1
|
Korff C, Atkinson E, Adaway M, Klunk A, Wek RC, Vashishth D, Wallace JM, Anderson-Baucum EK, Evans-Molina C, Robling AG, Bidwell JP. NMP4, an Arbiter of Bone Cell Secretory Capacity and Regulator of Skeletal Response to PTH Therapy. Calcif Tissue Int 2023; 113:110-125. [PMID: 37147466 PMCID: PMC10330242 DOI: 10.1007/s00223-023-01088-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/21/2023] [Indexed: 05/07/2023]
Abstract
The skeleton is a secretory organ, and the goal of some osteoporosis therapies is to maximize bone matrix output. Nmp4 encodes a novel transcription factor that regulates bone cell secretion as part of its functional repertoire. Loss of Nmp4 enhances bone response to osteoanabolic therapy, in part, by increasing the production and delivery of bone matrix. Nmp4 shares traits with scaling factors, which are transcription factors that influence the expression of hundreds of genes to govern proteome allocation for establishing secretory cell infrastructure and capacity. Nmp4 is expressed in all tissues and while global loss of this gene leads to no overt baseline phenotype, deletion of Nmp4 has broad tissue effects in mice challenged with certain stressors. In addition to an enhanced response to osteoporosis therapies, Nmp4-deficient mice are less sensitive to high fat diet-induced weight gain and insulin resistance, exhibit a reduced disease severity in response to influenza A virus (IAV) infection, and resist the development of some forms of rheumatoid arthritis. In this review, we present the current understanding of the mechanisms underlying Nmp4 regulation of the skeletal response to osteoanabolics, and we discuss how this unique gene contributes to the diverse phenotypes among different tissues and stresses. An emerging theme is that Nmp4 is important for the infrastructure and capacity of secretory cells that are critical for health and disease.
Collapse
Affiliation(s)
- Crystal Korff
- Department of Medical and Molecular Genetics, Indiana University School of Medicine (IUSM), Indianapolis, IN, 46202, USA
| | - Emily Atkinson
- Department of Anatomy, Cell Biology & Physiology, IUSM, Indianapolis, IN, 46202, USA
| | - Michele Adaway
- Department of Anatomy, Cell Biology & Physiology, IUSM, Indianapolis, IN, 46202, USA
| | - Angela Klunk
- Department of Anatomy, Cell Biology & Physiology, IUSM, Indianapolis, IN, 46202, USA
| | - Ronald C Wek
- Department of Biochemistry and Molecular Biology, IUSM, Indianapolis, IN, USA
| | - Deepak Vashishth
- Center for Biotechnology & Interdisciplinary Studies and Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Joseph M Wallace
- Department of Biomedical Engineering, Indiana University-Purdue University at Indianapolis, Indianapolis, IN, 46202, USA
- Indiana Center for Musculoskeletal Health, IUSM, Indianapolis, IN, USA
| | - Emily K Anderson-Baucum
- Department of Pediatrics and the Herman B Wells Center for Pediatric Research, IUSM, Indianapolis, IN, USA
| | - Carmella Evans-Molina
- Department of Pediatrics and the Herman B Wells Center for Pediatric Research, IUSM, Indianapolis, IN, USA
- Center for Diabetes and Metabolic Disease and the Wells Center for Pediatric Research, IUSM, Indianapolis, IN, USA
- Richard L. Roudebush VA Medical Center, Indianapolis, IN, 46202, USA
- Department of Medicine, IUSM, Indianapolis, IN, USA
| | - Alexander G Robling
- Department of Anatomy, Cell Biology & Physiology, IUSM, Indianapolis, IN, 46202, USA
- Indiana Center for Musculoskeletal Health, IUSM, Indianapolis, IN, USA
- Richard L. Roudebush VA Medical Center, Indianapolis, IN, 46202, USA
| | - Joseph P Bidwell
- Department of Anatomy, Cell Biology & Physiology, IUSM, Indianapolis, IN, 46202, USA.
- Indiana Center for Musculoskeletal Health, IUSM, Indianapolis, IN, USA.
| |
Collapse
|
2
|
Yang B, Zhang W, Sun L, Lu B, Yin C, Zhang Y, Jiang H. Creatine kinase brain-type regulates BCAR1 phosphorylation to facilitate DNA damage repair. iScience 2023; 26:106684. [PMID: 37182100 PMCID: PMC10173731 DOI: 10.1016/j.isci.2023.106684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/07/2023] [Accepted: 04/13/2023] [Indexed: 05/16/2023] Open
Abstract
Creatine kinase (CK) is an essential metabolic enzyme mediating creatine/phosphocreatine interconversion and shuttle to replenish ATP for energy needs. Ablation of CK causes a deficiency in energy supply that eventually results in reduced muscle burst activity and neurological disorders in mice. Besides the well-established role of CK in energy-buffering, the mechanism underlying the non-metabolic function of CK is poorly understood. Here we demonstrate that creatine kinase brain-type (CKB) may function as a protein kinase to regulate BCAR1 Y327 phosphorylation that enhances the association between BCAR1 and RBBP4. Then the complex of BCAR1 and RPPB4 binds to the promoter region of DNA damage repair gene RAD51 and activates its transcription by modulating histone H4K16 acetylation to ultimately promote DNA damage repair. These findings reveal the possible role of CKB independently of its metabolic function and depict the potential pathway of CKB-BCAR1-RBBP4 operating in DNA damage repair.
Collapse
Affiliation(s)
- Bo Yang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Wentao Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Le Sun
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bin Lu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
| | - Changsong Yin
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
| | - Yaoyang Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong Jiang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Corresponding author
| |
Collapse
|
3
|
Choi RB, Robling AG. The Wnt pathway: An important control mechanism in bone's response to mechanical loading. Bone 2021; 153:116087. [PMID: 34271473 PMCID: PMC8478810 DOI: 10.1016/j.bone.2021.116087] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/01/2021] [Accepted: 06/21/2021] [Indexed: 10/25/2022]
Abstract
The conversion of mechanical energy into biochemical changes within living cells is process known as mechanotransduction. Bone is a quintessential tissue for studying the molecular mechanisms of mechanotransduction, as the skeleton's mechanical competence is crucial for vertebrate movement. Bone cell mechanotransduction is facilitated by a number of cell biological pathways, one of the most prominent of which is the Wnt signaling cascade. The Wnt co-receptor Lrp5 has been identified as a crucial protein for mechanical signaling in bone, and modifiers of Lrp5 activity play important roles in mediating signaling efficiency through Lrp5, including sclerostin, Dkk1, and the co-receptor Lrp4. Mechanical regulation of sclerostin is mediated by certain members of the Hdac family. Other mechanisms that influence Wnt signaling-some of which are mechanoresponsive-are coming to light, including R-spondins and their role in organizing the Rnf43/Znrf3 and Lgr4/5/6 complex that liberates Lrp5. While the identity of the key Wnt proteins involved in bone cell mechanical signaling are elusive, the likely pool of key players is narrowing. Identification of Wnt-based molecular targets that can be modulated pharmacologically to make mechanical stimulation (e.g., exercise) more beneficial is an emerging approach to improving skeletal integrity and reducing fracture risk.
Collapse
Affiliation(s)
- Roy B Choi
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Alexander G Robling
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Biomedical Engineering, Indiana University-Purdue University at Indianapolis, Indianapolis, IN, USA; Richard L. Roudebush Veterans Affairs Medical Center, Indianapolis, IN, USA; Indiana Center for Musculoskeletal Health, Indianapolis, IN, USA.
| |
Collapse
|
4
|
Jimi E, Honda H, Nakamura I. The unique function of p130Cas in regulating the bone metabolism. Pharmacol Ther 2021; 230:107965. [PMID: 34391790 DOI: 10.1016/j.pharmthera.2021.107965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 07/20/2021] [Indexed: 11/19/2022]
Abstract
p130 Crk-associated substrate (Cas) functions as an adapter protein and plays important roles in certain cell functions, such as cell proliferation, spreading, migration, and invasion. Furthermore, it has recently been reported to have a new function as a mechanosensor. Since bone is a tissue that is constantly under gravity, it is exposed to mechanical stress. Mechanical unloading, such as in a microgravity environment in space or during bed rest, leads to a decrease in bone mass because of the suppression of bone formation and the stimulation of bone resorption. Osteoclasts are multinucleated bone-resorbing giant cells that recognize bone and then form a ruffled border in the resorption lacuna. p130Cas is a molecule located downstream of c-Src that is important for the formation of a ruffled border in osteoclasts. Indeed, osteoclast-specific p130Cas-deficient mice exhibit osteopetrosis due to osteoclast dysfunction, similar to c-Src-deficient mice. Osteoblasts subjected to mechanical stress induce both the phosphorylation of p130Cas and osteoblast differentiation. In osteocytes, mechanical stress regulates bone mass by shuttling p130Cas between the cytoplasm and nucleus. Oral squamous cell carcinoma (OSCC) cells express p130Cas more strongly than epithelial cells in normal tissues. The knockdown of p130Cas in OSCC cells suppressed the cell growth, the expression of receptor activator of NF-κB ligand, which induces osteoclast formation, and bone invasion by OSCC. Taken together, these findings suggest that p130Cas might be a novel therapeutic target molecule in bone diseases, such as osteoporosis, rheumatoid arthritis, bone loss due to bed rest, and bone invasion and metastasis of cancer.
Collapse
Affiliation(s)
- Eijiro Jimi
- Oral Health/Brain Health/Total Health Research Center, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; Laboratory of Molecular and Cellular Biochemistry, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| | - Hiroaki Honda
- Field of Human Disease Models, Major in Advanced Life Sciences and Medicine, Institute of Laboratory Animals, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan
| | - Ichiro Nakamura
- Department of Rehabilitation, Yugawara Hospital, Japan Community Health Care Organization, 2-21-6 Chuo, Yugawara, Ashigara-shimo, Kanagawa 259-0396, Japan
| |
Collapse
|
5
|
Guo AK, Itahana Y, Seshachalam VP, Chow HY, Ghosh S, Itahana K. Mutant TP53 interacts with BCAR1 to contribute to cancer cell invasion. Br J Cancer 2021; 124:299-312. [PMID: 33144694 PMCID: PMC7782524 DOI: 10.1038/s41416-020-01124-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 08/10/2020] [Accepted: 09/22/2020] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Mutant TP53 interacts with other proteins to produce gain-of-function properties that contribute to cancer metastasis. However, the underlying mechanisms are still not fully understood. METHODS Using immunoprecipitation and proximity ligation assays, we evaluated breast cancer anti-estrogen resistance 1 (BCAR1) as a novel binding partner of TP53R273H, a TP53 mutant frequently found in human cancers. The biological functions of their binding were examined by the transwell invasion assay. Clinical outcome of patients was analysed based on TP53 status and BCAR1 expression using public database. RESULTS We discovered a novel interaction between TP53R273H and BCAR1. We found that BCAR1 translocates from the cytoplasm into the nucleus and binds to TP53R273H in a manner dependent on SRC family kinases (SFKs), which are known to enhance metastasis. The expression of full-length TP53R273H, but not the BCAR1 binding-deficient mutant TP53R273HΔ102-207, promoted cancer cell invasion. Furthermore, among the patients with mutant TP53, high BCAR1 expression was associated with a poorer prognosis. CONCLUSIONS The interaction between TP53R273H and BCAR1 plays an important role in enhancing cancer cell invasion. Thus, our study suggests a disruption of the TP53R273H-BCAR1 binding as a potential therapeutic approach for TP53R273H-harbouring cancer patients.
Collapse
Affiliation(s)
- Alvin Kunyao Guo
- Cancer and Stem Cell Biology Programme, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Yoko Itahana
- Cancer and Stem Cell Biology Programme, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
| | | | - Hui Ying Chow
- School of Applied Science, Temasek Polytechnic, 21 Tampines Avenue 1, Singapore, 529757, Singapore
| | - Sujoy Ghosh
- Centre for Computational Biology, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Koji Itahana
- Cancer and Stem Cell Biology Programme, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore.
| |
Collapse
|
6
|
Paiva KBS, Granjeiro JM. Matrix Metalloproteinases in Bone Resorption, Remodeling, and Repair. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 148:203-303. [PMID: 28662823 DOI: 10.1016/bs.pmbts.2017.05.001] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Matrix metalloproteinases (MMPs) are the major protease family responsible for the cleavage of the matrisome (global composition of the extracellular matrix (ECM) proteome) and proteins unrelated to the ECM, generating bioactive molecules. These proteins drive ECM remodeling, in association with tissue-specific and cell-anchored inhibitors (TIMPs and RECK, respectively). In the bone, the ECM mediates cell adhesion, mechanotransduction, nucleation of mineralization, and the immobilization of growth factors to protect them from damage or degradation. Since the first description of an MMP in bone tissue, many other MMPs have been identified, as well as their inhibitors. Numerous functions have been assigned to these proteins, including osteoblast/osteocyte differentiation, bone formation, solubilization of the osteoid during bone resorption, osteoclast recruitment and migration, and as a coupling factor in bone remodeling under physiological conditions. In turn, a number of pathologies, associated with imbalanced bone remodeling, arise mainly from MMP overexpression and abnormalities of the ECM, leading to bone osteolysis or bone formation. In this review, we will discuss the functions of MMPs and their inhibitors in bone cells, during bone remodeling, pathological bone resorption (osteoporosis and bone metastasis), bone repair/regeneration, and emergent roles in bone bioengineering.
Collapse
Affiliation(s)
- Katiucia B S Paiva
- Laboratory of Extracellular Matrix Biology and Cellular Interaction (LabMec), Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil.
| | - José M Granjeiro
- National Institute of Metrology, Quality and Technology (InMetro), Bioengineering Laboratory, Duque de Caxias, RJ, Brazil; Fluminense Federal University, Dental School, Niterói, RJ, Brazil
| |
Collapse
|
7
|
Bakker AD, Gakes T, Hogervorst JMA, de Wit GMJ, Klein-Nulend J, Jaspers RT. Mechanical Stimulation and IGF-1 Enhance mRNA Translation Rate in Osteoblasts Via Activation of the AKT-mTOR Pathway. J Cell Physiol 2015; 231:1283-90. [PMID: 26505782 DOI: 10.1002/jcp.25228] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 10/26/2015] [Indexed: 01/31/2023]
Abstract
Insulin-like growth factor-1 (IGF-1) is anabolic for muscle by enhancing the rate of mRNA translation via activation of AKT and subsequent activation of the mammalian target of rapamycin complex 1 (mTOR), thereby increasing cellular protein production. IGF-1 is also anabolic for bone, but whether the mTOR pathway plays a role in the rate of bone matrix protein production by osteoblasts is unknown. We hypothesized that anabolic stimuli such as mechanical loading and IGF-1 stimulate protein synthesis in osteoblasts via activation of the AKT-mTOR pathway. MC3T3-E1 osteoblasts were either or not subjected for 1 h to mechanical loading by pulsating fluid flow (PFF) or treated with or without human recombinant IGF-1 (1-100 ng/ml) for 0.5-6 h, to determine phosphorylation of AKT and p70S6K (downstream of mTOR) by Western blot. After 4 days of culture with or without the mTOR inhibitor rapamycin, total protein, DNA, and gene expression were quantified. IGF-1 (100 ng/ml) reduced IGF-1 gene expression, although PFF enhanced IGF-1 expression. IGF-1 did not affect collagen-I gene expression. IGF-1 dose-dependently enhanced AKT and p70S6K phosphorylation at 2 and 6 h. PFF enhanced phosphorylation of AKT and p70S6K already within 1 h. Both IGF-1 and PFF enhanced total protein per cell by ∼30%, but not in the presence of rapamycin. Our results show that IGF-1 and PFF activate mTOR, thereby stimulating the rate of mRNA translation in osteoblasts. The known anabolic effect of mechanical loading and IGF-1 on bone may thus be partly explained by mTOR-mediated enhanced protein synthesis in osteoblasts.
Collapse
Affiliation(s)
- Astrid D Bakker
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, MOVE Research Institute Amsterdam, Amsterdam, The Netherlands
| | - Tom Gakes
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, MOVE Research Institute Amsterdam, Amsterdam, The Netherlands
| | - Jolanda M A Hogervorst
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, MOVE Research Institute Amsterdam, Amsterdam, The Netherlands
| | - Gerard M J de Wit
- Laboratory for Myology, Research Institute MOVE Amsterdam, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, The Netherlands
| | - Jenneke Klein-Nulend
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, MOVE Research Institute Amsterdam, Amsterdam, The Netherlands
| | - Richard T Jaspers
- Laboratory for Myology, Research Institute MOVE Amsterdam, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, The Netherlands
| |
Collapse
|
8
|
Nakamoto T, Izu Y, Kawasaki M, Notomi T, Hayata T, Noda M, Ezura Y. Mice Deficient in CIZ/NMP4 Develop an Attenuated Form of K/BxN-Serum Induced Arthritis. J Cell Biochem 2015; 117:970-7. [PMID: 26378628 DOI: 10.1002/jcb.25382] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Accepted: 09/15/2015] [Indexed: 01/08/2023]
Abstract
CIZ/NMP4 (Cas interacting zinc finger protein, Nmp4, Zfp384) is a transcription factor that is known to regulate matrix related-proteins. To explore the possible pathophysiological role of CIZ/NMP4 in arthritis, we examined CIZ/NMP4 expression in articular cartilage in arthritis model. CIZ/NMP4 was expressed in the articular chondrocytes of mice at low levels while its expression was enhanced when arthritis was induced. Arthritis induction increased clinical score in wild type mice. In contrast, CIZ/NMP4 deficiency suppressed such rise in the levels of arthritis score and swelling of soft tissue. CIZ/NMP4 deficiency also reduced invasion of inflammatory cells in joint tissue. Quantitative PCR analyses of mRNA from joints revealed that arthritis-induced increase in expressions of IL-1β was suppressed by CIZ/NMP4 deficiency. CIZ/NMP4 bound to IL-1β promoter and activated its transcription. The increase in CIZ/NMP4 in arthritis was also associated with enhancement in bone resorption and cartilage matrix degradation. In fact, RANKL, a signaling molecule prerequisite for osteoclastogenesis and, MMP-3, a clinical marker for arthritis were increased in joints upon arthritis induction. In contrast, CIZ/NMP4 deficiency suppressed the arthritis-induced increase in bone resorption, expression of RANKL and MMP-3 mRNA. Thus, CIZ/NMP4 plays a role in the development of arthritis at least in part through regulation of key molecules related to the arthritis.
Collapse
Affiliation(s)
- Tetsuya Nakamoto
- Department of Molecular Pharmacology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, 113-8510, Japan
| | - Yayoi Izu
- Department of Molecular Pharmacology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, 113-8510, Japan
| | - Makiri Kawasaki
- Department of Molecular Pharmacology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, 113-8510, Japan
| | - Takuya Notomi
- Department of Molecular Pharmacology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, 113-8510, Japan
| | - Tadayoshi Hayata
- Department of Molecular Pharmacology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, 113-8510, Japan
| | - Masaki Noda
- Department of Molecular Pharmacology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, 113-8510, Japan
| | - Yoichi Ezura
- Department of Molecular Pharmacology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, 113-8510, Japan
| |
Collapse
|
9
|
Dixon JA, Gorman RC, Stroud RE, Mukherjee R, Meyer EC, Baker NL, Morita M, Hamamoto H, Ryan LP, Gorman JH, Spinale FG. Targeted regional injection of biocomposite microspheres alters post-myocardial infarction remodeling and matrix proteolytic pathways. Circulation 2011; 124:S35-45. [PMID: 21911817 DOI: 10.1161/circulationaha.111.035774] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Although localized delivery of biocomposite materials, such as calcium hydroxyapatite (CHAM), have been demonstrated to potentially attenuate adverse left ventricular (LV) remodeling after myocardial infarction (MI), the underlying biological mechanisms for this effect remain unclear. This study tested the hypothesis that targeted CHAM injections would alter proteolytic pathways (matrix metalloproteinases [MMPs] and tissue inhibitors of MMPs [TIMPs]) and would be associated with parameters of post-MI LV remodeling. METHODS AND RESULTS MI was induced in adult sheep followed by 20 targeted injections of a total volume of 1.3 mL (n=6) or 2.6 mL of CHAM (n=5) or saline (n=13) and LV end-diastolic volume (EDV) and MMP/TIMP profiles in the MI region were measured at 8 weeks after MI. LV EDV decreased with 2.6 mL CHAM versus MI only (105.4 ± 7.5 versus 80.6 ± 4.2 respectively, P<0.05) but not with 1.3 mL CHAM (94.5 ± 5.0, P=0.32). However, MI thickness increased by 2-fold in both CHAM groups compared with MI only (P<0.05). MMP-13 increased 40-fold in the MI only group (P<0.05) but fell by >6-fold in both CHAM groups (P<0.05). MMP-7 increased approximately 1.5-fold in the MI only group (P<0.05) but decreased to referent control values in both CHAM groups in the MI region (P<0.05). Collagen content was reduced by approximately 30% in the CHAM groups compared with MI only (P<0.05). CONCLUSIONS Differential effects on LV remodeling and MMP/TIMP profiles occurred with CHAM. Thus, targeted injection of a biocomposite material can favorably affect the post-MI remodeling process and therefore holds promise as a treatment strategy in and of itself, or as a matrix with potentially synergistic effects with localized pharmacological or cellular therapies.
Collapse
Affiliation(s)
- Jennifer A Dixon
- Cardiothoracic Surgery, Medical University of SouthCarolina and Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Brindley D, Moorthy K, Lee JH, Mason C, Kim HW, Wall I. Bioprocess forces and their impact on cell behavior: implications for bone regeneration therapy. J Tissue Eng 2011; 2011:620247. [PMID: 21904661 PMCID: PMC3166560 DOI: 10.4061/2011/620247] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Accepted: 06/17/2011] [Indexed: 12/15/2022] Open
Abstract
Bioprocess forces such as shear stress experienced during routine cell culture are considered to be harmful to cells. However, the impact of physical forces on cell behavior is an area of growing interest within the tissue engineering community, and it is widely acknowledged that mechanical stimulation including shear stress can enhance osteogenic differentiation. This paper considers the effects of bioprocess shear stress on cell responses such as survival and proliferation in several contexts, including suspension-adapted cells used for recombinant protein and monoclonal antibody manufacture, adherent cells for therapy in suspension, and adherent cells attached to their growth substrates. The enhanced osteogenic differentiation that fluid flow shear stress is widely found to induce is discussed, along with the tissue engineering of mineralized tissue using perfusion bioreactors. Recent evidence that bioprocess forces produced during capillary transfer or pipetting of cell suspensions can enhance osteogenic responses is also discussed.
Collapse
Affiliation(s)
- David Brindley
- Department of Biochemical Engineering, University College London, Torrington Place, London WC1E 7JE, UK
| | | | | | | | | | | |
Collapse
|
11
|
Kim BG, Park YJ, Libermann TA, Cho JY. PTH regulates myleoid ELF-1-like factor (MEF)-induced MAB-21-like-1 (MAB21L1) expression through the JNK1 pathway. J Cell Biochem 2011; 112:2051-61. [DOI: 10.1002/jcb.23124] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
12
|
Non-overlapping functions for Pyk2 and FAK in osteoblasts during fluid shear stress-induced mechanotransduction. PLoS One 2011; 6:e16026. [PMID: 21283581 PMCID: PMC3026802 DOI: 10.1371/journal.pone.0016026] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Accepted: 12/03/2010] [Indexed: 11/25/2022] Open
Abstract
Mechanotransduction, the process by which cells convert external mechanical stimuli such as fluid shear stress (FSS) into biochemical changes, plays a critical role in maintenance of the skeleton. We have proposed that mechanical stimulation by FSS across the surfaces of bone cells results in formation of unique signaling complexes called mechanosomes that are launched from sites of adhesion with the extracellular matrix and with other bone cells [1]. Deformation of adhesion complexes at the cell membrane ultimately results in alteration of target gene expression. Recently, we reported that focal adhesion kinase (FAK) functions as a part of a mechanosome complex that is required for FSS-induced mechanotransduction in bone cells. This study extends this work to examine the role of a second member of the FAK family of non-receptor protein tyrosine kinases, proline-rich tyrosine kinase 2 (Pyk2), and determine its role during osteoblast mechanotransduction. We use osteoblasts harvested from mice as our model system in this study and compared the contributions of Pyk2 and FAK during FSS induced mechanotransduction in osteoblasts. We exposed Pyk2+/+ and Pyk2−/− primary calvarial osteoblasts to short period of oscillatory fluid flow and analyzed downstream activation of ERK1/2, and expression of c-fos, cyclooxygenase-2 and osteopontin. Unlike FAK, Pyk2 was not required for fluid flow-induced mechanotransduction as there was no significant difference in the response of Pyk2+/+ and Pyk2−/− osteoblasts to short periods of fluid flow (FF). In contrast, and as predicted, FAK−/− osteoblasts were unable to respond to FF. These data indicate that FAK and Pyk2 have distinct, non-redundant functions in launching mechanical signals during osteoblast mechanotransduction. Additionally, we compared two methods of generating FF in both cell types, oscillatory pump method and another orbital platform method. We determined that both methods of generating FF induced similar responses in both primary calvarial osteoblasts and immortalized calvarial osteoblasts.
Collapse
|
13
|
Affiliation(s)
- Joseph P Bidwell
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | | |
Collapse
|
14
|
Abstract
We introduced the mechanosome hypothesis in 2003 as a heuristic model for investigating mechanotransduction in bone (Pavalko et al., J Cell Biochem, 2003, 88(1):104-112). This model suggested specific approaches for investigating how mechanical information is conveyed from the membrane of the sensor bone cell to the target genes and how this transmitted information from the membrane is converted into changes in transcription. The key concepts underlying the mechanosome hypothesis are that load-induced deformation of bone deforms the sensor cell membrane; embedded in the membrane are the focal adhesion and cadherin-catenin complexes, which in turn are physically connected to the chromatin via a solid-state scaffold. The physical stimulation of the membrane launches multiprotein complexes (mechanosomes) from the adhesion platforms while concomitantly tugging target genes into position for contact with the incoming mechanosomes, the carriers of the mechanical information to the nucleus. The mechanosome is comprised of an adhesion-associated protein and a nucleocytoplasmic shuttling transcription factor. Upon arrival at the target gene, mechanosomes alter DNA conformation and thus influence the interactions between trans-acting proteins along the gene, changing gene activity. Here, we update significant progress related to the mechanosome concept since publication of our original hypothesis. The launching of adhesion- and cytoskeletal-associated proteins into the nucleus toward target genes appears to be a common mechanism for regulating cell response to changes in its mechanical microenvironment.
Collapse
Affiliation(s)
- Joseph P Bidwell
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | |
Collapse
|
15
|
Yang Z, Bidwell JP, Young SR, Gerard-O'Riley R, Wang H, Pavalko FM. Nmp4/CIZ inhibits mechanically induced beta-catenin signaling activity in osteoblasts. J Cell Physiol 2010; 223:435-41. [PMID: 20112285 DOI: 10.1002/jcp.22057] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Cellular mechanotransduction, the process of converting mechanical signals into biochemical responses within cells, is a critical aspect of bone health. While the effects of mechanical loading on bone are well recognized, elucidating the specific molecular pathways involved in the processing of mechanical signals by bone cells represents a challenge and an opportunity to identify therapeutic strategies to combat bone loss. In this study we have for the first time examined the relationship between the nucleocytoplasmic shuttling transcription factor nuclear matrix protein-4/cas interacting zinc finger protein (Nmp4/CIZ) and beta-catenin signaling in response to a physiologic mechanical stimulation (oscillatory fluid shear stress, OFSS) in osteoblasts. Using calvaria-derived osteoblasts from Nmp4-deficient and wild-type mice, we found that the normal translocation of beta-catenin to the nucleus in osteoblasts that is induced by OFSS is enhanced when Nmp4/CIZ is absent. Furthermore, we found that other aspects of OFSS-induced mechanotransduction generally associated with the beta-catenin signaling pathway, including ERK, Akt, and GSK3beta activity, as well as expression of the beta-catenin-responsive protein cyclin D1 are also enhanced in cells lacking Nmp4/CIZ. Finally, we found that in the absence of Nmp4/CIZ, OFSS-induced cytoskeletal reorganization and the formation of focal adhesions between osteoblasts and the extracellular substrate is qualitatively enhanced, suggesting that Nmp4/CIZ may reduce the sensitivity of bone cells to mechanical stimuli. Together these results provide experimental support for the concept that Nmp4/CIZ plays an inhibitory role in the response of bone cells to mechanical stimulation induced by OFSS.
Collapse
Affiliation(s)
- Zhouqi Yang
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | | | | | | | | | |
Collapse
|
16
|
Mechanisms for osteogenic differentiation of human mesenchymal stem cells induced by fluid shear stress. Biomech Model Mechanobiol 2010; 9:659-70. [DOI: 10.1007/s10237-010-0206-x] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2009] [Accepted: 03/02/2010] [Indexed: 12/19/2022]
|
17
|
Childress P, Robling AG, Bidwell JP. Nmp4/CIZ: road block at the intersection of PTH and load. Bone 2010; 46:259-66. [PMID: 19766748 PMCID: PMC2818167 DOI: 10.1016/j.bone.2009.09.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2009] [Revised: 09/10/2009] [Accepted: 09/14/2009] [Indexed: 11/17/2022]
Abstract
Teriparatide (parathyroid hormone, [PTH]) is the only FDA-approved drug that replaces bone lost to osteoporosis. Enhancing PTH efficacy will improve cost-effectiveness and ameliorate contraindications. Combining this hormone with load-bearing exercise may enhance therapeutic potential consistent with a growing body of evidence that these agonists are synergistic and share common signaling pathways. Additionally, neutralizing molecules that naturally suppress the anabolic response to PTH may also improve the efficacy of treatment with this hormone. Nmp4/CIZ (nuclear matrix protein 4/cas interacting zinc finger)-null mice have enhanced responses to intermittent PTH with respect to increasing trabecular bone mass and are also immune to disuse-induced bone loss likely by the removal of Nmp4/CIZ suppressive action on osteoblast function. Nmp4/CIZ activity may be sensitive to changes in the mechanical environment of the bone cell brought about by hormone- or mechanical load-induced changes in cell shape and adhesion. Nmp4 was identified in a screen for PTH-responsive nuclear matrix architectural transcription factors (ATFs) that we proposed translate hormone-induced changes in cell shape and adhesion into changes in target gene DNA conformation. CIZ was independently identified as a nucleocytoplasmic shuttling transcription factor associating with the mechano-sensitive focal adhesion proteins p130Cas and zxyin. The p130Cas/zyxin/Nmp4/CIZ pathway resembles the beta-catenin/TCF/LEF1 mechanotransduction response limb and both share features with the HMGB1 (high mobility group box 1)/RAGE (receptor for advanced glycation end products) signaling axis. Here we describe Nmp4/CIZ within the context of the PTH-induced anabolic response and consider the place of this molecule in the hierarchy of the PTH-load response network.
Collapse
Affiliation(s)
- Paul Childress
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | |
Collapse
|
18
|
Robling AG, Childress P, Yu J, Cotte J, Heller A, Philip BK, Bidwell JP. Nmp4/CIZ suppresses parathyroid hormone-induced increases in trabecular bone. J Cell Physiol 2009; 219:734-43. [PMID: 19189321 DOI: 10.1002/jcp.21717] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The nucleocytoplasmic shuttling transcription factor Nmp4/CIZ (nuclear matrix protein 4/cas interacting zinc finger protein) is a ubiquitously expressed protein that regulates both cytoplasmic and nuclear activities. In the nucleus, Nmp4/CIZ represses transcription of genes crucial to osteoblast differentiation and genes activated by various anabolic stimuli, including parathyroid hormone (PTH). We investigated the role of Nmp4/CIZ in the PTH-induced increase in bone by engineering mice with loss-of-function mutations in the Nmp4/CIZ gene, and treating 10-week-old female mice with anabolic doses of human PTH (1-34) at 30 microg/kg/day, 7 day/week, for 7 weeks or vehicle control. The untreated, baseline phenotype of the Nmp4-null mice between 8 and 16 weeks of age included a modest but significant increase in bone mineral density (BMD) and bone mineral content (BMC) compared to wild-type (WT) mice. Type I collagen mRNA expression was moderately elevated in the femurs of the Nmp4-null mice. The Nmp4 mutant alleles decreased body weight by 4% when expressed on a mixed background but the same alleles on a pure B6 background yielded a significant, 15% increase in body weight among the KO mice, compared to their WT controls. Hormone treatment equally enhanced BMD and BMC over vehicle-treated mice in both the WT and Nmp4-null groups but Nmp4-KO mice exhibited a significantly greater PTH-induced acquisition of femoral trabecular bone as compared to WT mice. These data support our hypothesis that Nmp4/CIZ is a transcriptional attenuator that suppresses osteoid synthesis and PTH-mediated acquisition of cancellous bone. J. Cell. Physiol. 219: 734-743, 2009. (c) 2009 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- Alexander G Robling
- Department of Anatomy & Cell Biology, Indiana University School of Medicine (IUSM), Indianapolis, Indiana, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
Mechanical loading of bone is important for maintenance of bone mass and structural stability of the skeleton. When bone is mechanically loaded, movement of fluid within the spaces surrounding bone cells generates fluid shear stress (FSS) that stimulates osteoblasts, resulting in enhanced anabolic activity. The mechanisms by which osteoblasts convert the external stimulation of FSS into biochemical changes, a process known as mechanotransduction, remain poorly understood. Focal adhesions are prime candidates for transducing external stimuli. Focal adhesion kinase (FAK), a nonreceptor tyrosine kinase found in focal adhesions, may play a key role in mechanotransduction, although its function has not been directly examined in osteoblasts. We examined the role of FAK in osteoblast mechanotransduction using short interfering RNA (siRNA), overexpression of a dominant negative FAK, and FAK(-/-) osteoblasts to disrupt FAK function in calvarial osteoblasts. Osteoblasts were subjected to varying periods oscillatory fluid flow (OFF) from 5 min to 4 h, and several physiologically important readouts of mechanotransduction were analyzed including: extracellular signal-related kinase 1/2 phosphorylation, upregulation of c-fos, cyclooxygenase-2, and osteopontin, and release of prostaglandin E(2). Osteoblasts with disrupted FAK signaling exhibited severely impaired mechanical responses in all endpoints examined. These data indicate the importance of FAK for both short and long periods of FSS-induced mechanotransduction in osteoblasts.
Collapse
|
20
|
Hayata T, Nakamoto T, Ezura Y, Noda M. Ciz, a transcription factor with a nucleocytoplasmic shuttling activity, interacts with C-propeptides of type I collagen. Biochem Biophys Res Commun 2008; 368:205-10. [DOI: 10.1016/j.bbrc.2008.01.040] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2008] [Accepted: 01/09/2008] [Indexed: 12/21/2022]
|