstrate a complex network with similar topography, yet unique regulatory characteristics controlling lifespan and immune response in each monocyte subset, helping define subset-specific coordination programmes controlling monocyte function.
Collapse
Affiliation(s)
- Yadira Malavez
- Department of Molecular Genetics, Department of Internal Medicine, Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | | | | | | | | |
Collapse
|
9
|
Farren MR, Carlson LM, Netherby CS, Lindner I, Li PK, Gabrilovich DI, Abrams SI, Lee KP. Tumor-induced STAT3 signaling in myeloid cells impairs dendritic cell generation by decreasing PKCβII abundance. Sci Signal 2014; 7:ra16. [PMID: 24550541 DOI: 10.1126/scisignal.2004656] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A major mechanism by which cancers escape control by the immune system is by blocking the differentiation of myeloid cells into dendritic cells (DCs), immunostimulatory cells that activate antitumor T cells. Tumor-dependent activation of signal transducer and activator of transcription 3 (STAT3) signaling in myeloid progenitor cells is thought to cause this block in their differentiation. In addition, a signaling pathway through protein kinase C βII (PKCβII) is essential for the differentiation of myeloid cells into DCs. We found in humans and mice that breast cancer cells substantially decreased the abundance of PKCβII in myeloid progenitor cells through a mechanism involving the enhanced activation of STAT3 signaling by soluble, tumor-derived factors (TDFs). STAT3 bound to previously undescribed negative regulatory elements within the promoter of PRKCB, which encodes PKCβII. We also found a previously undescribed counter-regulatory mechanism through which the activity of PKCβII inhibited tumor-dependent STAT3 signaling by decreasing the abundance of cell surface receptors, such as cytokine and growth factor receptors, that are activated by TDFs. Together, these data suggest that a previously unrecognized cross-talk mechanism between the STAT3 and PKCβII signaling pathways provides the molecular basis for the tumor-induced blockade in the differentiation of myeloid cells, and suggest that enhancing PKCβII activity may be a therapeutic strategy to alleviate cancer-mediated suppression of the immune system.
Collapse
Affiliation(s)
- Matthew R Farren
- 1Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Huber R, Pietsch D, Günther J, Welz B, Vogt N, Brand K. Regulation of monocyte differentiation by specific signaling modules and associated transcription factor networks. Cell Mol Life Sci 2014; 71:63-92. [PMID: 23525665 PMCID: PMC11113479 DOI: 10.1007/s00018-013-1322-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Revised: 02/12/2013] [Accepted: 03/07/2013] [Indexed: 12/26/2022]
Abstract
Monocyte/macrophages are important players in orchestrating the immune response as well as connecting innate and adaptive immunity. Myelopoiesis and monopoiesis are characterized by the interplay between expansion of stem/progenitor cells and progression towards further developed (myelo)monocytic phenotypes. In response to a variety of differentiation-inducing stimuli, various prominent signaling pathways are activated. Subsequently, specific transcription factors are induced, regulating cell proliferation and maturation. This review article focuses on the integration of signaling modules and transcriptional networks involved in the determination of monocytic differentiation.
Collapse
Affiliation(s)
- René Huber
- Institute of Clinical Chemistry, Hannover Medical School, Carl-Neuberg-Str.1, 30625, Hannover, Germany,
| | | | | | | | | | | |
Collapse
|
11
|
Corsini E, Galbiati V, Esser PR, Pinto A, Racchi M, Marinovich M, Martin SF, Galli CL. Role of PKC-β in chemical allergen-induced CD86 expression and IL-8 release in THP-1 cells. Arch Toxicol 2013; 88:415-24. [PMID: 24136171 DOI: 10.1007/s00204-013-1144-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 10/07/2013] [Indexed: 10/26/2022]
Abstract
We previously demonstrated an age-related decrease in receptor for activated C-kinase (RACK-1) expression and functional deficit in Langerhans cells' responsiveness. This defect specifically involves the translocation of protein kinase C (PKC)-β. The purpose of this study was to investigate the role of RACK-1 and PKC-β in chemical allergen-induced CD86 expression and IL-8 release in the human promyelocytic cell line THP-1 and primary human dendritic cells (DC). Dinitrochlorobenzene, p-phenylenediamine and diethyl maleate were used as contact allergens. The selective cell-permeable inhibitor of PKC-β and the broad PKC inhibitor GF109203X completely prevented chemical allergen- or lipopolysaccharide (LPS)-induced CD86 expression and significantly modulated IL-8 release (50 % reduction). The selective cell-permeable inhibitor of PKC-ε (also known to bind to RACK-1) failed to modulate allergen- or LPS-induced CD86 expression or allergen-induced IL-8 release, while modulating LPS-induced IL-8 release. The use of a RACK-1 pseudosubstrate, which directly activates PKC-β, resulted in dose-related increase in CD86 expression and IL-8 release. Similar results were obtained with human DC, confirming the relevance of results obtained in THP-1 cells. Overall, our findings demonstrate the role of PKC-β and RACK-1 in allergen-induced CD86 expression and IL-8 production, supporting a central role of PKC-β in the initiation of chemical allergen-induced DC activation.
Collapse
Affiliation(s)
- Emanuela Corsini
- Laboratory of Toxicology, Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Università degli Studi di Milano, Via G. Balzaretti 9, 20133, Milan, Italy,
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Matsumoto T, Hasegawa H, Onishi S, Ishizaki J, Suemori K, Yasukawa M. Protein kinase C inhibitor generates stable human tolerogenic dendritic cells. THE JOURNAL OF IMMUNOLOGY 2013; 191:2247-57. [PMID: 23878315 DOI: 10.4049/jimmunol.1203053] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Tolerogenic dendritic cells (DCs) are a promising tool for a specific form of cellular therapy whereby immunological tolerance can be induced in the context of transplantation and autoimmunity. From libraries of bioactive lipids, nuclear receptor ligands, and kinase inhibitors, we screened conventional protein kinase C inhibitors (PKCIs) bisindolylmaleimide I, Gö6983, and Ro32-0432 with strong tolerogenic potential. PKCI-treated human DCs were generated by subjecting them to a maturation process after differentiation of immature DCs. The PKCI-treated DCs had a semimature phenotype, showing high production of IL-10, and efficiently induced IL-10-producing T cells and functional Foxp3(+) regulatory T cells from naive CD4(+) T cells, thus eliciting a strong immunosuppressive function. They also showed CCR7 expression and sufficient capacity for migration toward CCR7 ligands. Additionally, PKCI-treated DCs were highly stable when exposed to inflammatory stimuli such as proinflammatory cytokines or LPS. Conventional PKCIs inhibited NF-κB activation of both the canonical and noncanonical pathways of DC maturation, thus suppressing the expression of costimulatory molecules and IL-12 production. High production of IL-10 in PKCI-treated DCs was due to not only an increase of intracellular cAMP, but also a synergistic effect of increased cAMP and NF-κB inhibition. Moreover, PKCI-treated mouse DCs that had properties similar to PKCI-treated human DCs prevented graft-versus-host disease in a murine model of acute graft-versus-host disease. Conventional PKCI-treated DCs may be useful for tolerance-inducing therapy, as they satisfy the required functional characteristics for clinical-grade tolerogenic DCs.
Collapse
Affiliation(s)
- Takuya Matsumoto
- Department of Bioregulatory Medicine, Ehime University Graduate School of Medicine, Toon, Ehime 791-0295, Japan
| | | | | | | | | | | |
Collapse
|
13
|
Fangradt M, Hahne M, Gaber T, Strehl C, Rauch R, Hoff P, Löhning M, Burmester GR, Buttgereit F. Human monocytes and macrophages differ in their mechanisms of adaptation to hypoxia. Arthritis Res Ther 2012; 14:R181. [PMID: 22870988 PMCID: PMC3580576 DOI: 10.1186/ar4011] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 08/07/2012] [Indexed: 12/23/2022] Open
Abstract
Introduction Inflammatory arthritis is a progressive disease with chronic inflammation of joints, which is mainly characterized by the infiltration of immune cells and synovial hyperproliferation. Monocytes migrate towards inflamed areas and differentiate into macrophages. In inflamed tissues, much lower oxygen levels (hypoxia) are present in comparison to the peripheral blood. Hence, a metabolic adaptation process must take place. Other studies suggest that Hypoxia Inducible Factor 1-alpha (HIF-1α) may regulate this process, but the mechanism involved for human monocytes is not yet clear. To address this issue, we analyzed the expression and function of HIF-1α in monocytes and macrophages, but also considered alternative pathways involving nuclear factor of kappa light polypeptide gene enhancer in B-cells (NFκB). Methods Isolated human CD14+ monocytes were incubated under normoxia and hypoxia conditions with or without phorbol 12-myristate 13-acetate (PMA) stimulation, respectively. Nuclear and cytosolic fractions were prepared in order to detect HIF-1α and NFκB by immunoblot. For the experiments with macrophages, primary human monocytes were differentiated into human monocyte derived macrophages (hMDM) using human macrophage colony-stimulating factor (hM-CSF). The effects of normoxia and hypoxia on gene expression were compared between monocytes and hMDMs using quantitative PCR (quantitative polymerase chain reaction). Results We demonstrate, using primary human monocytes and hMDM, that the localization of transcription factor HIF-1α during the differentiation process is shifted from the cytosol (in monocytes) into the nucleus (in macrophages), apparently as an adaptation to a low oxygen environment. For this localization change, protein kinase C alpha/beta 1 (PKC-α/β1 ) plays an important role. In monocytes, it is NFκB1, and not HIF-1α, which is of central importance for the expression of hypoxia-adjusted genes. Conclusions These data demonstrate that during differentiation of monocytes into macrophages, crucial cellular adaptation mechanisms are decisively changed.
Collapse
|
14
|
Parathyroid hormone and the regulation of cell cycle in colon adenocarcinoma cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1813:1749-57. [PMID: 21703311 DOI: 10.1016/j.bbamcr.2011.06.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Revised: 04/27/2011] [Accepted: 06/01/2011] [Indexed: 11/23/2022]
Abstract
Parathyroid hormone (PTH) functions as a major mediator of bone remodeling and as an essential regulator of calcium homeostasis. In this study, we investigated the role of PTH in the regulation of the cell cycle in human colon adenocarcinoma Caco-2 cells. Flow cytometry analysis revealed that PTH (10(-8)M, 12-24h) treatment increases the number of cells in the G0/G1 phase and diminishes the number in both phases S and G2/M. In addition, analysis by Western blot showed that the hormone increases the expression of the inhibitory protein p27Kip1 and diminishes the expression of cyclin D1, cyclin D3 and CDK6. However, the amounts of CDK4, p21Cip1, p15INK4B and p16INK4A were not different in the absence or presence of PTH. Inhibitors of PKC (Ro-318220, bisindolylmaleimide and chelerythine), but not JNK (SP600125) and PP2A (okadaic acid and calyculin A), reversed PTH response in Caco-2 cells. Taken together, our results suggest that PTH induces G0/G1 phase arrest of Caco-2 intestinal cells and changes the expression of proteins involved in cell cycle regulation via the PKC signaling pathway.
Collapse
|
15
|
Chou MH, Chuang JH, Eng HL, Chen CM, Wang CH, Chen CL, Lin TM. Endotoxin and CD14 in the progression of biliary atresia. J Transl Med 2010; 8:138. [PMID: 21172039 PMCID: PMC3019188 DOI: 10.1186/1479-5876-8-138] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Accepted: 12/21/2010] [Indexed: 12/11/2022] Open
Abstract
Background Biliary atresia (BA) is a typical cholestatic neonatal disease, characterized by obliteration of intra- and/or extra-hepatic bile ducts. However, the mechanisms contributing to the pathogenesis of BA remain uncertain. Because of decreased bile flow, infectious complications and damaging endotoxemia occur frequently in patients with BA. The aim of this study was to investigate endotoxin levels in patients with BA and the relation of these levels with the expression of the endotoxin receptor, CD14. Methods The plasma levels of endotoxin and soluble CD14 were measured with a pyrochrome Limulus amebocyte lysate assay and enzyme-linked immunosorbent assay in patients with early-stage BA when they received the Kasai procedure (KP), in patients who were jaundice-free post-KP and followed-up at the outpatient department, in patients with late-stage BA when they received liver transplantation, and in patients with choledochal cysts. The correlation of CD14 expression with endotoxin levels in rats following common bile duct ligation was investigated. Results The results demonstrated a significantly higher hepatic CD14 mRNA and soluble CD14 plasma levels in patients with early-stage BA relative to those with late-stage BA. However, plasma endotoxin levels were significantly higher in both the early and late stages of BA relative to controls. In rat model, the results demonstrated that both endotoxin and CD14 levels were significantly increased in liver tissues of rats following bile duct ligation. Conclusions The significant increase in plasma endotoxin and soluble CD14 levels during BA implies a possible involvement of endotoxin stimulated CD14 production by hepatocytes in the early stage of BA for removal of endotoxin; whereas, endotoxin signaling likely induced liver injury and impaired soluble CD14 synthesis in the late stages of BA.
Collapse
Affiliation(s)
- Ming-Huei Chou
- Institute of Basic Medical Sciences, National Chang Kung University, Tainan, Taiwan
| | | | | | | | | | | | | |
Collapse
|
16
|
Lin YF, Leu SJ, Huang HM, Tsai YH. Selective activation of specific PKC isoforms dictating the fate of CD14+ monocytes towards differentiation or apoptosis. J Cell Physiol 2010; 226:122-31. [DOI: 10.1002/jcp.22312] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
17
|
Farren MR, Carlson LM, Lee KP. Tumor-mediated inhibition of dendritic cell differentiation is mediated by down regulation of protein kinase C beta II expression. Immunol Res 2010; 46:165-76. [PMID: 19756409 DOI: 10.1007/s12026-009-8118-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Tumor-mediated immune suppression occurs through multiple mechanisms, including dysregulation of dendritic cell differentiation. This block in differentiation results in fewer dendritic cells and an accumulation of immunosuppressive myeloid- derived suppressor cells and is thought to contribute to tumor outgrowth and to act as an impediment to successful anti-cancer immunotherapy. Tumor-mediated myeloid dysregulation is known to be Stat3 dependent; however, the molecular mechanism of this Stat3 signaling remains poorly defined. We have previously shown that PKC betaII is required for dendritic cell differentiation. Here, we describe our finding that tumors mediate both Stat3 activation and PKC betaII down regulation in DC progenitor cells, a process mimicked by the expression of a constitutive active Stat3 mutant. This demonstrates that tumor-mediated myeloid dysregulation may be mediated by Stat3- induced PKC betaII down regulation.
Collapse
Affiliation(s)
- Matthew R Farren
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | | | | |
Collapse
|
18
|
Specific subcellular targeting of PKCα and PKCε in normal and tumoral lactotroph cells by PMA-mitogenic stimulus. J Mol Histol 2010; 40:417-25. [DOI: 10.1007/s10735-010-9255-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Accepted: 02/09/2010] [Indexed: 10/19/2022]
|
19
|
Naidu S, Wijayanti N, Santoso S, Kietzmann T, Immenschuh S. An Atypical NF-κB-Regulated Pathway Mediates Phorbol Ester-Dependent Heme Oxygenase-1 Gene Activation in Monocytes. THE JOURNAL OF IMMUNOLOGY 2008; 181:4113-23. [DOI: 10.4049/jimmunol.181.6.4113] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
20
|
Petiti JP, De Paul AL, Gutiérrez S, Palmeri CM, Mukdsi JH, Torres AI. Activation of PKC epsilon induces lactotroph proliferation through ERK1/2 in response to phorbol ester. Mol Cell Endocrinol 2008; 289:77-84. [PMID: 18534741 DOI: 10.1016/j.mce.2008.04.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2007] [Revised: 04/09/2008] [Accepted: 04/18/2008] [Indexed: 10/22/2022]
Abstract
The aim of this investigation was to contribute to current knowledge about intracellular mechanisms that are involved in lactotroph cell proliferation, by evaluating the role of PKCalpha, PKCepsilon and extracellular-signal regulated kinase (ERK) 1/2 in response to phorbol 12-myristate13-acetate (PMA). In primary pituitary cultures, the activation of protein kinase C (PKC) by PMA for 15 min stimulated lactotroph proliferation; whereas a prolonged activation for 3-8h diminished this proliferative effect. The use of PMA for 15 min-activated PKCepsilon and ERK1/2, whereas incubation with PMA for 3 h induced PKCalpha activation and attenuated the PMA-triggered phosphorylation of ERK1/2. The following inhibitors: PKCs (bisindolylmaleimide I), PKCepsilon (epsilonV1 peptide) and ERK1/2 (PD98059) prevented the mitogenic activity induced by PMA for 15 min. Lactotroph cells stimulated with PMA for 15 min showed a translocation of PKCepsilon to membrane compartment and nucleus. These results thus establish that PKCepsilon plays an essential role in the lactotroph proliferation induced by PMA by triggering signals that involve ERK1/2 activation.
Collapse
Affiliation(s)
- Juan Pablo Petiti
- Centro de Microscopía Electrónica, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Haya de la Torre esq. Enrique Barros, 5000 Córdoba, Argentina.
| | | | | | | | | | | |
Collapse
|